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Abstract

Using asymptotics, we derive explicit, simplified formulas for integrals
representing the force dipole interaction energy per unit length between
line defects (steps) of the same sign that form perturbations of circles in
homoepitaxy. Our starting point is continuum linear elasticity in accordance
with the classic model by Marchenko and Parshin (1981 Sov. Phys.—JETP 52

129). In the case with concentric circular steps, we define a small geometric
parameter, δ2, which expresses the smallness of interstep distance relative to
the circle radii. We invoke the Mellin transform with respect to δ2 and derive
systematically an approximation for the requisite integral. This technique
offers an alternative to an exact evaluation in terms of elliptic integrals.
We then demonstrate the use of the Mellin transform when calculating the
force dipole interaction energy between smoothly, slowly varying steps that
form perturbations of circles. We discuss the implications of our results for
small-amplitude modulations of circular step profiles.

PACS numbers: 68.35.Md, 81.10.Aj, 62.20.D-, 02.30.Mv, 02.30.Uu, 68.35.-p

1. Introduction

Modern small devices rely on the precise patterning of crystal surfaces to create nanostructures
and thin films with desired properties. Below the roughening transition temperature, typical
crystal surfaces are not atomically flat, but instead consist of nanoscale terraces separated by
line defects, i.e. steps of atomic height [1]. The interaction between steps plays a prominent
role in surface morphological evolution.
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Fundamental studies of step interactions include the model by Marchenko and Parshin
(MP) [2], where each step is viewed as a distribution of force dipoles in the context of continuum
elasticity (see also [3]). This model describes elastic step energies in homoepitaxy, where the
last layer of the crystal has the same equilibrium structure as the bulk. The interaction
energy of two (infinitesimal) force dipoles at distance R decays as R−3. This behavior is
contrasted with the elastic interaction energy arising in heteroepitaxy, where steps amount
to force monopoles [4, 5]. Effects such as atomic-scale roughness [6], elastic anisotropy
[7] and surface elasticity under concentrated normal and shear loads [8] have enriched the
MP model. Germane computations address mainly interactions between straight steps. In
more complicated geometries, the requisite integrals may have an intricate dependence on the
physical parameters.

In this paper, we focus on force dipole interactions between two-dimensional (2D) steps
of the same sign in homoepitaxy. We consider configurations that allow for simplified (yet
nontrivial) approximations. By using smooth and slowly varying step profiles that form
perturbations of concentric circles, we illustrate analytically the calculation of force dipole
step interaction energies. Our resulting, explicit formulas aim to complement thermodynamic
ingredients of step flow models describing crystal surface morphological evolution near
equilibrium [1]. Such models are invoked extensively in the simulation and analysis of
the motion of many steps. As an implication, we discuss elastic energy variations via small-
amplitude modulations of concentric circular steps.

The basic ingredients of step flow were introduced by Burton, Cabrera and Frank (BCF)
[9]. In their pioneering work, the steps are non-interacting. Since then, progress has been
made in illustrating how to compute the interaction energies between steps of reasonably
arbitrary shapes; for related reviews see, e.g., [1, 4, 10–12].

In particular, modulations of straight steps are studied by Houchmandzadeh and Misbah
[4] via isotropic elasticity in homoepitaxy and heteroepitaxy. In the former case, the authors
conclude that the elastic interaction may favor a modulated step profile for sufficiently large
wavelengths.

Our intention is to demonstrate a method for computing force dipole interactions of a
class of step profiles in two space dimensions. This tool is the Mellin transform with respect
to a suitable geometric parameter. Our setting involves perturbations of circular steps, thus
differing from that in [4]. Applications of the Mellin transform, although known in the context
of acoustics and electromagnetism [13] and high-energy particle scattering [14], seem to have
been previously unexplored in materials physics. Our analysis reveals some radial asymmetry
effects of the perturbed steps.

