MATH141-Mid Term Exam 4 - Problem 4

$z^{3}+8=0 \Longrightarrow z^{3}=-8=8 e^{i \pi} \quad 2$
Put $z=r e^{i \theta}$
$z^{3}=r^{3} e^{i 3 \theta}=8 e^{i \pi}$ \square
Thus,
$r^{3}=8$ and $3 \theta=\pi+2 k \pi, k$ is an integer $\quad 2+\square 2$
Which gives, $r=2 \square 2$ and $\theta=\frac{\pi}{3}+\frac{2 k \pi}{3} \square 3 \Longrightarrow z=2 e^{i\left(\frac{\pi}{3}+\frac{2 k \pi}{3}\right)}, k$ is an integer. 3

Therefore, there are three distinct solutions corresponding to $k=0,1,2$,

$$
\begin{gathered}
z=2 e^{i \frac{\pi}{3}}, 2 e^{i \pi}, 2 e^{i \frac{5 \pi}{3}} 3 \\
z=2\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right), 2(\cos \pi+i \sin \pi), 2\left(\cos \frac{5 \pi}{3}+i \sin \frac{5 \pi}{3}\right) \\
z=1+i \sqrt{3},-2+i 0,1-i \sqrt{3} 3
\end{gathered}
$$

-1 If all all three final answers are correct but have not shown the intermediate steps.

