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Abstract
In Bose–Einstein condensation (BEC), particles occupy a single-particle
quantum state, �, macroscopically. At zero temperature, the wavefunction
for � is usually described via a nonlinear Schrödinger equation (NSE). Our
goal is to study time-dependent nonlocal effects beyond the NSE in trapped
atomic gases. We adopt the view that atoms are excited from � in pairs: the
scattering from � to other states at positions x and y is described by the pair-
excitation function, K0(x, y, t) (Wu 1961 J. Math. Phys. 2 105). This function
satisfies a nonlinear, dispersive integrodifferential equation coupled with the
NSE. We solve these equations under a slowly varying external potential by
assuming that � is stationary. For zero initial excitation (K0 ≡ 0 at t = 0)
and sufficiently large t, we evaluate K0 asymptotically for any distance |x − y|.
Implications of these results are discussed, particularly the connection of non-
equilibrium properties to the coalescence of critical points in the Fourier space.

PACS numbers: 03.75.Hh, 03.75.Kk, 03.75.Nt, 05.10.−a, 05.30.Jp, 02.30.Mv,
02.60.Nm

1. Introduction

In Bose–Einstein condensation, atoms with integer spin (‘Bosons’) occupy a single-particle
quantum state macroscopically. This phenomenon, predicted by Bose [1] and Einstein [2]
for non-interacting particles over 80 years ago, was observed experimentally in trapped
dilute atomic gases in 1995 [3, 4]. Many similar experiments have followed [5, 6]. These
observations have renewed theoretical interest in the Bose–Einstein condensation of systems
that lack translational symmetry [7–9].

Studies of Bose–Einstein condensation for zero temperature often, though by no means
always [10–12], invoke a macroscopic wavefunction �(x, t) that satisfies a cubic nonlinear
Schrödinger equation (NSE) [10, 11, 13, 14]. This ‘mean-field’ description, by which each
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particle moves under an effective potential due to neighboring particles, has been applied
successfully for various predictions such as ground state energy, interference effects, and
solitons. Most recently, a rigorous derivation of this mean-field limit was given via the
hypothesis that the number of particles approaches infinity [15].

The use of the NSE alone implies that a negligible fraction of interacting particles are
scattered off the one-particle macroscopic state �. In realistic situations, however, � may be
depleted [16]. Hence, the NSE has limitations due to the many-body nature of the underlying
processes.

Particle excitations in Bose–Einstein condensation were described systematically by Lee,
Huang and Yang [17, 18] for systems with translational invariance and periodic boundary
conditions. In this setting, atoms are primarily excited in pairs from the (lowest) state of zero
momentum to states with opposite momenta [17]. This process leads to phonons and sound
vibrations [17].

Wu [10] extended the theory of [17] to systems that lack translational symmetry. A key
ingredient of his formulation is the pair-excitation function, K0(x, y, t), which describes the
scattering of atoms in pairs from � to other states at positions x and y at time t (see (2)).
This formulation yields coupled nonlocal equations for �(x, t) and K0(x, y, t) [10, 11], and
therefore transcends other treatments based solely on the NSE. However, solutions of the
resulting coupled equations have remained largely elusive. By approximately decoupling the
two equations, Wu solved their time-independent counterparts under a slowly varying trapping
potential [11].

In this paper we address analytically the time dependence of K0 and its consequences.
The starting model is a coupled system of � and K0 [10, 11], where a stationary � satisfies the
NSE. The resulting nonlocal equation for K0 contains �(x) as a coefficient and is solved
by the Fourier transform for a slowly varying trap. By asymptotics we show how K0

approaches stationary values at sufficiently long times if initially all atoms occupy � (so that
K0(t = 0) = 0). Our analysis indicates a connection of time-dependent particle excitations
to coalescence of critical points in the Fourier domain.

Our study is motivated by three broader questions. The first one concerns the precise
manipulation of atomic gases at very low temperatures. In current experimental setups, a
rich variety of refined many-body effects can be observed including the depletion of the
macroscopic state [16]. The second question is the extension of the concept of phonon to
systems that lack translational symmetry. The third question concerns the analysis of coupled
nonlocal equations for BEC. Pair excitation leads to integrodifferential equations of motion
that are as yet unexplored. With the present work, we seek particular approximate solutions
as a guide to more rigorous studies.

The starting point is Wu’s formulation [10, 11] for a system of N pairwise interacting
Bosons at positions {xi}. By units with h̄ = 2m = 1 (h̄: Planck’s constant, m: atomic mass),
the many-body Hamiltonian reads

H =
N∑

i=1

[−�i + Ve(xi )] + 4πa
∑
i �=j

δ(xi − xj )
∂

∂xij

xij , a > 0, (1)

where �i is the Laplacian corresponding to xi , a is the (positive) scattering length, Ve is the
external (trapping) potential, and xij := |xi − xj |. By use of quantized fields [19], the N-body
wavefunction of the Boson system is assumed to be of the form [10, 11]

�(t) = N (t) eP(t){(N !)−1/2a∗
0(t)

N |vac〉}. (2)
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In this ansatz, N is a normalization constant, a∗
0(t) (the adjoint of a0(t)) is the creation operator

for the state �, |vac〉 is the vacuum state (a0(t)|vac〉 ≡ 0), and the operator P(t) is

P(t) ∝
∫ ∫

dx dyψ∗
1 (x, t)ψ∗

1 (y, t)K0(x, y, t)a0(t)
2. (3)

Here, ψ∗
1 (x, t) is the creation field operator corresponding to the space orthogonal to �.

Note that the integrand in (3) describes the annihilation of two particles from � with the
simultaneous creation of two particles in other states at positions x and y. If P(t) ≡ 0
(K0 ≡ 0) then no atoms are excited from �, and the N-body wavefunction reduces to a tensor
product of single-particle states each of which is �.

The combination of ansatz (2) with the N-body Schrödinger equation, H�(t) = i∂t�

(i2 = −1), yields a system of coupled equations for � and K0 [10, 11] (see section 2).
Previous studies of this system were restricted to stationary solutions [11]. In this paper, we
extend the analysis of [11] to nontrivial time-dependent aspects of K0.

We stress that this formulation relies directly on the many-body wavefunction, ansatz (2),
by which observables can be computed directly. The use of K0(x, y, t) renders this approach
distinctly different from, e.g., studies of excitations based on the ‘Bogoliubov-de Gennes
equations’ [8] which retain mostly features of the NSE. In contrast, (2) describes many-body
effects, for example, it provides a nontrivial correction to the total energy [17]. Similar
corrections have been offered by methods based on the hydrodynamic theory of superfluids,
e.g. [20, 21], which do not invoke �. We adopt the view that the K0-based approach,
although perhaps more elaborate, is more faithful to the many-body quantum dynamics,
avoiding classical (hydrodynamic) concepts entirely (see section 4). Our goal is to explore the
consequences of this approach.

