Math 141 Midterm 3 Question 3 Solution

December 3, 2015

Question: Find power series expansion of $f(x)=\frac{e^{x}-1-x}{x^{2}}$. (You may use Taylor series expansions already obtained in the textbook.) Then find its radius of convergence.

Solution:

$$
e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

so, since 1 and x are the first two terms of this Taylor series,

$$
\begin{aligned}
& e^{x}-1-x=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}-1-x=\sum_{n=2}^{\infty} \frac{x^{n}}{n!} \\
& \frac{e^{x}-1-x}{x^{2}}=\sum_{n=2}^{\infty} \frac{x^{n-2}}{n!}=\sum_{n=0}^{\infty} \frac{x^{n}}{(n+2)!}
\end{aligned}
$$

Now we can find the radius using the (generalized) root test.

$$
\begin{gathered}
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} \cdot(n+2)!}{(n+3)!\cdot x^{n}}\right| \\
=\lim _{n \rightarrow \infty}\left|\frac{x}{n+2}\right| \\
=|x| \lim _{n \rightarrow \infty} \frac{1}{n+2}=0<1
\end{gathered}
$$

Thus

$$
R=\infty
$$

2 pts

