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The morphological relaxation of faceted crystal surfaces is studied via a continuum approach. Our
formulation includes (i) an evolution equation for the surface slope that describes step line tension, g1, and
step repulsion energy, g3; and (ii) a condition at the facet edge (a free boundary) that accounts for discrete
effects via the collapse times, tn, of top steps. For initial cones and tn � ~tn4, we use ~t�g� from step
simulations and predict self-similar slopes in agreement with simulations for any g � g3=g1 > 0. We
show that for g� 1, (i) the theory simplifies to an equilibrium-thermodynamics model; (ii) the slope
profiles reduce to a universal curve; and (iii) the facet radius scales as g�3=4.

DOI: 10.1103/PhysRevLett.97.096102 PACS numbers: 68.35.Md, 61.46.Hk, 61.50.Ah

Below the roughening temperature TR, various struc-
tures are created on crystal surfaces, including mounds,
islands, ripples, nanowires, and quantum dots [1]. Often,
nominally flat crystal surfaces are covered by mounds from
homoepitaxy or heteroepitaxy of semiconductors [2], met-
als [3], and ceramics [4], or from lithography [5]. Entire
surface profiles as well as nanoscale defects such as steps
are monitored [1,3] during the evolution process. The
effect of such defects, i.e. nanoscale discreteness, on mac-
roscopic surface properties and the growth and decay of
nanostructures evade a complete theoretical description
[1,6]. The incorporation of nanoscale, discrete effects
into boundary conditions for a continuum description rele-
vant to crystal decay is the subject of this Letter.

Below TR, crystal surfaces evolve via the motion of steps
[7]. Mass transport is mediated by the diffusion of point
defects (‘‘adatoms’’) across terraces and the attachment-
detachment of atoms at steps. There are two common
theoretical approaches to crystal surface evolution. One
approach [8,9] follows individual steps, incorporates
widely accepted thermodynamics and kinetics, and pro-
vides details for surface morphologies, but involves too
many variables to enable simple or wide-ranging predic-
tions. Another approach [10–13] uses continuum equa-
tions for the surface height, which are easier to
implement because they involve fewer variables, but is
questionable [14,15] near macroscopic, flat surface regions
(‘‘facets’’). The relation of these two approaches is the
subject of active research [6]. However, comparisons of
continuum solutions with simulations of step motion have
been previously limited to scaling of slope profiles with
time [8] and physical parameters such as the step interac-
tion energy [13].

In this Letter, we describe a continuum theory that
incorporates the motion of top steps in the boundary con-
ditions and predicts entire profiles in agreement with step
simulations, thus consummating previous studies
[8,11,13]. It has been recognized [8,14,15] that the collap-
ses of top steps drive macroscopic surface evolution. The
inclusion in a continuum theory of a ‘‘discrete’’ condition,

which replaces a boundary condition and is informed by
step simulation data, is the principal contribution of our
work. We treat facet evolution as a free-boundary problem
via a partial differential equation (PDE) for the surface
height. We show that for strong step repulsions, this theory
reduces to a previous model [11,12] of equilibrium
thermodynamics.

The geometry consists of a faceted axisymmetric shape
(see Fig. 1). Steps of height a are illustrated, which are
concentric circles with radii ri�t�; ri�1 > ri; r0 � 0. The
discrete surface height is

 hd�r; t� � htop�t� � ia; ri < r < ri�1; (1)

where htop�t� is the (piecewise constant with time) height
of the top terrace, i is the step number, i � 0; 1; . . . ; N,N�t�
is the number of steps (N � 1), r is the polar distance, and
t is time. We take the high-symmetry (‘‘basal’’) plane (x; y)
of the crystal as our reference plane; hd � 0 for r > rN
and, thus, htop � Na.

We exclude material deposition from above so that the
structure relaxes to become flat. During relaxation, the top
terrace (region 0< r< r1) shrinks mainly by the influence
of the line tension of the first step. If the nth-step collapse
occurs at time tn; n � 1; . . . ; N0, then
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FIG. 1. Left: Schematic of an axisymmetric shape with a facet
at the macroscale and nanoscale (blowup). Right: Schematic
graph of piecewise constant top-terrace height, htop�t� (solid
line), and facet height, hf�t� (dashed line), the continuous inter-
polant of htop�t�.
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where the dot over a symbol denotes the total time deriva-
tive, ��t� is the delta function, and step collapses are
counted from t � 0. By integration of Eq. (2) from t �
t�n (i.e., t � tn with tn < t < tn�1) to t�n�1, we obtain