A few remarks on our main simplifying assumptions are in order. (i) K0 does not act back
on �. Thus, the issue of how the NSE is modified by K0 is left unresolved here. Decoupling
� from K0 in this fashion may pose a limitation on the time scale for the validity of our results.
Therefore, the asymptotics with time studied here should be interpreted with caution. (ii) The
external potential, Ve, is time independent and slowly varying, and �(x, t) = e−iEt�(x). A
reasonable approximation for � results from neglecting the Laplacian in the NSE [11]. This
simplification, sometimes referred to as the ‘Thomas–Fermi approximation’ [7, 8], amounts
to seeking an outer solution in the context of singular perturbation [22, 23]. The effect on K0

of possible boundary layers for �, where the Laplacian needs to be retained in the form of
derivatives normal to the associated boundary [11], is not addressed in our analysis.

The asymptotics in section 3 relies on deriving a spherically symmetric Fourier integral
for K0 and applying the stationary-phase method [22, 23] for sufficiently large t. The
integrand is highly oscillatory and thus renders numerical computations impractical. As
|x − y| varies, significant contributions to K0 occur when a critical point coalesces with the
origin in Fourier space, which is the endpoint of integration. This coalescence is viewed as an
‘elementary catastrophe’, by analogy with diffraction theory [24], and signifies pronounced
non-uniform deviations from equilibrium that are mediated by scattering processes (see
section 4). Comparisons with numerical computations lie beyond the scope of this paper.

The remainder of the paper is organized as follows. In section 2 we review the governing
equations of motion. In section 3 we focus on a slowly varying external potential: in
section 3.1 we describe an approximate solution for �(x, t) revisiting [11]; in section 3.2 we
obtain a Fourier integral for K0; and in section 3.3 we approximate this integral asymptotically
for sufficiently large t. In section 4 we discuss plausible implications of our results. In
section 5 we conclude with a summary and open questions on the underlying assumptions.
The appendices provide derivations needed in the main text. Units with h̄ = 2m = 1 are used
unless it is indicated otherwise.
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2. Background theory

In this section we review the equations of motion for � and K0 which are derived in [11].
These equations form the starting point for the analysis of section 3.

The functions �(x, t) and K0(x, y, t) are found to satisfy two coupled nonlinear equations
[10, 11], which take the form1

i∂t� = [−�x + Ve(x) + 8πa|�|2 − 4πaζ(t)]� + N−1Wb(x, t), (4)

[i∂t − 2E(t)]K0 = −(�x + �y)K0 + 8πa�(x, t)2δ(x − y)

+ {−2Z(t) + Ve(x) + Ve(y) + 16πa[|�(x, t)|2 + |�(y, t)|2]}K0

+ 8πa

∫
dz�∗(z, t)2K0(x, z, t)K0(y, z, t) + N−1Wc(x, y, t), (5)

where �x is the Laplacian in x, and Wl (l = b, c) are functionals of � and K0 involving
repeated integrals of K0 [10]. In the following, we set Wl ≡ 0 [11]. Evidently, K0 is
symmetric, i.e., K0(x, y, t) = K0(y, x, t), assuming symmetric initial data.

The macroscopic wavefunction �(x, t) is subject to the normalization condition

N−1
∫

dx|�(x, t)|2 = 1, (6)

and the functions Z(t), ζ(t) and E(t) of (4) and (5) are [11] Z(t) := ζ̄ (t) + 8πaζ(t) +
ζe(t), ζ(t) := 〈|�|2〉�, ζe(t) := 〈Ve〉�, ζ̄ (t) := 〈−�〉� and E(t) := 〈i∂t 〉�, where
〈Lop〉� := N−1

∫
dx�∗(x)Lop�(x) and Lop is a one-particle Hermitian operator.

Following [11] we use the standard center-of-mass coordinates, r := x − y, R :=
(x + y)/2, and set K0(x, y, t) =: K0(r, R, t). Hence, (5) is recast to the equation

[i∂t − 2E(t)]K0(r, R, t) = −
(

1

2
�R + 2�r

)
K0 + 8πa�(R, t)2δ(r)

+

{
−2Z(t) + Ve

(
R +

1

2
r
)

+ Ve

(
R − 1

2
r
)

+ 16πa

[∣∣∣∣�(
R +

1

2
r, t

)∣∣∣∣2

+

∣∣∣∣�(
R − 1

2
r, t

)∣∣∣∣2
]}

K0(r, R, t)

+ 8πa

∫
dw�∗

(
R − 1

2
r − w, t

)2

K0

(
w, R +

1

2
r − 1

2
w, t

)
×K0

(
r − w, R − 1

2
w, t

)
. (7)

Note the presence of the forcing term 8πa�(R, t)2δ(r) and the nonlocal term on the right-hand
side of (7).

Once � and K0 are evaluated, non-equilibrium properties of the Boson gas can in principle
be determined. For example, the fraction, ϕ, of particles at the one-particle state � can be
computed by the formulae [10]

ϕ(t) = 〈�|a∗
0(t)a0(t)/N |�〉 = 1 − N−1

∫
dxW(x, x, t), (8)

W(x, y) :=
∞∑

n=1

Wn(x, y), W1(x, y) =
∫

dzK∗
0 (x, z)K0(z, y), (9)

1 The definition of � here differs by a constant factor from that in [10, 11] (see (6)).

4



J. Phys. A: Math. Theor. 41 (2008) 385002 D Margetis

Wn(x, y) =
∫

dzW1(x, z)Wn−1(z, y) n � 2, (10)

suppressing the time (t) dependence for notational economy. The quantity ϕ (or 1 − ϕ)
expresses the depletion of �. Formulae (8)–(10) are further discussed in section 4.

3. Slowly varying external potential

In this section we use in (4) and (5) a smooth potential Ve(x) that is slowly varying and
increases with |x| (i.e., formally, Ve(|x|) → +∞ as |x| → +∞). We invoke the approximate
time-independent wavefunction �(x) for the macroscopic state derived in [11]. Then, we
obtain the time-dependent pair-excitation function K0 by solving (7).

