Exam 1 Problem 4 Solution

Take the derivative (using the product rule)

$$
\begin{equation*}
f^{\prime}(x)=\frac{\left(1+e^{x}\right) e^{x}-e^{x} e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{x}}{\left(1+e^{x}\right)^{2}} \tag{4points}
\end{equation*}
$$

Notice that $e^{x}>0$ for $x \in(-\infty, \infty)$. Hence

$$
\begin{equation*}
f^{\prime}(x)>0 \tag{4points}
\end{equation*}
$$

Since f is increasing, it has an inverse on

$$
\begin{equation*}
(-\infty, \infty) \tag{3points}
\end{equation*}
$$

The domain of f is $(-\infty, \infty)$, so the range of f^{-1} is also

$$
\begin{equation*}
(-\infty, \infty) \tag{3points}
\end{equation*}
$$

To find $\left(f^{-1}\right)^{\prime}\left(\frac{1}{2}\right)$, use the formula

$$
\begin{equation*}
\left(f^{-1}\right)^{\prime}(c)=\frac{1}{f^{\prime}(a)} \tag{4points}
\end{equation*}
$$

To find a, set $f(a)=\frac{1}{2}$.

$$
\begin{equation*}
\frac{e^{a}}{1+e^{a}}=\frac{1}{2} \Longrightarrow 2 e^{a}=1+e^{a} \Longrightarrow e^{a}=1 \Longrightarrow a=0 \tag{4points}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left(f^{-1}\right)^{\prime}\left(\frac{1}{2}\right)=\frac{1}{f^{\prime}(0)}=\frac{1}{\frac{e^{0}}{\left(1+e^{0}\right)^{2}}}=\frac{1}{\frac{1}{4}}=4 \tag{3points}
\end{equation*}
$$