The step flow equations are usually rotationally symmetrical and, thus, allow for global
rotational symmetry if the initial step configuration consists of concentric circles. Our setting
is relevant to possible deviations from this symmetry, which can be caused by additional
effects in the governing equations or the initial data. Furthermore, the ensuing computation
of elastic dipole interaction energies for modulated step profiles can help explore possibilities
for energetically favorable configurations in homoepitaxy.

A detailed exposition on force dipole interactions between steps in the context of one-
dimensional (1D) geometries is given by Pimpinelli and Villain [15]. They motivate and define
the respective energy per unit length for straight steps via the MP model [2]. This energy
decays as w−2 where w is the terrace width. The connection of force dipole step energies to
the requisite principles of continuum elasticity is elucidated in [15].

In this paper, we start with concentric circular steps whose radii are sufficiently large. A
previously used formula for the leading-order asymptotic term of the force dipole interaction
energy of steps in this geometry exhibits a simple geometric factor [16]. This formula
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has been adopted by some works on crystal surface morphological evolution [17–21]. We
derive this formula explicitly by invoking the MP model of interacting force dipoles and
asymptotics following our definition of a small geometric parameter. This parameter expresses
the smallness of the interstep distance relative to the step radii. The example of concentric
circles serves as a guide for more complicated cases, e.g. perturbed circular steps, which we
examine here.

To approximate the requisite integrals in the non-radial case, we apply the Mellin transform
with respect to an analogous geometric parameter. This technique offers a streamlined
procedure for obtaining distinct terms in an asymptotic series for the force dipole interaction
energy. Using the Mellin transform, asymptotic terms of different orders come from residues
of distinct poles of the transformed function. An alternate method invokes elliptic integrals
(see section 3 and appendix A in connection to the radial case).

Our broader goal is to tackle the question: how do the shapes of steps affect their elastic
interaction energy? We focus primarily on the force dipole energy per unit step length. This
quantity enters the step chemical potential of BCF-type models [1]. The dependence on
geometry of an approximation for this interaction energy has been attributed to a geometric
factor � [22], by analogy with concentric circular steps [16]. In [22], from the use of local
coordinates perpendicular and parallel to step edges, this � is assumed to depend locally on
the transverse coordinates of the interacting steps. For the perturbed geometries considered
here, this hypothesis for the leading-order term is reasonable. The next higher order term is
logarithmic in the interstep distance, with a prefactor depending on local geometric features
(e.g. curvature) of the adjacent step curve.

We discuss the total force dipole interaction energy of modulated concentric steps with
reference to their unperturbed circular geometry. Our computation indicates that for a fixed
wavenumber, this elastic contribution to the energy does not favor modulations, regardless
of the relative phase shift between the interacting steps. This situation may change for large
wavenumbers, which lie outside the scope of our asymptotics.

Our results rest on several simplifying assumptions. First, the strain field due to a step
edge is obtained as a superposition of the dipole strain fields arising from each point of the
step edge. So, the material behavior is supposed to be in the linear elastic regime. Second, the
force dipole moment associated with each point of a step edge has a negligible (z-)component
normal to the reference plane. In the same vein, we regard as constant the force dipole
moment per unit step length. The geometries chosen are consistent with slowly varying
step configurations [22], where the associated curvatures change appreciably over lengths
comparable to a macroscopic length. We neglect entropic step repulsions, since at sufficiently
low manufacturing temperatures of interest, the thermal wandering of steps [1] tends to be
suppressed. We repeat that heteroepitaxy, where steps form force monopole distributions, is
not addressed here.

The remainder of the paper is organized as follows. In section 2, we review some
background for the motion of crystal steps, and discuss the role of step interactions. In
section 3, we demonstrate the application of the associated formula to the calculation of force
dipole step interactions in one coordinate, including concentric circular steps (radial case) and
a simple variant of their geometry. In section 4, we allow the curvature of steps to vary slowly.
Finally, in section 5 we discuss our results.