3.1. Macroscopic wavefunction

We now revisit briefly the solution of the NSE (4) that was derived in [11]. The mathematical
context is perturbation theory [22, 23]. By the replacement �(x, t) = e−iEt�(x), the NSE for
�(x) reads

[−�x + Ve(x) + 8πa�(x)2 − 4πaζ ]�(x) = E�(x), (11)

where E is the energy per particle of the macroscopic state and �(x) is real (�∗ = �).
The potential Ve(x) can be described formally by Ve(x) =: U(x/
) where U(z) = O(1)

and 
 = O(ε−1) is the macroscopic length scale of the trap (0 < ε 	 1). By the expansion
�(x) = �̃0(x, z = εx) + o(1) and E = E0 + o(1) we find that �̃0(x, z) is independent of
x [25] in a region determined by Ve. Alternatively, by simply taking εx = O(1) we neglect
�x� in (11). Thus, � is approximated by [11]

�0(x) =
{

(8πa)−1/2[4πaζ + E0 − Ve(x)]1/2, x ∈ Rin,

0, x ∈ Rout,
(12)

where Rin = {x : 4πaζ + E0 − Ve(x) > 0},Rout = {x : 4πaζ + E0 − Ve(x) < 0}. The
multiplication of (12) by �0 and subsequent integration in x yield [11]

E0 = 4πaζ + ζe. (13)

We note in passing that (12) is not differentiable as x approaches the boundary, ∂Rin, of
Rin. A remedy to this problem is provided in [11, 26] by retainment of the Laplacian in (11)
and recourse to the second Painlevé transcendent.

3.2. Integral formula for pair-excitation function

Next, we determine the time-dependent K0 in the center-of mass coordinates by using (12).
By virtue of (7) we define the function

K(r, R, t) := ei2EtK0(r, R, t), (14)

since the stationary solutions for K0 correspond to the steady state of K, ∂tK ≡ 0. If
translational symmetry and periodic boundary conditions obtain [17], K0 depends only on r
[10]. Hence, for a slowly varying trap, the emerging key idea is to treat R and r as slow and
fast variables, respectively [11]. Accordingly, we consider εR = O(1) and r = O(1).

A formal approach is to enforce the multiscale expansion K = K̃0(r, R, εR, t) + o(1), by
which we can find ∇RK̃0 = 0. Notably, a similar multiscale expansion for the time-dependent
NSE in the context of Bose–Einstein condensation is used in [27]. Crucial for our analysis is
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the presence of the forcing term 8πa�(R)2δ(r) in (7). These considerations simply amount
to neglecting the Laplacian �R and eliminating the variable r in the arguments of Ve and �

in (7).
By approximating K by K0(r, R, t) we additionally have [11]

K
(
w, R + 1

2 r − 1
2 w

)
K

(
r − w, R − 1

2 w
) ∼ K0(w, R)K0(r − w, R). (15)

Thus, (7) reduces to [11]

i∂tK0(r, R, t) = −2�rK0 + 8πa�0(R)2δ(r) + 16πa�0(R)2K0

+ 8πa�0(R)2
∫

dwK0(w, R, t)K0(r − w, R, t), (16)

where the slow variable R enters as a parameter through �0.
The nonlocal term in (16) is a convolution integral, which in turn suggests that a solution

be obtained via the Fourier transform with respect to r. Hence, we define

K0(r, R, t) =
∫

dk
(2π)3

eik·rK̂0(k, R, t), (17)

where the hat on top of a symbol denotes the Fourier transform throughout this paper. Thus,
with k = |k|, (16) is transformed to the equation

i∂t K̂0(k, R, t) = 8πa(�0)2(K̂0)2 + 2[k2 + 8πa(�0)2]K̂0 + 8πa(�0)2. (18)

Equation (18) is solved in appendix A. With the initial condition K0(r, R, 0) = f (r, R),
where f (−r, ·) = f (r, ·), the Fourier transform of the solution is determined explicitly:

K̂0(k, R, t) = ĝ0(k, R) − [1 − ĝ0(k, R)2]
p(k, R) e−2iω(k,R)t

1 − ĝ0(k, R)p(k, R) e−2iω(k,R)t
, (19)

where

ĝ0(k, R) := − 8πa�0(R)2

k2 + 8πa�0(R)2 + ω(k, R)
, (20)

ω(k, R) = k
√

k2 + 16πa�0(R)2, (21)

p(k, R) := ĝ0(k, R) − f̂ (k, R)

1 − ĝ0(k, R)f̂ (k, R)
. (22)

An explicit integral formula for K0 follows from (17). Note that if (�0)2 = ρ0, a uniform gas
density, (21) becomes the usual phonon spectrum of Lee, Huang and Yang [17].

In view of (12), K0 is simplified considerably if R lies in Rout where �0(R) ≡ 0. Thus,
by the corresponding values ĝ0 = 0, ω = k2 and p = −f̂ , (19) becomes

K̂0(k, R, t) = f̂ (k, R) e−2ik2t , R ∈ Rout. (23)

The inversion of this formula yields (denoting r = |r|)

K0 =
∫

dr′f (r′, R)
ei|r′−r|2/(8t)

(8iπt)3/2
∼ eir2/(8t) e−i3π/4

(8πt)3/2

∫
dr′f (r′, R), (24)

for sufficiently long times, r2 = O(t), and ‘fast’ decaying f (r, ·). In particular, if f ≡ 0 then
K0 ≡ 0 for all R ∈ Rout.
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3.3. Long-time behavior of K0

In this subsection we evaluate integral (17) with (19)–(22) by imposing f ≡ 0, i.e., assuming
that initially all atoms occupy the macroscopic state �. We restrict attention to points R inside
Rin, R ∈ Rin.

Equation (17) becomes a spherically symmetric integral with respect to r, and is recast to
the expression

�(r, R, t) := [16πa(�0)2]−3/2[K0(r, R, t) − K0(r, R, t → +∞)]

= − [16πa(�0)2]−3/2

2π2r

∫ +∞

0
dk k sin(kr)

(
1 − ĝ2

0

) ĝ0 e−2iω(k,R)t

1 − ĝ2
0 e−2iω(k,R)t

, (25)

where the function � is non-dimensional. A few comments on (25) are in order. The
limit K0(t → +∞) is extracted by noting that the e−2iω(k,R)t term in (17) and (19)
approaches zero as t → ∞ under the Fourier integral (see also appendix B). Hence,
the limit values of K0 are found by inversion of (20) [11]: K0(t → ∞) = g0(r, R) =
π−2[4πa(�0)2]3/2χ−1 Im[S0,4(iχ) − S0,0(iχ)] where χ := [16πa(�0)2]1/2r and Sµ,ν is the
Lommel function [28]. We have not been able to compute (25) in simple closed form by
known special functions for arbitrary t (t > 0).

The task is to evaluate (25) asymptotically for sufficiently large t.2 First, we outline the
basic steps and results. The key idea is that, since |̂g0(k, R)| < 1 for k > 0, we can expand[
1 − ĝ2

0 e−i2ωt
]−1

in geometric series in (25). Thus, we apply the identity

K̂0(k, R, t) − ĝ0(k, R) = [4πa(�0)2]−1ω

+∞∑
l=1

(̂
g2

0

)l
e−il2ωt (26)

and integrate the resulting series term by term after writing sin(kr) = (eikr − e−ikr )/(2i) in
view of (25). When r = O(

√
16πa(�0)2t), the integral with eikr in the summand is evaluated

by the stationary-phase method [22, 23]. The associated phase reads �l = kr − 2lω(k, R)t .
At the critical point k = kl we have ∂�l/∂k = 0 ⇒ r = 2l[∂ω/∂k]|kl

t . As t and r vary,
the critical point kl coincides with the endpoint of integration, k = 0, when (r, R) lies in the
hypersurface r = 2lvs(R)t where vs(R) := limk→0[∂ω(k, R)/∂k].