 N�t�n�1� � N�t
�
n � � �1; n � 1; 2; . . . ; N0; (3)

which is a special case of Eq. (2).
Next, we reduce Eq. (3) to a continuum statement. The

step density varies over a macroscopic length � �a=�	
1�. Then, hd � h�r; t�, which is the continuous height
profile; h�r; t� � hf�t� for r < w�t�, where hf is the time-
continuous facet height and w is the facet radius (see
Fig. 1). Because h�r; t� is an interpolation of the discrete
height, hd, then hf � htop �O�a� so that hf�t� � htop�t� in
the limit a=�! 0; in a similar way, t � tn. Thus, Eq. (3)
with htop�t� � N�t�a yields

 hf�tn�1� � hf�tn� � �a; (4)

which is viewed as a discrete scheme for hf�t�; we call this
relation the ‘‘step-drop’’ condition.

Equation (4) was introduced but not implemented by
Israeli and Kandel [8] [see their Eq. (42)]. Extensions of
this relation are discussed in [16]. A fully continuum state-
ment is obtained by replacing Eq. (4) by

 � t _hf�t� � �a; (5)

where the meaning of �t is discussed next. By taking �t �
tn�1 � tn and tn � T�n�, we have �t�t� � T0�n�, where the
prime denotes differentiation. The discrete function T�n�
depends on the initial step positions. Equation (5) relates
the times of step collapses (tn) with the continuous height
function hf. Similar, hybrid-type conditions have been
used elsewhere in continuum solid mechanics [17].

To compute tn and the discrete step density or surface
slope, mi�t� �

a
ri�1�ri

, for later comparisons with contin-
uum predictions, we next review and solve numerically the
equations of step motion [8,13]. The ith-step velocity is
_ri �

�
a �Ji�1 � Ji� at r � ri�t�, where � is the atomic

volume, Ji�r; t� � �Ds
Ai
r is the adatom current on the ith

terrace (ri < r < ri�1), andDs is the terrace diffusivity; the
coefficient Ai is proportional to the difference �i�1 ��i
[13], where

 �i �
�g1

ri
�

�

2�ari

@
V�ri; ri�1� � V�ri�1; ri��
@ri

(6)

is the chemical potential of the ith-step. Here, g1 is the step
line tension, and V�ri; ri�1� � g3

4�a3riri�1

�ri�1�ri��ri�1�ri�2
is the step

interaction energy; it is convenient to characterize �i in
terms of the parameter g � g3=g1. This formulation yields
coupled ordinary differential equations (ODEs) for ri�t�,
which we solve for diffusion-limited (DL) kinetics (when
terrace diffusion is the rate-limiting process) and an initial
linear cone of unit slope.

To capture the dynamics of a structure for which the base
does not influence the facet motion, we use a sufficiently

large number of steps and test that the discrete step density
approaches unity with high accuracy away from the facet.
We verify that the step density becomes self-similar [8], i.e.
mi � M��i�, where �i / rt�1=4 and r � ri�ri�1

2 ; details are
given in [16]. We find numerically that tn � ~tn4, a scaling
that was also reported in [8]. Below, we predict this scaling
by applying continuum ideas, compute ~t by step simula-
tions, and use it as an input to the continuum theory via
Eq. (5). In Fig. 2, we plot the scaled ~t as a function of g; we
note its weak dependence on small values of g. Further,
from the ODE for the top step we find ~t � O�g�1� for g�
1 and fixed g1. In the following, we show the importance of
~t for linking the discrete step simulations with a continuum
description.

So far, emphasis is on the discrete step motion, which
enters Eq. (5) via �t�t�. We now outline the continuum
principles that yield an evolution equation for the surface
height, h; a detailed derivation is given in [13]. Our starting
point is the surface free energy per projected area, G�m� �
g0 � g1m�

1
3g3m

3, wherem � jrhj, g0 is the energy of a
flat surface and r � � @@x ;

@
@y�. The continuum step chemical

potential, �, is the continuum limit of Eq. (6), or the
variational derivative of the total surface free energy
[13]; and the continuum surface current for DL kinetics
is J / �r�. A PDE for the surface slope, m�r; t� �
� @h

@r �m> 0�, outside the facet, r > w�t�, is obtained via
mass conservation, @h@t ��r � J � 0:
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where B is a material parameter (B> 0) and each space
derivative acts on the entire term on its right.