2. Background

In this section we introduce the geometry and review the basics of force dipole step interactions.
The geometry of crystal steps is depicted from two perspectives in figure 1. The cross-sectional
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a

Figure 1. 2D steps. Top: projection on the reference plane. Bottom: cross section.

view illustrates steps of atomic height, a, that descend from a surface peak. The steps are
projected onto non-crossing, non-self-intersecting, smooth curves on the reference (‘basal’)
plane6, shown in the upper part of figure 1. In the radial case studied, e.g. in [17, 19], these
curves are concentric circles.

To place step interactions in the broader context of crystal surface motion, we briefly
discuss elements of BCF-type models7. Then, we review the main ideas underlying the
modeling of interacting steps by force dipoles.

2.1. Evolution of crystal surfaces: role of step interactions

In surface diffusion, the motion of steps is mediated by diffusion of adsorbed atoms (adatoms)
on terraces between steps, and by attachment and detachment of adatoms at step edges. Each
step moves by mass conservation, since the step velocity balances out mass fluxes. Specifically,
in the absence of edge atom diffusion [1, 23], the normal velocity of each step is simply the
difference of terrace adatom normal fluxes.

The atom attachment–detachment at step edges is expressed through appropriate boundary
conditions for the adatom diffusion equation. By linear kinetics [1], the adatom flux normal
to the j th step edge is proportional to the difference of the terrace adatom density from
an equilibrium adatom density, C

eq
j . This C

eq
j quantifies the propensity of a step edge to

incorporate or release atoms. By recourse to notions of thermodynamic equilibrium, this

6 The usual requirement of continuously differentiable curves would suffice for normal and tangent vectors to be well
defined at each point of the step curve. Here, we impose the stronger condition of infinitely differentiable (smooth)
curves since this is in principle necessary for asymptotics (by our method) to arbitrary order in the small geometric
parameter (to be defined below).
7 As mentioned in section 1, in the BCF theory [9] steps are non-interacting.
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propensity is expressed by the law [1] C
eq
j = C0 exp

[
μj/(kBT )

]
where μj is the step

chemical potential (a thermodynamic force), kBT is the Boltzmann energy and C0 is a constant.
This μj is the change of the j th-step energy per atom captured or released by the step

edge and links step motion to energetics [22]. It can be shown that μj involves the step
curvature (line tension), entropic step repulsion and elastic step interaction [1, 24]. The
entropic and force dipole interaction energies per unit step length decay as the inverse square
of step separation in the case of infinitely straight steps [15, 24].

In the radial case, the step chemical potential is [16, 19, 20]8

μj = �g1

rj

+
�

arj

∂

∂rj

{rj [V (rj , rj+1) + V (rj−1, rj )]}, (1)

where � is the atomic volume, g1 expresses the line tension, rj are the radii of concentric
circles and V (rj , rj+1) is the pairwise interaction energy between steps j , j + 1 per unit length
of step j . By [16, 19], for force dipole repulsion in homoepitaxy, this V is

V (rj , rj+1) = g
2rj+1

rj + rj+1

(
a

rj+1 − rj

)2

, (2)

where g > 0 and measures the strength of each elastic dipole. Formula (2) is derived by the
Mellin transform in section 3.2 (see appendix A for an alternate derivation).

It is worthwhile adding an extension of (1) to non-radial geometries. If Uj is the energy
per unit length of step j , it has been shown [22] that

μj = (�/a)
(
ξ−1
η ∂ηj

Uj + κjUj

)
, (3)

where η = ηj is a local curvilinear coordinate specifying step j , ξη = |∂ηr| is a metric
coefficient (r: position vector of the basal plane) and κj is the step curvature. Thus, it is
expedient to compute the quantity Uj in terms of step coordinates.