The stationary-phase condition describes particle excitations to (x, y) by analogy with
signal propagation in a dispersive medium. Specifically, pair excitations are mediated by
phonons with dispersion relation ω = ω(k, R). The above coalescence with k = 0, in
particular, signifies an elementary catastrophe [24], the contribution of which is described
mathematically by the one-variable Lommel function [28] (see, e.g., (29)). Physically
speaking, for fixed R (the scattering center of mass), this coalescence expresses a pronounced
deviation from the steady state of the pair excitation process for particles that leave �(R)

to occupy other states at x and y in the trap. The requisite coalescence condition is that the
ratio |x − y|/t must be an even integral multiple of the long-wavelength limit of the ‘phonon
velocity’, vs(R). For further discussion see section 4.

By defining the scaled variables

r̃ := χ = [16πa�0(R)2]1/2r = r/r0, t̃ := 16πa�0(R)2t = t/t0, (27)

where t0 := [16πa�0(R)2]−1 and r0 := [16πa�0(R)2]−1/2, we observe that the time and
space dependence of � are manifested only through r̃ and t̃ , � = �̃(r̃, t̃ ). Here, we assume

2 For self-consistency of this model, the time t here cannot be taken indefinitely long. First, there may be a restriction
by the approximation for K introduced to solve (7). Second, the NSE is necessarily modified by K0 at long times
[11]. The study of these limitations lies beyond our present scope.
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that R does not lie too close to ∂Rin. Equation (25) is amenable to approximations when
t̃ � 1 without any restriction on r̃ .

Next, we summarize our asymptotic results. A related mathematical addendum is provided
in appendix C and details of the asymptotics can be found in appendix D. A unified asymptotic
formula for � is provided by (D.27) of appendix D. This formula can be simplified considerably
depending on the range of values for r̃/t̃ .

The simplest case arises when r̃ is considered fixed, r̃ = O(1). With recourse to (D.3) of
appendix D, we have

�(r, R, t) ∼ π2

120

1

t̃4
, r̃ = O(1). (28)

By contrast, if r̃ = O(2t̃ ) with r̃ < 2t̃ then (D.27) of appendix D furnishes

�(r, R, t) ∼ − 1

2π2r̃

{
2

3t̃
− 4i

3

(
2t̃ − r̃ − 4i

3t̃

)3/2

S0, 1
3

(
2i

3

(2t̃ − r̃ − 4i)3/2

(3t̃ )1/2

)

− 1

4t̃3

[
ψ ′′

(
1 +

r̃

2t̃

)
− ψ ′′

(
1 − r̃

2t̃

)
− 2

(
1 − r̃

2t̃

)−3]}
, (29)

where ψ(z) is the logarithmic derivative of the Gamma function [29]. This formula shows
that |�| increases from O(t̃−4) when r̃ = O(1) to O((r̃ t̃ )−1) as r̃ approaches 2t̃ (when the
term containing S0, 1

3
vanishes). In particular, for r̃ = 2t̃ (29) yields

� = − 1

6π2 t̃2
+ O(t̃−3). (30)

Compare with (28). This increase signifies the influence of the coalescence of the critical
point for l = 1 with k = 0 in the Fourier domain.

More generally, if 2(n − 1)t̃ < r̃ < 2nt̃ for integer n = O(1) then (D.27) of appendix D
reduces to a finite sum, which we provide here for the sake of completeness:

�(r, R, t) ∼ − 1

2π2r̃

{
n−1∑
l=1

[
(cosh ηl)

3√
1 + 2(cosh ηl)2

2√
3lt̃

+
1√
3

(sinh ηl)[sinh(2ηl)]2√
1 + 2(cosh ηl)2

× S0, 1
3
(�l(ηl)[1 + i(8/3)lηl�l(ηl)

−1]3/2 e−iπ )

]

+
2

3nt̃
− 4i

3

(
2nt̃ − r̃ − 4in

3nt̃

)3/2

S0, 1
3

(
2i

3

(2nt̃ − r̃ − 4in)3/2

(3nt̃)1/2

)

− 1

4t̃3

[
ψ ′′

(
1 +

r̃

2t̃

)
− ψ ′′

(
1 − r̃

2t̃

)
− 2

n∑
l=1

(
l − r̃

2t̃

)−3]}
, (31)

where �l(η) and ηl are defined by (D.7) and (D.8) of appendix D. The term containing S0, 1
3

outside the sum signifies the influence of the coalescence of the l = n critical point with k = 0
in the Fourier domain. In particular, for r̃ = 2nt̃ (31) becomes

�(r, R, t) ∼ − 1

4π2nt̃

{
n−1∑
l=1

[√
π sinh ηl[sinh(2ηl)]2√

1 + 2(cosh ηl)2

1√
4nt̃[1 − (l/n) cosh ηl]

× ei2nt̃[1−(l/n) cosh ηl ] sinh ηl+iπ/4 e−4lηl

]
+

2

3nt̃

}
. (32)
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4. Discussion

The analytical calculation of section 3 may form the basis for further studies of non-equilibrium
properties of the trapped Boson gas. In this section we discuss (i) the depletion of the
macroscopic state �, and (ii) a plausible meaning of the coalescence of a critical point with
k = 0 in the integral (25) for �.

4.1. Depletion of �

By (8)–(10), we can in principle compute the fraction ϕ(t) of particles at state � in a slowly
varying external potential. Define Wn(x, y, t) =: Wn(r, R, t) and W(x, y, t) =: W(r, R, t).
We have

W1(r, R, t) ∼
∫

dwK∗
0(w, R, t)K0(r − w, R, t), (33)

Wn(r, R, t) ∼
∫

dwW1(w, R, t)Wn−1(r − w, R, t), n � 2, (34)

by which we obtain Ŵn(k, R, t) ∼ (Ŵ1)
n where Ŵ1 ∼ K̂∗

0(k, R, t)K̂0(k, R, t). Since |K̂0| <

1 for k > 0, we also formally find Ŵ ∼ ∑∞
n=1 |K̂0|2 = |K̂0|2(1 − |K̂0|2)−1 (k: real).

Hence, ϕ is given by

ϕ ∼ 1 − N−1
∫
Rin

dRW(0, R, t), (35)

where

W(0, R, t) = lim
r→0

W(r, R, t), (36)

W(r, R, t) ∼
∫

dk

2π2r
k sin(kr)

|K̂0|2
1 − |K̂0|2

. (37)

This formula indicates the role of K0 as a (macroscopic) variable whose magnitude expresses
how strongly particles scatter from �. For example, if K0 is ‘small’ (in an appropriate sense
in terms of |K̂0|) then ϕ is small and � is depleted negligibly. A further quantitative study of
ϕ lies beyond the scope of this paper.

