Exam 4 Problem 2:
In order to find the interval of convergence of

$$
\sum_{n=1}^{\infty}(-1)^{n} \frac{\ln (n) x^{n}}{n}
$$

first the radius of convergence is calculated using either the generalized root or ratio test.
Using the ratio test, the power series converges for values of x such that

$$
\lim _{n \rightarrow \infty}\left|\frac{\ln (n+1)}{\ln (n)} \cdot \frac{n}{n+1} \| x\right|<1
$$

We consider the limits of sequences separately, $\lim _{n \rightarrow \infty} \frac{n}{n+1}=\lim _{n \rightarrow \infty} \frac{1}{1+1 / n}=1$.
Then let $f(x)=\frac{\ln (x+1)}{\ln (x)}$ and use L'Hopital's rule and the continuity of f to conclude that

$$
\lim _{n \rightarrow \infty} \frac{\ln (n+1)}{\ln (n)}=\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow \infty} \frac{1 /(x+1)}{1 / x}=\lim _{x \rightarrow \infty} \frac{x}{x+1}=1
$$

Thus we get that the radius of convergence is 1 . A similar argument using the root test gives the same answer by calculating $\lim _{n \rightarrow \infty}[\ln (n)]^{1 / n}$ by taking the limit of the equivalent real-variable function.

This means that there's absolute convergence on the interval $-1<x<1$. When $x=1$:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)(1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)}{n}
$$

is an alternating series. $\frac{\ln (n)}{n}$ is a decreasing sequence since its equivalent real-variable function $\frac{\ln (x)}{x}$ has a negative derivative $\frac{1-\ln (x)}{x^{2}}$ is negative for $x>e$. Using a comparison, we obtain

$$
0 \leq \lim _{n \rightarrow \infty} \frac{\ln (n)}{n} \leq \lim _{n \rightarrow \infty} \frac{2 \sqrt{n}}{n} \Rightarrow \lim _{n \rightarrow \infty} \frac{\ln (n)}{n}=0
$$

So by the alternating series test, the series converges conditionally at $x=1$.
When $x=-1$:

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln (n)(-1)^{n}}{n}=\sum_{n=1}^{\infty} \frac{(-1)^{2 n} \ln (n)}{n}=\sum_{n=1}^{\infty} \frac{\ln (n)}{n} \geq \sum_{n=1}^{\infty} \frac{1}{n}=\infty
$$

by the p-series test, hence the series diverges at $x=1$. This also means that the series does not converge absolutely at $x=-1$.

Therefore the interval of convergence is $(-1,1]$.

- 10 points for finding the radius of convergence
- 2 points for using ratio or root test
- 2 points for using absolute values where necessary
- 4 points for correctly evaluating limits in ratio or root test computation, only 2 points without correct justification
-2 points for getting that the radius is 1
- 7 points for analysis of series at $x=1$
- 4 for correct use of alternating series test: 2 points for showing the sequence decreases, 2 points for showing the sequence converges to 0
- 3 points for concluding that the convergence is conditional, only 1 point if type of convergence is not specified
- 7 points for analysis of series at $x=-1$
- 5 for for making a valid comparison to a divergent series or correctly using the integral test
- 2 points for stating that the series diverges
- 1 point for writing the interval $(-1,1]$

