Exam 3 Problem 4:
First, let $f(x)=\frac{\log _{3}\left(\frac{1}{x}\right)}{x}$, so $f(n)=a_{n}$ for all natural numbers $n \geq 1$. So by continuity of $f, \lim _{n \rightarrow \infty} \frac{\log _{3}\left(\frac{1}{n}\right)}{n}=$ $\lim _{x \rightarrow \infty} f(x)$.

Then, using L'Hopital's rule,

$$
\lim _{x \rightarrow \infty} \frac{\log _{3}\left(\frac{1}{x}\right)}{x}=\lim _{x \rightarrow \infty}-\frac{\frac{1 / x^{2}}{(\ln 3)(1 / x)}}{1}=\lim _{x \rightarrow \infty}-\frac{1}{x \ln 3}=0
$$

Alternatively, if f is rewritten as

$$
\frac{\log _{3}\left(\frac{1}{x}\right)}{x}=\frac{\log _{3}(1)-\log _{3}(x)}{x}=-\frac{\log _{3}(x)}{x}
$$

then the calculation of derivatives for L'Hopital's rule is simpler in that $\frac{d}{d x}\left(\log _{3}(x)\right)=\frac{1}{x \ln 3}$.

- 5 points for comparing the limit of the sequence with the limit of a real-variable function
- 2 points for noting that L'Hopital's rule is to be used
- 12 points for correct application of L'Hopital's rule
- (-1) point for sign error
$-(-2)$ points for leaving off $\ln 3$
- (-6) points for division errors, i.e. exchanging numerator and denominator
- 6 points for simplifying and obtaining the correct solution
-3 points for getting that the limit is 0
- 3 points for correct simplification