4.2. Critical points in Fourier space

The above discussion suggests the use of K0 as a quantitative ‘measure’ for the depletion of
�. In addition, K0 can express how fast excitation processes may approach the steady state.
In this context, the asymptotics of section 3.3 aims to quantify how phonons with spectrum
ω(k, R) mediate the scattering process.

Before t = 0, all particles occupy the state �. At t = 0, scattering is ‘switched on’.
Loosely speaking, for later times, K0 expresses how strongly particles of relative position
r = x − y can scatter from their (fixed) center of mass, R. This role of K0 is indicated by the
number-distribution function for particles at states other than � [10]:

〈�|ψ∗
1 (x, t)ψ1(y, t)|�〉 = W(x, y, t), (38)

where, for a slowly varying trap, W is given by (37).
Under this approximation, the scattering process preserves momentum only locally, i.e.,

there is still an appropriate sense by which the total momentum of particles is preserved

9
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for each fixed R (pair center of mass). The two particles at x and y can be thought of
as feeling each other through a dispersive medium of phonons, which allows information
to propagate with speed ∂ω(̃k, R)/∂k where k̃ = k̃(r, R, t). In the zero-momentum limit,
k̃ → 0, particles at the corresponding distance r correlate more strongly, and deviations from
the steady state become more pronounced. In this case, the contributing propagation speed is
vs(R) = limk→0 ∂ω(k, R)/∂k, as is manifested through the coalescence of a stationary-phase
point with k = 0 in Fourier space.

The pair-excitation function is a macroscopic variable that expresses the above
microscopic behavior. Of course, the observables of the Boson system are determined by
the appropriate averaging over all possible pairs (x, y), or (r, R), where K0 enters as the
suitable ‘kernel’ for the averaging procedure.

5. Conclusion

We studied aspects of a model for the pair-excitation function, K0, introduced by Wu
[10, 11] for interacting Bosons at zero temperature. The particles are trapped by a slowly
varying external potential. By assuming that the one-particle macroscopic wavefunction,
�, satisfies a time-independent NSE, we determined an approximate solution for the time-
dependent integrodifferential equation for K0. Our analysis relied on the property that, because
of the slowly varying trap, the space variables in K0(x, y, t) are separated into the fast variable
r = x−y and the slow variable R = (x + y)/2. A plausible solution for K0 is given in terms of
the Fourier transform in r where R enters as a parameter through �(R). This scale separation
brings about in a macroscopic setting the motion at the slow center of mass, R, of excitated
particles with fast relative coordinate r.

For zero pair excitation (K0 = 0) initially, R lying inside the trap (region Rin) and
sufficiently large t, i.e. t � (16πa�0(R)2)−1 where �0(R) is given by (12), we derived
an asymptotic formula for the deviation of K0 ei2Et from its steady state, g0(r, R). This
result involves Lommel’s function with arguments depending on the (scaled) variables r̃ and t̃

of (27).
Denoting vs(R) := [16πa�0(R)2]1/2 = limk→0 ∂ω(k, R)/∂k, where ω(k, R) becomes

the usual phonon spectrum when �0 is a constant [17], the asymptotic analysis reveals that
|K0 − g0| takes small, O(t̃−4) values for r 	 2vst but increases to become O((r̃ t̃ )−1) as r
approaches 2vst . It is tempting to infer that, for each R, spatially pronounced correlations
mediated by phonons with speed vs(R) disfavor the fast approach of excitations to steady state
for points x, y with distance |x − y| ∼ 2nvst where n is a nonzero integer. This behavior
is expressed mathematically by the coalescence of critical points with the zero-momentum
point, k = 0, in the Fourier domain.

It is of interest to connect these results to experimental observations of Bose–Einstein
condensation in trapped atomic gases at extremely low temperatures, e.g. [3, 4]. For example,
following the first successful experiment on 23Na atoms [4], we use the parameter values
a = 4.9 nm, (�0)2 ≈ 4 × 1014 cm−3 for the mean number density, and L ≈ 21.5 µm for
the trap linear size. Hence, by (27) we have t0 = (2m/h̄)[16πa(�0)2]−1 ≈ 1.2 µs and
r0 = [16πa(�0)2]−1/2 ≈ 0.1 µm, and the phonon velocity vs = r0/t0 ≈ 8 × 10−2 m s−1.
Evidently, t0 	 τ = 1 s, the lifetime of the macroscopic state observed in [4], and r0 	 L.
By our results, the n = 1 coalescence (peak) for K0 should occur anywhere inside this trap at
times t < L/(2vs) ≈ 0.12 ms.

Our analysis has limitations. The long-time limit of K0 along with its consequences
should be interpreted with caution because of the hypothesized decoupling of the NSE for �

from K0. Our assumption that � satisfies the NSE (independently of K0) is crucial. Clearly,

10



J. Phys. A: Math. Theor. 41 (2008) 385002 D Margetis

� is modified when K0 acts back on it. This consideration leads to a fully coupled system
for � and K0 whose predictions have not been studied as yet. Furthermore, the assumption
of a time-independent, slowly varying external potential may have to be relaxed in order to
account for a wider class of experimentally accessible traps.
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Appendix A. Differential equation for K̂0

In this appendix we solve (18). For this purpose, consider the differential equation

iu̇ = u2 + 2(α2 + 1)u + 1, (A.1)

where u = u(t), α is a positive constant and the dot on top of u denotes differentiation with
respect to t. By factorizing the right-hand side of (A.1) we have

iu̇ = (u + 1 + α2 − α
√

2 + α2)(u + 1 + α2 + α
√

2 + α2). (A.2)

The direct integration of the last equation yields

i

2α
√

2 + α2
ln

∣∣∣∣u + 1 + α2 − α
√

2 + α2

u + 1 + α2 + α
√

2 + α2

∣∣∣∣ = t + C̃, (A.3)

which is in turn solved for u(t) to give

u(t) = α
√

2 + α2 − 1 − α2 + 2α
√

2 + α2
C e−i2α

√
2+α2t

1 − C e−i2α
√

2+α2t
, (A.4)

where C is an integration constant.
The constant C is computed by applying the initial condition u(0) = u0. We find

C = u0 + 1 + α2 − α
√

2 + α2

u0 + 1 + α2 + α
√

2 + α2
. (A.5)

Equation (19) is thus recovered by identifying α with [8πa(�0)2]−1/2k and u0 with f̂ .

Appendix B. Complex singularities of K̂0 for zero initial data

In this appendix we discuss the analytic continuation in the complex k-plane of formula (19)
for the appealing case with zero initial data, f ≡ 0, by which p(k, R) = ĝ0(k, R). In this
case, Fourier representation (19) reduces to a single integral on the positive k-axis (see (25)).
For notational economy, we will suppress the R-dependence.

