Exam 1 Problem 3:

$$
f(x)=g(x) \Leftrightarrow 2=(x-2)(x+2)=x^{2}-4 \Leftrightarrow x^{2}-6=0 \Leftrightarrow x= \pm \sqrt{6}
$$

so the region takes x -values in between $-\sqrt{6}$ and $\sqrt{6} .2>g(0)=-4$, so $f>g$ on this region.

Then the area of the region is

$$
\begin{gathered}
A=\int_{-\sqrt{6}}^{\sqrt{6}} f(x)-g(x) d x=\int_{-\sqrt{6}}^{\sqrt{6}} 2-\left(x^{2}-4\right) d x=2 \int_{0}^{\sqrt{6}} 6-x^{2} d x=12(\sqrt{6})-\left(\frac{1}{3}\right)(12)(\sqrt{6})=12\left(\frac{2}{3}\right) \sqrt{6}=8 \sqrt{6} \\
M_{y}=\int_{-\sqrt{6}}^{\sqrt{6}} x\left(6-x^{2}\right) d x=\int_{-\sqrt{6}}^{\sqrt{6}} 6 x-6 x^{3} d x=0
\end{gathered}
$$

since $6 x-6 x^{3}$ is an odd function.
(This is also given by the fact that $f(x)=f(-x)$ and $g(x)=g(-x)$ means that f and g have y-axis symmetry.)

$$
\begin{aligned}
& M_{x}=\frac{1}{2} \int_{-\sqrt{6}}^{\sqrt{6}} 2^{2}-\left(x^{2}-4\right)^{2} d x=2\left(\frac{1}{2}\right) \int_{0}^{\sqrt{6}} 4-\left(x^{4}-8 x^{2}+16\right) d x= \\
& =\int_{0}^{\sqrt{6}}-x^{4}+8 x^{2}-12 d x=-\frac{1}{5}(36) \sqrt{6}+\frac{8}{3}(6) \sqrt{6}-12 \sqrt{6}=-\frac{16}{5} \sqrt{6}
\end{aligned}
$$

Thus

$$
\bar{x}=\frac{M_{y}}{A}=\frac{0}{A}=0
$$

and

$$
\bar{y}=\frac{M_{x}}{A}=\left(-\frac{16 \sqrt{6}}{5}\right)\left(\frac{1}{8 \sqrt{6}}\right)=-\frac{2}{5} .
$$

5 points for computing area: 2 points for correct integral setup, 3 points for correct computation, -1 point per mistake 8 points for finding M_{x} : 2 points for correct integral setup, 6 points for correct computation, -1 point per mistake 8 points for EITHER computing M_{y} OR using symmetry to determine $M_{y}=0$:
2 points for correct integral setup, 6 points for correct computation, -1 point per mistake OR 2 points for writing that that there is symmetry about $x=0,6$ points for explanation (detailed labeled graph or showing f and g are even functions)
4 points for final answer: 1 point each for noting $\bar{x}=\frac{M_{y}}{A}, \bar{y}=\frac{M_{x}}{A}, 1$ point for each simplified correct value