We conclude this subsection by revisiting the derivation of (3) [22]. Consider the
coordinates (η, σ ) where σ indicates position along a fixed step edge (η = ηj ) with the
metric coefficient ξσ = |∂σ r|. Let dl = ξσ dσ be a short length of the j th edge, with
the energy Uj dl. Attachment and detachment of adatoms causes the shift of η = ηj by dη

and the motion of the step edge along the local normal by dρ = ξηdη; thus, the step energy
Uj dl changes by dη(Uj dl), where dηQ := Q|η+dη − Q|η. Hence, we obtain

μj = �

a

dη(Uj dl)

dρ dl
= �

a

[
ξ−1
η ∂ηi

Ui + Ui (ξσ ξη)
−1∂ηξσ

]
η = ηi. (4)

Equation (4) is simplified via elementary differential geometry [25], by which ∂⊥ξσ = κξσ

where κ is the curvature of the curve r(η, σ ) with η = const. and ∂⊥ = ξ−1
η ∂η; thus,

∂ηξσ = κ ξσ ξη. The combination of the last relation regarding κ with (4) yields (3).

2.2. Force dipole step interaction: a review

A simple setting in homoepitaxy is a vicinal surface, which stems from cutting a crystal along
a plane at a fixed, small angle with respect to a high-symmetry plane. The resulting interface
consists of regularly spaced, atomic-height steps. This configuration is not as favorable
energetically as a perfectly flat interface, so the atoms at the surface respond to their missing
bonds by undergoing small displacements. We can expect such displacements to induce an
effective elastic force between adjacent steps9.

8 Our definition of V in (1) and (2) is slightly different from that in [20].
9 For a pictorial representation, consider the displacements calculated by atomistic simulations in [26].
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Figure 2. Schematic of a force dipole for a step by the MP model [2]. The dipole moment is along
the step edge and normal to the cross-sectional plane.

Alternatively, picture a step as a defect on a continuous elastic surface. In order to maintain
this defect against the natural tendency of the medium to flatten out, a pair of oppositely directed
forces must be applied by the bulk of the crystal at distinct points of the step. Then, the step
itself applies equal and opposite forces on the bulk of the crystal, as depicted in figure 2.
This force dipole introduces strain in the vicinity of the step. The resulting strain field causes
elastic interactions between steps by displacing the intervening atoms. Although the existence
of a force dipole is inferred from considerations of a continuous elastic surface, such a dipole
can also be justified while respecting the discrete nature of a real crystal surface, as argued,
e.g., in [27]. For a discussion invoking force quadrupoles of terrace adatoms in homoepitaxy,
see [4].

The question arises as to how the force dipole distribution near a step is calculated. A
proposal involving a pair of forces oriented normal to the step edge in the high-symmetry
plane, as shown in figure 2, first appeared in a paper by MP [2] and has since been used as a
core model. This (MP) model has one free parameter, which is related to the strength of the
force dipole10.

Pimpinelli and Villain [15] adopt the MP model, positing that the elastic strain field stems
from a line of force dipoles normal to the step. It is tempting to resort to electrostatics for
the field of a force dipole. We do not pursue this analogy. It suffices to add that the scaling
of the field strength as the inverse cube of the distance is common to both electric and elastic
force dipoles [29, 30]11. For an explicit calculation of the linear response of force dipoles, the
reader may consult the appendices in [15]. The nature of the elastic force dipole interaction
implies that steps of the same sign (i.e. steps either descending or ascending) exert repulsive
forces on each other. The situation is different, and more delicate, with steps of opposite
sign [6].

Extensive discussions on defect interactions for crystal surfaces can be found in
[2, 15, 26, 27]. We appeal to the formulation in [15] to quantify the interaction energy
of two force dipoles. In this work, the force dipole moments are defined as the mechanical
moments, mbd, stemming from forces Fk acting at points Rk [15]:

mbd =
∑

k

Rk,bFk,d (b, d = x, y, z),

where it is assumed that
∑

k Fk = 0; (x, y, z) is a Cartesian coordinate system, z is the axis
normal to the basal plane and Qk,b is the b component of the vector Qk . Assuming a cubic
lattice, we adopt the formula [15]

mbd = δbd [(δbx + δby)m + δbzmzz], (5)