By 16πa(�0)2 = 1 the function of interest reads

U(k) = ĝ0(k) + 4ω(k)
ĝ0(k)2 e−2iω(k)t

1 − ĝ0(k)2 e−2iω(k)t
, k > 0, (B.1)

where ω(k) = k
√

k2 + 1, ĝ0(k) = −2
(
k2 + 1

2 −ω
)

and ĝ0(k)−1 = −2
(
k2 + 1

2 +ω
)
. After some

straightforward algebra, we obtain the formula

U(k) = −iS(ω)

i
(
k2 + 1

2

)
S(ω) + cos(ωt)

, S(ω) := sin(ωt)

2ω
. (B.2)
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Because S(ω) is analytic and even in ω, the only possible singularities of U(k) are poles. The
branch points k = 0 and ±i of ω(k) become regular points of U(k).

Next, we discuss the location of the poles of U(k). With the substitution k = sinh η, we
find that the denominator in (B.1) vanishes at points η where

1
2 t sinh(2η) − i2η = mπ, m = ±1,±2, . . . . (B.3)

Let η = aR + iaI (where aR = Re η and aI = Im η). The imaginary part of (B.3) gives

4aR = t sin(2aI ) cosh(2aR) (t > 0). (B.4)

It suffices to consider only the range −π/2 < aI � π/2. It is readily concluded that it is
impossible to have aR > 0 and −π/2 < aI < 0, or aR < 0 and 0 < aI < π/2. Thus, the
poles must lie in the first and third quadrants of the complex k-plane. These poles are simple.

It follows that the inversion path for U(k) can be deformed in the fourth quadrant, slightly
below the positive real axis. Thus, on the deformed path we have e−2iω(k)t → 0 as t → ∞.
The same limit value can be reached under the Fourier integral by keeping intact the original
path (positive real axis).

It is of interest to describe the poles analytically for small and large values of |mπ |/t . For
t � 1 and −π < 2aI < π , we find that (B.3) is solved approximately by

η ∼ mπ

t − 2i
, |m|π 	 t, |m| = 1, 2 . . . ,

η ∼ 1

2
sg(m)

(
1 +

i

|m|π
)

ln
4|m|π

t
, |m|π � t,

(B.5)

where sg is the sign function, i.e. sg(x) = 1 if x > 0 and sg(x) = −1 if x < 0. Evidently,
the points k = sinh η corresponding to values (B.5) lie in the first and third quadrant of the k
plane. For fixed t, these poles approach the real axis as |m| increases.

Appendix C. Analytic continuation of the Lommel function S0, 1
3

In this appendix, S0, 1
3
(z e−iπ ) and S0, 1

3
(z ei2π ), which are involved in the asymptotics for � of

appendix D, are expressed in terms of S0, 1
3
(z).

The starting point is the relation [28]

S0, 1
3
(z) = s0, 1

3
(z) +

1

2
�

(
1

2
− 1

6

)
�

(
1

2
+

1

6

)
[−sin(π/6)J1/3(z) − cos(π/6)Y1/3(z)]

= s0, 1
3
(z) − π

2
[tan(π/6)J1/3(z) + Y1/3(z)], (C.1)

where �(z) := ∫ ∞
0 dxxz−1 e−x is the Gamma function, Jν(z) and Yν(z) are Bessel functions

[28], s0, 1
3
(z) := (9z/8) 1F2(1; 4/3, 5/3;−z2/4), and 1F2 is a hypergeometric series [29].

Evidently, we have s0, 1
3
(z e−iπ ) = −s0, 1

3
(z) = −s0, 1

3
(z ei2π ). Useful analytic continuation

formulae for the Bessel functions are [28]

J1/3(z e−iπ ) = e−iπ/3J1/3(z), J1/3(z ei2π ) = ei2π/3J1/3(z),

Y1/3(z e−iπ ) = eiπ/3Y1/3(z) − iJ1/3(z), (C.2)

Y1/3(z ei2π ) = e−i2π/3Y1/3(z) + iJ1/3(z).

By combining (C.1) and (C.2) we obtain the desired analytic continuation formulae,

S0, 1
3
(z e−iπ ) = −S0, 1

3
(z) − π

2

√
3 e−iπ/3H

(1)
1/3(z), (C.3)
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S0, 1
3
(z ei2π ) = S0, 1

3
(z) +

π

2

√
3 e−iπ/3H

(1)
1/3(z), (C.4)

where H(1)
ν (z) is the Bessel function of the third kind [28]. Equations (C.3) and (C.4) hold for

any z. By replacing z by iz we can obtain similar formulae that involve the modified Bessel
function of the third kind, K1/3(z) [28].

Appendix D. Asymptotic evaluation of Λ(r, R, t)

In this appendix we evaluate the �(r, R, t) of (25) under the condition t̃ � 1. By the change
of variable k = [16πa(�0)2]1/2 sinh η,� reads

2π2r̃� =
∫ +∞

0
dη[sinh(2η)]2 sin(r̃ sinh η)

e−4η e−it̃ sinh(2η)

1 − e−4η−it̃ sinh(2η)
=

M∑
l=1

Il, (D.1)

Il =
∫ +∞

0
dη[sinh(2η)]2 sin(r̃ sinh η) e−4lη e−ilt̃ sinh(2η). (D.2)

D.1. Case r̃ = O(1)

When r̃ is fixed, the major contribution to integration in (D.1) comes from the vicinity of
η = 0. Thus, we obtain

� ∼ 1

2π2r̃

∫ +∞

0
dη(2η)2(r̃η)

e−it̃ (2η)

1 − e−it̃ (2η)

= 1

8π2

1

t̃4
ψ ′′′(1) = π2

120

1

t̃4
, (D.3)

where ψ(z) is the logarithmic derivative of the Gamma function [29].

