Exam 2 Problem 3 Solution

$$
L=\lim _{x \rightarrow \infty} \frac{\log _{2}\left(\log _{3}\left(x^{2}\right)\right)}{\log _{4}\left(x^{2}\right)}
$$

Grading scheme 1

$$
\begin{gather*}
\log _{2}\left(\log _{3}\left(x^{2}\right)\right)=\frac{\ln \left(\log _{3}\left(x^{2}\right)\right)}{\ln 2} \tag{2points}\\
\log _{4}\left(x^{2}\right)=\frac{\ln \left(x^{2}\right)}{\ln 4} \tag{2points}\\
L=\frac{\ln 4}{\ln 2} \lim _{x \rightarrow \infty} \frac{\ln \left(\log _{3}\left(x^{2}\right)\right)}{\ln \left(x^{2}\right)} \tag{2points}
\end{gather*}
$$

As $x \rightarrow \infty, \ln \left(\log _{3}\left(x^{2}\right)\right) \rightarrow \infty, \ln \left(x^{2}\right) \rightarrow \infty$
It has the intermediate form ∞ / ∞, and $\left(\ln \left(x^{2}\right)\right)^{\prime}=\frac{2 x}{x^{2}} \neq 0$ near ∞. Hence we can use the L'Hospital's Rule.

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{\left(\ln \left(\log _{3}\left(x^{2}\right)\right)\right)^{\prime}}{\left(\ln \left(x^{2}\right)\right)^{\prime}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{\log _{3}\left(x^{2}\right)}\left(\log _{3}\left(x^{2}\right)\right)^{\prime}}{\frac{2 x}{x^{2}}} \tag{4points}\\
& =\lim _{x \rightarrow \infty} \frac{\frac{\ln 3}{\ln \left(x^{2}\right)}\left(\frac{1}{\ln 3} \cdot \frac{2 x}{x^{2}}\right)}{\frac{2 x}{x^{2}}} \tag{4points}\\
& =\lim _{x \rightarrow \infty} \frac{1}{\ln \left(x^{2}\right)} \tag{3points}\\
& =0 \tag{2points}
\end{align*}
$$

Hence by L'Hospital's Rule,

$$
\begin{equation*}
L=\frac{\ln 4}{\ln 2} \lim _{x \rightarrow \infty} \frac{\left(\ln \left(\log _{3}\left(x^{2}\right)\right)\right)^{\prime}}{\left(\ln \left(x^{2}\right)\right)^{\prime}}=\frac{\ln 4}{\ln 2} \cdot 0=0 \tag{2points}
\end{equation*}
$$

Grading scheme 2

As $x \rightarrow \infty, \log _{2}\left(\log _{3}\left(x^{2}\right)\right) \rightarrow \infty, \log _{4}\left(x^{2}\right) \rightarrow \infty$
It has the intermediate form ∞ / ∞, and $\left(\log _{4}\left(x^{2}\right)\right)^{\prime}=\frac{2 x}{\ln 4 \cdot x^{2}} \neq 0$ near ∞. Hence we can use the L'Hospital's Rule.

$$
\begin{align*}
\lim _{x \rightarrow \infty} \frac{\left(\log _{2}\left(\log _{3}\left(x^{2}\right)\right)\right)^{\prime}}{\left(\log _{4}\left(x^{2}\right)\right)^{\prime}} & =\lim _{x \rightarrow \infty} \frac{\frac{1}{\ln 2} \cdot \frac{1}{\log _{3}\left(x^{2}\right)}\left(\log _{3}\left(x^{2}\right)\right)^{\prime}}{\frac{1}{\ln 4} \cdot \frac{2 x}{x^{2}}} \tag{10points}\\
& =\lim _{x \rightarrow \infty} \frac{\frac{1}{\ln 2} \cdot \frac{\ln 3}{\ln \left(x^{2}\right)}\left(\frac{1}{\ln 3} \cdot \frac{2 x}{x^{2}}\right)}{\frac{1}{\ln 4} \cdot \frac{2 x}{x^{2}}} \tag{4points}\\
& =\frac{\ln 4}{\ln 2} \lim _{x \rightarrow \infty} \frac{1}{\ln \left(x^{2}\right)} \tag{3points}\\
& =0 \tag{2points}
\end{align*}
$$

Hence by L'Hospital's Rule,

$$
L=\lim _{x \rightarrow \infty} \frac{\left(\log _{2}\left(\log _{3}\left(x^{2}\right)\right)\right)^{\prime}}{\left(\log _{4}\left(x^{2}\right)\right)^{\prime}}=0
$$

(2 points)