10 Note in passing that Prévot and Croset [28] introduced a model of ‘embedded dipoles’, which describes the opposing
forces by use of two free parameters rather than one. Accordingly, these authors were able to make predictions in
close agreement with observed relaxations of atomistic simulations.
11 Recall that the interaction energy of two electric dipoles with moments pA and pB at distance rAB is [29]
W = 1

r3
AB

[pA · pB − 3(pA · eAB)(eAB · pB)]; eAB is the unit vector pointing from A to B.
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Figure 3. Geometry of straight steps.

where δbd is Kronecker’s delta. The interaction energy of two such force dipoles with moments
m and m′ is calculated to be [15]

W
dip
int = 1 − ν2

πYR3

[
mm′ − ν

1 − ν
(mm′

zz + mzzm
′) +

(
ν

1 − ν

)2

mzzm
′
zz

]
, (6)

where Y is Young’s modulus, ν is the Poisson coefficient and R is the distance between
the dipoles; typically, 1/5 � ν < 1/2 [31]. If the force dipoles lie in the high-symmetry
plane as in the classic MP model (figure 2), then mzz = m′

zz = 0. Alternatively, consider
|mzz|, |m′

zz| � |m| and interpret our subsequent results as subject to corrections due to mzz

and m′
zz. So, we restrict attention to a truncated version of (6):

W
dip
int = 1 − ν2

πYR3
mm′. (7)

In the remainder of this paper, we invoke the symbol 
 = (1 − ν2)/(πY ).
Equation (7) forms our starting point. The moments m and m′ are expressed in a fixed

coordinate system. If the step segments are not parallel, the product mm′ in (7) must be
appropriately replaced by the dot product of the respective vector moments.

3. 1D step geometries

In this section, we illustrate the application of (7) to simple geometries described in terms
of a single spatial coordinate: straight steps and concentric circular steps. Lastly, we briefly
consider a variant of the radial case with non-concentric circles.

3.1. Straight steps

Consider the case of two (infinite) straight steps shown in figure 3. The steps are aligned
with the y-axis at a distance w (terrace width). To find the force dipole interaction energy
per unit length of step 1, we fix the line element dl1 and integrate over step 2, summing up
the contributions of line elements dl2. Let R be the vector along the line joining dl1 and
dl2, θ be the angle formed by R and dl1 and R = |R|. Note the relations R = w/ sin θ ,
|dl2| = dl2 = dy = (w/ sin2 θ) dθ where 0 � θ � π .

The dipole moments, m and m′, are proportional to the lengths of the step segments, dl1
and dl2, with the proportionality constant P, the dipole moment per unit step length. Thus, the
force dipole interaction energy per length of step 1 due to step 2 is

Vint ≡ dWint

dl1
= 


P 2

w2

∫ π

0
sin θ dθ = 


2P 2

w2
; 
 = 1 − ν2

πY
. (8)

Note that we replaced the symbol W
dip
int of (7) by d2Wint

dl1dl2
and then integrated over dl2.
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Figure 4. Geometry of concentric circular steps with radii r1 and r2.

3.2. Concentric circular steps

Next, we consider concentric circular steps, shown in figure 4. Our purpose is twofold. First,
we aim to offer a streamline derivation of (2) for the interaction energy [16]. Second, we
intend to clarify the role of a (assumed small) geometric parameter and demonstrate the use
of the Mellin transform technique.

In figure 4, we fix our attention on the interaction between an (infinitesimal) element dl1
on the inner step (step 1) and the entire outer step (step 2). Recall formula (7), now written
for two force dipoles on circles 1 and 2. The product mm′ is proportional to dl1 · dl2 where dlj
is an infinitesimal tangential vector along step j (j = 1, 2). By use of Cartesian coordinates
(x, y), the dipoles are located at (r1, 0) and (r2 cos θ, r2 sin θ).

If P is the force dipole moment per unit step length, the interaction energy per unit length
of step 1 is12

Vint = dWint

dl1
= 
 P 2

∫ π

−π

r2 cos θ(
r2

1 + r2
2 − 2r1r2 cos θ

)3/2 dθ. (9)

This integral can be computed exactly in terms of elliptic integrals but the result does not
reveal directly the dependence on r1 and r2 (see appendix A).