D.2. Case r̃ � O(lt̃)

In this case, we turn our attention to the integral Il of (D.1). We split Il according to

Il = Il,+(r̃, t̃ ) − Il,−(r̃, t̃ ), (D.4)

Il,±(r̃, t̃ ) := 1

2i

∫ +∞

0
dη[sinh(2η)]2 e−4lη e−ilt̃ sinh(2η)±ir̃ sinh η. (D.5)

The integrals Il,± behave differently. Specifically, the major contribution to integration in
Il,− always arises from the neighborhood of the endpoint, η = 0:

Il,−(r̃, t̃ ) ∼ 4

(2lt̃ + r̃ − i4l)3
∼ 4

(2lt̃ + r̃)3
all r̃ � 0. (D.6)

In contrast, Il,+ carries a stationary-phase contribution when r̃ = O(t̃). Most of the
remaining appendix is devoted to Il,+. Thus, we introduce the associated phase

�l(η) := (r̃ − 2lt̃ cosh η) sinh η. (D.7)

The stationary-phase points are the non-negative roots of the equation �′
l(η) = 0, whence

r̃ cosh η − 2lt̃ cosh(2η) = 0. This equation is solved by η = ηl where

cosh ηl =
βl +

√
β2

l + 8

4
� 0 if βl := r̃

2lt̃
� 1. (D.8)
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Note that if ηl > 0 then �l(ηl) > 0 and �′′
l (ηl) = (r̃ − 8lt̃ cosh ηl) sinh ηl < 0. In particular,

if ηl = O(1) then �l(ηl) = O(lt̃) and |�′′
l (ηl)| = O(lt̃). In this case, the stationary-phase

calculation is carried out as usual [22, 23] (see (D.11)).
However, the asymptotic evaluation of Il,+(r̃, t̃ ) changes drastically when the point ηl

lies too close to η = 0 (k = 0). This coalescence occurs when ηl becomes of the order of
|�′′

l (ηl)|−1/2 while 0 � βl − 1 	 1. By expanding ηl near βl = 1, we find that a precise
condition for this coalescence is |2lt̃ − r̃| = O((lt̃)1/3). Accordingly, we distinguish three
main regions for (r̃, t̃ ), as shown below. In the end, we construct a connection formula for �

by exploiting corresponding overlapping asymptotic expansions for Il,+.

Region I: 2lt̃ − r̃ � (lt̃)1/3. In this case, the stationary-phase point ηl is not real. The major
contribution to Il,+ stems from η = 0:

Il,+(r̃, t̃ ) ∼ 1

2i

∫ +∞

0
dη(2η)2 e−i(2lt̃−r̃)η e−4lη = 4

(2lt̃ − r̃ − i4l)3
. (D.9)

If, in addition, r̃ < O(2t̃ ), we can sum up (D.9) over l. Hence, formulae (D.6) and (D.9)
combined yield

� ∼ 1

8π2r̃

1

t̃3

[
ψ ′′

(
1 +

r̃

2t̃

)
− ψ ′′

(
1 − r̃

2t̃

)]
. (D.10)

For r̃/(2t̃ ) 	 1, this formula reduces to (D.3) via the Taylor expansions of ψ ′′(1 ± r̃/(2t̃ ))

about 1.

Region II: r̃ −2lt̃ � (lt̃)1/3. The standard method of stationary phase is now applicable. The
integral Il,+ is approximated by [22, 23]

Il,+(r̃, t̃ ) ∼ −
√

π

2|�′′
l (ηl)| ei�l(ηl )+iπ/4[sinh(2ηl)]

2 e−4lηl , (D.11)

where �l(ηl) is given by (D.7). It is of interest to take the limit of (D.11) as βl → 1, i.e., ηl →
0. With the expansions �l(ηl) ∼ 25/23−3/2(βl − 1)3/2lt̃ and �′′

l (ηl) ∼ −23/231/2(βl − 1)1/2lt̃

as βl → 1+, formula (D.11) reduces to

Il,+(r̃, t̃ ) ∼ −27/4

35/4

√
π

lt̃
(βl − 1)3/4 exp

[
i
25/2

33/2
(βl − 1)3/2lt̃ + i

π

4

]
. (D.12)

Region III: |2lt̃ − r̃| = O((lt̃)1/3). In this more demanding case, the stationary-phase point
ηl lies too close to the endpoint of integration and �l(η) must be expanded at η = 0. In fact,
terms O(η3) must be retained in �l(η).

First, we consider the region 2lt̃ > r̃ with 2lt̃ − r̃ = O((lt̃)1/3). With the definition

γl := 2

33/2

(2lt̃ − r̃)3/2

(lt̃)1/2
(D.13)

and the change of variable η = 2(lt̃)−1/3(γl/2)1/3 sinh(v/3) in (D.5), Il,+ becomes

Il,+(r̃, t̃ ) ∼ 2

3ilt̃
γl

∫ +∞

0
dv[cosh v − cosh(v/3)] e−iγl sinh v

= − 2

3lt̃
+

4i

3

(
2lt̃ − r̃

3lt̃

)3/2

S0, 1
3
(iγl), γl = O(1), (D.14)

where Sµ,ν is the Lommel function [28]. In the above, the e−4lη term has been neglected in the
integrand. This simplification is adequate if, for instance, r̃ = O(t̃) and only values l = O(1)
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are of interest. Note that if r̃ → 2lt̃ for some l then γl → 0 and the second term in (D.14)
vanishes, as it should.

Formula (D.14) connects smoothly to approximation (D.9) when γl � 1. Indeed, by use
of the asymptotic formula [28] S0, 1

3
(z) ∼ z−1 − (8/9)z−3 as |z| → +∞ with |Arg z| < π , the

first term in (D.14) is exactly canceled and (D.14) reduces to (D.9).
To account for large values of l, l = O(t̃1/2) by which 2lt̃ − r̃ = O(l), the e−4lη factor

has to be retained in the integral (D.5) for Il,+. An inspection of (D.14) shows that γl has to
be replaced by γ̃l := 2 × 3−3/2(2lt̃ − r̃ − i4l)3/2(lt̃)−1/2. The ensuing approximation for Il,+

in place of (D.14) reads

Il,+(r̃, t̃ ) ∼ − 2

3lt̃
+

4i

3

(
2lt̃ − r̃ − i4l

3lt̃

)3/2

S0, 1
3
(iγ̃l). (D.15)

Next, we assume that r̃ > 2lt̃ with r̃ − 2lt̃ = O((lt̃)1/3). This case is not
essentially different from the previous one. Formula (D.14) can be continued analytically
to complex values of γl , as γl varies continuously from γl = |γl| for r̃ < 2lt̃ to
|γl| e−i3π/2 or |γl| ei3π/2 when r̃ > 2lt̃ . Both continuations should yield the same result
for Il,+ since this integral is a single-valued function of γl . Indeed, from [29] we have
(γl e−i3π/2)[(iγl e−i3π/2)−1 − S0, 1

3
(iγl e−i3π/2)] = (γl ei3π/2)[(iγl ei3π/2)−1 − S0, 1

3
(iγl ei3π/2)].

Equation (D.14) combined with (C.3) of appendix C yields

Il,+(r̃, t̃ )∼ − 2

3lt̃
+

4

3

(
r̃ − 2lt̃

3lt̃

)3/2 [
S0, 1

3
(|γl|) +

π

2

√
3 e−iπ/3H

(1)
1/3(|γl|)

]
, r̃ > 2lt̃ , (D.16)

where, by (D.13), |γl| = 2 × 3−3/2(r̃ − 2lt̃ )3/2(lt̃)−1/2.
For |γl| � 1 and r̃ → 2lt̃ (i.e., βl → 1), (D.16) connects smoothly to (D.12).

