Math 141 Midterm 2 Question 2 Solution

October 16, 2015

Question: Evaluate the indefinite integrals:

$$
\int x \log _{10}(x) d x
$$

and

$$
\int \sin ^{-1}(x) d x
$$

Solution:

Firstly, if we desire we can rewrite $\log _{10}(x)=\frac{\ln (x)}{\ln (10)}$ and then have $\frac{1}{\ln (10)} \int x \ln (x) d x$. Otherwise begin integration by parts:

$$
u=\log _{10}(x) \quad d v=x d x \quad d u=\frac{1}{x \ln (10)} d x \quad v=\frac{x^{2}}{2}
$$

6 pts
Thus

$$
\int x \log _{10}(x)=\frac{1}{\ln (10)}\left[\frac{x^{2} \ln (x)}{2}-\frac{1}{2} \int x d x\right]
$$

and so

$$
\int x \log _{10}(x)=\frac{1}{\ln (10)}\left[\frac{x^{2} \ln (x)}{2}-\frac{1}{4} x^{2}+C\right]
$$

1 pt
Now for $\int \sin ^{-1}(x) d x$.. Integrate by parts with

$$
u=\sin ^{-1}(x) \quad d v=d x \quad d u=\frac{1}{\sqrt{1-x^{2}}} d x \quad v=x
$$

5 pts

Therefore

$$
\int \sin ^{-1}(x) d x=x \sin ^{-1}(x)-\int \frac{x}{\sqrt{1-x^{2}}} d x
$$

Perform a u-substitution for the resulting integral

$$
u=1-x^{2} \quad d u=-2 x d x
$$

and so we have

$$
\int \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\frac{1}{2} \int \frac{d u}{\sqrt{u}}
$$

Our answer is thus

$$
\int \sin ^{-1}(x) d x=x \sin ^{-1}(x)+\sqrt{1-x^{2}}+C
$$

1 pt