To render (9) amenable to approximation, we introduce a geometric parameter, δ,
expressing the property that the terrace width, r2 − r1, is small compared to r1 and r2.
Specifically, the independent parameters r1 and r2 of the radial setting are replaced by the
parameters λ and δ, as outlined below.

• The parameter λ/2 expresses an appropriate average of r1, r2. For later algebraic
convenience, define λ = 2

√
r1r2. Note that for small (r2 − r1)/r1 we have λ ∼ r1 + r2.

• Define δ = (r2 −r1)/λ where 0 < δ � 1. Thus, we obtain r1(δ, λ) = (λ/2)
(√

1 + δ2 −δ
)

and r2(δ, λ) = (λ/2)
(√

1 + δ2 + δ
)
.

12 Because of rotational symmetry, the total interaction energy of steps 1 and 2 follows trivially.
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Consequently, we compute (9) via the change of variable s = sin(θ/2):

Vint(δ, λ) = 4P 2
r2(δ, λ)

λ3

∫ 1

0

ds√
1 − s2

1 − 2s2

(s2 + δ2)3/2

= 4P 2
r2(δ, λ)

λ3
I (δ2). (10)

The task at hand is to evaluate I (δ2), which diverges as δ ↓ 0.

3.2.1. Application of the Mellin transform. One may proceed by evaluating Iint(δ
2) exactly

in terms of complete elliptic integrals; see appendix A. Instead, we apply the Mellin transform
in δ2, which enables us to systematically identify the singularity in δ and derive directly an
asymptotic expansion as δ ↓ 0. This procedure is applied to non-radial settings in section 4.
For a review of the Mellin transform, see appendix B.

The Mellin-transformed integral of (10) reads

Î (ζ ) =
∫ ∞

0
I (δ2)(δ2)−ζ dδ2 =

∫ 1

0

ds(1 − 2s2)√
1 − s2

(∫ ∞

0

(δ2)−ζ

(s2 + δ2)3/2
dδ2

)
,

by the interchange of the order of integrations. The integral for Î (ζ ) converges for
− 1

2 < Re ζ < 0 and can be evaluated in terms of the Gamma function [32]:

Î (ζ ) = �(1 − ζ )�(ζ + 1
2 )

�( 3
2 )

∫ 1

0
d(s2)

(s2)−ζ−1/2

√
1 − s2

(1 − 2s2)

= −1

2

�(1 − ζ )2 �( 1
2 + ζ )

�( 1
2 − ζ )

�( 1
2 )

�( 3
2 )

(
1

ζ
+

2
1
2 − ζ

)
. (11)

Recall that the sole singularities of �(ω) are simple poles at ω = −n = 0,−1,−2, . . . .
We invert (11) by summing over residues from poles that lie in the right half of the ζ -plane

and are closest to the fundamental strip. So, we write

I (δ2) = 1

2π i

∫ τ+i∞

τ−i∞
(δ2)ζ−1Î (ζ ) dζ, −1

2
< τ < 0, (12)

by definition 2 of appendix B. By shifting the contour to the right, the leading-order term in
(12) comes from the residue at ζ = 0. Thus, we approximate [32]

(δ2)ζ−1Î (ζ ) ∼ − 1

2δ2

�( 1
2 )

�( 3
2 )

1

ζ
= − 1

δ2

1

ζ
as ζ → 0.

The respective residue at ζ = 0 is −1/δ2. Thus, by (12) we find

I (δ2) ∼ 1

δ2
⇒ Vint(δ, λ) ∼ 4
P 2r2(δ, λ)

λ3δ2
as δ ↓ 0. (13)

To leading order in δ2, the force dipole interaction energy per unit length is

Vint ∼ 


2

√
r2

r1

(
2P

r2 − r1

)2

∼ 


2

(
2r2

r1 + r2

)(
2P

r2 − r1

)2

,
r2 − r1

r1 + r2
� 1, (14)

where we used λ = 2
√

r1r2 ∼ r1 + r2 and δ = (r2 − r1)/λ. Formula (14) is in agreement with
(2) via the substitution 2P 2
 = a2g [16, 19]. By setting r2 − r1 = w fixed with r1 � w and
r2 = r1 + w so that 2r2

r1 + r2
∼ 1, we recover the straight-step energy (8).