Indeed, the leading-order term in the brackets of (D.16) arises from H
(1)
1/3 according to the

expansion [28] H
(1)
1/3(x) = √

2/πx ei(x−5π/12)[1 + O(x−1)] as x → +∞. The next term in
(D.16) comes from S0, 1

3
and exactly cancels the −2/(3lt̃ ) term. Thus, (D.16) reduces to

Il,+(r̃, t̃ ) ∼ −2 × 3−5/4
√

π/(lt̃)[(r̃ − 2lt̃ )/(lt̃)]3/4 ei|γl |+iπ/4, in agreement with (D.12) where
r̃ = βl(2lt̃ ) and |γl| = 25/23−3/2(βl − 1)3/2lt̃ ∼ �l(ηl) as ηl → 0.

The inclusion of the e−4lη factor in (D.5) for Il,+ modifies (D.16). By defining

γ̆l := 2

33/2

(r̃ − 2lτ + i4l)3/2

(lτ )1/2

∼ |γl|[1 + i(8/3)lηl|γl|−1]3/2, 0 � ηl 	 1, (D.17)

we replace (D.16) by the formula

Il,+ ∼ − 2

3lt̃
+

4

3

(
r̃ − 2lt̃ + i4l

3lt̃

)3/2 [
S0, 1

3
(γ̆l) +

π

2

√
3 e−iπ/3H

(1)
1/3(γ̆l)

]
. (D.18)

D.3. Connection formula for Il,+

Next, we derive an asymptotic formula that connects smoothly the overlapping formulae (D.9),
(D.11) and (D.14) for Il,+.

First, assume that r̃ < 2lt̃ . By virtue of (D.15), Il,+(r̃, t̃ ) reads

Il,+(r̃, t̃ ) ∼ − 2

3lt̃
+

4i

3

(
2lt̃ − r̃ − i4l

3lt̃

)3/2

S0, 1
3

(
2i

3

(2lt̃ − r̃ − i4l)3/2

(3lt̃ )1/2

)
. (D.19)

This formula can be continued analytically to the region r̃ > 2lt̃ as was shown above, but may
break down when r̃ − 2lt̃ � O((lt̃)1/3) (in region II). Our task is to produce a single formula
connecting (D.19) with the stationary-phase result (D.11).
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Consider r̃ > 2lt̃ . By inspection of (D.16) and (D.17) we start with

Il,+ ∼ −Ll

2

3lt̃
− ClS0, 1

3
(�l(ηl)[1 + i(8/3)lηl�l(ηl)

−1]3/2 e−iπ ), (D.20)

where the constants Ll and Cl are to be determined. This formula must connect smoothly to
the stationary-phase result (D.11) when ηl � O(1) and, thus, �l(ηl) � 1.

In order to find Ll and Cl we replace S0, 1
3

in (D.20) by its large-argument expansion, and
then match the asymptotic result with (D.11). By (C.3) of appendix C and the large-argument
expansions of H

(1)
1/3(z) and S0, 1

3
(z) with |Arg z| < π [28] we obtain

Il,+(r̃, t̃ ) ∼ −Ll

2

3lt̃
+

Cl

�l(ηl) + i4lηl

− Cl

√
3π

2[�l(ηl) + i4lηl]
ei�l(ηl )+iπ/4 e−4lηl

∼ − 2

3lt̃

[
Ll − Cl

3

2

lt̃

�l(ηl)

]
− Cl

√
3π

2�l(ηl)
ei�l(ηl)+iπ/4 e−4lηl . (D.21)

The term in the brackets of (D.21) should be zero while the second term must be identified
with (D.11). Accordingly, we find

Cl = 1√
3

sinh ηl√
1 + 2(cosh ηl)2

[sinh(2ηl)]
2, (D.22)

Ll =
√

3
(cosh ηl)

3√
1 + 2(cosh ηl)2

, (D.23)

where we used the identity �l(ηl)/|�′′
l (ηl)| = (sinh ηl)

2[1 + 2(cosh ηl)
2]−1.

To further validate (D.20) given (D.22) and (D.23), we consider r̃ − 2lt̃ = O((lt̃)1/3) (in
region III) so that 0 � ηl 	 1. In this limit, (D.22) and (D.23) entail Cl ∼ (4/3)η3

l ∼ (2/3)|γl|
and Ll ∼ 1, while the argument of S0, 1

3
in (D.20) becomes approximately |γl| e−iπ . Thus,

(D.20) reduces to (D.16).
We point out a refinement of this procedure. A comparison of (D.20) with (D.18) reveals

that the Cl of (D.22) does not reproduce the expected prefactor of Lommel’s function when
r̃ − 2lt̃ = O(l), i.e. ηl = O(t̃−1/2). A remedy to this discrepancy is to replace ηl in the Cl of
(D.22) by

η̆l :=
√

η2
l +

4i

3t̃
. (D.24)

This η̆l stems from including the exponent −4lη in (D.7) for �l(η). The resulting stationary-
phase points η̄l obey 2lt̃ cosh(2η̄l) − r̃ cosh η̄l − i4l = 0, or

cosh η̄l =
βl +

√
β2

l + 8 + i16/t̃

4
. (D.25)

Expanding both sides of this equation as βl → 1 yields η̆l ∼ η̄l in view of (D.24).
A modified connection formula for Il,+ follows from (D.20) with (D.22)–(D.24):

Il,+(r̃, t̃ ) ∼ − 2√
3

(cosh ηl)
3√

1 + 2(cosh ηl)2

1

lt̃
− 1√

3

(sinh η̆l)[sinh(2η̆l)]2√
1 + 2(cosh ηl)2

× S0, 1
3
(�l(ηl)[1 + i(8/3)lηl�l(ηl)

−1]3/2 e−iπ ). (D.26)
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D.4. Asymptotic formula for �

A large-t asymptotic formula for � is obtained by combining the results for Il,+ and Il,−
according to (D.1):

� ∼ − 1

2π2r̃

{
[r̃/(2t̃ )]∑

l=1

[
(cosh ηl)

3√
1 + 2(cosh ηl)2

2√
3lt̃

+
1√
3

(sinh η̆l)[sinh(2η̆l)]2√
1 + 2(cosh ηl)2

× S0, 1
3
(�l(ηl)[1 + i(8/3)lηl�l(ηl)

−1]3/2 e−iπ )

]

+
+∞∑

l=[r̃/(2t̃ )]+1

[
2

3lt̃
− 4i

3

(
2lt̃ − r̃ − i4l

3lt̃

)3/2

× S0, 1
3

(
2i

3

(2lt̃ − r̃ − i4l)3/2

(3lt̃ )1/2

)]
− 1

4t̃3
ψ ′′(1 + r̃/(2t̃ ))

}
, (D.27)

where [x] denotes the largest integer that is less than or equal to x. The infinite series for � is
absolutely convergent and can be simplified according to the value of r̃/(2t̃ ).
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