Next, we solve Eq. (7) by treating the facet edge, r �
w�t�, as a free boundary [11]. We consider an initial cone
and self-similar slope profiles, m�r; t� � m��; g�, where
� � �Bt��1=4r. Then, Eq. (7) reduces to the ODE

 �
�
4

dm
d�
�

3

�4�g
d
d�

1

�
d
d�
�
d
d�

1

�
d
d�
��m2�; �>�0;

(8)

where �0 � �Bt�
�1=4w and w � O��Bt�1=4� [8,13].
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FIG. 2. The scaled step collapse time ~t;~t � tn=n
4 for n� 1,

as a function of the relative step interaction strength, g, for an
initial cone of unit slope; B is a material parameter. Symbols are
step simulation data and the solid line is our prediction, ~t �
O�g�1� for g� 1.
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We solve Eq. (8) by applying two distinct sets of bound-
ary conditions. One set follows from equilibrium thermo-
dynamics [11–13] and includes continuity of slope, height,
current, and a continuous extension of the step chemical
potential (‘‘�-continuity’’) across the facet edge. The first
condition amounts to imposing m � 0 at � � �0, to be
justified later. Continuity of height, h�w; t� � hf�t�, gives
@h
@t �

_hf at r � w; by Eq. (7), at � � �0 we have

 � ��3
0 � 1� g�0
��m2�� � 2�0�m2��� � �2

0�m
2�����;

(9)

where �m2�� �
dm2

d� and the parameter � is defined by

 � � � _hfB�1�Bt�3=4 > 0: (10)

Continuity of current asserts that Jf�w; t� � J�w; t� where
J / � @�

@r and Jf�r; t� is the current on the facet, which is
defined in terms of _hf via mass conservation, _hf �

�r�1 @
@r �rJf� � 0. Thus, we obtain [13]

 ��3
0=2 � 1� g�0
�m

2�� � �0�m
2����; � � �0: (11)

The continuous extension �f�r; t� of � onto the facet is
defined via Jf / �

@�f

@r ; �-continuity asserts that �f � �
at r � w, which yields [13]

 ��3
0=8 � 1� g�0�m2��; � � �0: (12)

The ODE (8) is solved uniquely with m � 0 at �0,
Eqs. (9)–(12), and two more conditions by m! 1 as �!
1. Therefore, � and hence _hf can be eliminated from the
boundary conditions; the vertical motion of the facet de-
scribed by _hf is absent from this formulation.

By contrast, to retain the influence of the discrete top-
step motion on continuum solutions, we replace Eq. (12)
by the step-drop condition (5). The latter links the macro-
scopic facet motion via _hf with the microscale top-step
collapses in simulations via �t�t�. Because by Eq. (9) or
(11) � must be independent of t, by Eq. (10) we find _hf �

O�t�3=4�. Thus, by Eq. (5), �t � O�t3=4� � tn�1 � tn,
which implies tn � T�n� 
 ~t�g�n4, in agreement with the
results in [8]; ~t�g� is determined by step simulations.
Equation (5), which describes the time change in the facet
height, becomes

 � �
a

4�B~t�1=4
; (13)

in Fig. 2, we plot �4���4 as a function of g. This condition
relates _hf with ~t. We interpret this relation as a means to
construct the time-continuous hf�t� from htop�t� (see
Fig. 1). Equation (13) was first proposed in [8] but used
only to extract estimates for ~t when g < 1; to our knowl-
edge, Eq. (13) has not been previously implemented in a
continuum setting. For ~t, or �, given by step simulations,
Eq. (8) is solved uniquely withm � 0 at �0, conditions (9),
(11), and (13), along with m! 1 as �! 1.

We now discuss features of the continuum solutions with
particular emphasis on results obtained by the step-drop
condition. In Figs. 3(a) and 3(b), we compare results of
step simulations to continuum predictions obtained by (8)
with the two sets of boundary conditions. We make the
following observations. First, the slope, m, extrapolated
from the step simulation data rapidly approaches zero for
decreasing � and any g > 0; this behavior confirms the
condition m � 0 at �0. Second, the �-continuity generates
slope profiles that deviate significantly from the step simu-
lation results when g < 1. By contrast, slope profiles from
the step-drop condition follow closely the discrete simula-
tion data for arbitrary g > 0. Third, the two sets of bound-
ary conditions produce nearly identical results for large
enough g; in this case, the facet width decreases to zero.
We note that previous ODE solutions [13] using
�-continuity, which appeared to agree with step simulation
results, were in error due to a fault in the numerical imple-
mentation; nevertheless, the small-g scaling laws in [13]
are correct. We reiterate that the continuum results in
agreement with step simulations come from the step-drop
condition, which incorporates the effect of the top-step
motion.

Next, we explain the behavior of the two families of
continuum solutions (with and without �-continuity), es-
pecially their coalescence when the step interactions be-
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FIG. 3. Self-similar slope, m, for an initial cone of unit slope.
Step simulation data (circles) and continuum solutions of Eq. (8)
by �-continuity (dashed line) and step-drop condition (solid
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come dominant, g� 1. In the governing ODE, Eq. (8), we
balance the step interaction (g-) term with � dmd� ; the latter
comes from the time derivative, @m

@t , in Eq. (7), and is
necessary for satisfying the far-field condition. Thus, we
define the variable � � g�1=4� so that m��; g� � ~m���; by
treating ~m and its derivatives with respect to � as bounded,
we simplify Eq. (8) for g� 1 to the g-independent equa-
tion

 

d
d�

1

�
d
d�

�
d
d�

1

�
d
d�
�� ~m2� �

�
4

d ~m
d�

; � > �0;

(14)

�0 � g�1=4�0 and the term g�1 3
�4 is negligible for �> �0.

We now show that both sets of boundary conditions for
Eq. (8) simplify to the same set of g-independent condi-
tions for Eq. (14). By continuity of slope, we have ~m � 0 at
� � �0. Equation (9) for height continuity becomes

 1� ��0� ~m
2�� � 0 � � �0; ��0 � g3=4�0; (15)

where neglected terms are O�g�1=2�. By Eq. (15), ��0 �

O�1� and, thus, �0 � O�g�3=4� for g� 1; this scaling
behavior is compared with simulation results in Fig. 4,
where �0�g� is plotted against g. It follows that �0 �
O�g�1�; hence, to leading order in g�1, we take �0 � 0,
by which the facet shrinks to a single point. Effectively, the
surface profile is smooth (almost) everywhere and the two
sets of conditions, with or without �-continuity, should
become equivalent. Indeed, Eqs. (11) and (12) reduce to
(15). Further, the inclusion of the step-drop condition,
Eq. (13), in Eqs. (9) and (11) also yields Eq. (15) in view
of ~t � O�g�1� for g� 1. The far-field condition remains
the same, ~m! 1 as �! 1.

Condition (15) balances two energetic contributions:
(i) the step line tension, which is proportional to 1= ��0

and corresponds to the energy of the top step; and (ii) the
interaction energy per atom of adjacent steps, which is
proportional to �m2��, the limit value of the continuum
step chemical potential, �, at the facet edge (as �! �0).

Next, we discuss further implications of our large-g
analysis. The governing Eq. (14) has four, instead of the
previous six, conditions: ~m � 0 at � � 0 and Eq. (15),

where ��0 is unknown, and the far-field behavior which
amounts to two conditions [13]. By enforcing ~m � 0, we
obtain ~m � c1�

1=2 � c2�
5=2 �O��3� as �! 0, where

only c1 and c2 are free. So, the problem is well posed
and produces a universal, g-independent profile.
Specifically, by Eq. (15), c1 � � ��0�

�1=2; thus, m��; g�


g�1=8
���������
���0

��0

q
, where �0 < �<O�g1=4� and ��0 � O�1�; cor-

rections to this formula via Eq. (14) establish thatm! 1 as
�!1. Hence, the slope has a local-equilibrium [1] be-
havior for a wide range of � (see Fig. 3(b)).

There remain further research directions for exploring
the influence of discreteness on the continuum description
of nanostructure evolution. For example, attachment-
detachment limited kinetics can be treated; long-range
step interactions can also be included. Finite structures
are the subject of work in progress. A feature of our theory
is the use of the step collapse parameter ~t: Currently, we
compute ~t from simulations, but it is possible to obtain it
analytically or experimentally. Our work opens the avenue
to predicting macroscale surface evolution from any source
of information on the top-step motion.
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FIG. 4. The (scaled) facet radius, �0 � w�Bt��1=4, as a func-
tion of g. Circles correspond to step simulations and the solid
line is our continuum prediction, �0 � O�g�3=4� for g� 1.
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