9



J. Phys. A: Math. Theor. 43 (2010) 455001 J Quah et al

Figure 5. Geometry of non-concentric circular steps of radii r1 and r2.

In this vein, corrections to (14) originate from residues at the poles ζ = 1, 2, . . . of
Î (ζ )(δ2)ζ−1. In particular, the residue at ζ = 1 is found via expansions in ζ̃ = 1 − ζ . Using
the recursive relation ω�(ω) = �(ω + 1) [32] where necessary, we have

Î (ζ ) ∼ 1

4

[
− 3

ζ̃ 2
− 6ψ(1) − 3ψ(3/2) − 3ψ(−1/2) + 7

ζ̃

]
as ζ̃ → 0,

where ψ(ω) = d
dω

ln �(ω) [32]. Thus, (δ2)ζ−1Î (ζ ) has the residue 1
4

(−3 ln 16
δ2 + 5

)
at ζ = 1.

Accordingly, we obtain a logarithmic correction for Vint:

Vint ∼ 
P 2

√
r2

r1

{
2

(r2 − r1)2
− 1

8

1

r1r2

[
3 ln

(
64r1r2

(r2 − r1)2

)
− 5

]}
. (15)

Further corrections in this context may be questionable, since these may be comparable
in magnitude to terms omitted from our starting point, equation (6).

3.3. Non-concentric circular steps

In this section, we briefly consider two circular steps of different centers and show that the
computation of the force dipole interaction energy is essentially unaltered in comparison to
section 3.2 (radial case).

The geometry is depicted in figure 5. Let the circle radii be r1 and r2 and their centers
be at a distance c on the x-axis. The centers and the fixed point of interest on the inner circle
(step 1) form a triangle of sides with lengths c, r1 and L (a dependent parameter). The dipole
dl1 on step 1 is located at angle β with the x-axis13. The dipole dl2 on step 2 is located at angle α

with the side of length L. We also define the auxiliary angles γ and θ , and the distance R between
the two dipoles. Note that α = θ + γ , cos γ = [1 − (c sin β/L)2]1/2 cos α + (c/L) sin α sin β,

13 For the interaction energy per unit length, it suffices to take dl1 on a fixed (say, the y-) axis. Here, we choose to
also give a formula for the total energy, so β is needed to parameterize the position of dl1.

10
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R2 = L2 + r2
2 − 2Lr2 cos α and L2 = r2

1 + c2 − 2r1c cos β. We compute the dipole interaction
energy per step length

V nc
int = dWint

dl1
= 
P 2r2

∫ π

−π

cos α

√
1 − (

c
L

sin β
)2

+ c
L

sin α sin β

(L2 + r2
2 − 2r2L cos α)3/2

dα.

By s = sin(α/2), this is recast to a form analogous to the radial case (section 3.2):

V nc
int = 4
P 2r2(δ, λ)

λ3

√
1 −

(
c

L(δ, λ)
sin β

)2

I (δ2), δ = r2 − L

λ
, (16)

where λ2 := 4r2L. Thus, for fixed β, the independent parameters here are δ, λ and c, with
L = (λ/2)(

√
1 + δ2 − δ), r2 = (λ/2)(

√
1 + δ2 + δ) and I (δ2) defined by (10).

Hence, by (13), the leading-order approximation for the elastic (force dipole) interaction
energy per unit length of step 1 is

V nc
int = dW nc

int

dl1
∼ 


2

√
r2

L

√
1 −

( c

L
sin β

)2
(

2P

r2 − L

)2

, (17)

provided r2 − L � √
r2L. Formula (17) reduces to approximation (14) of the radial case as

c → 0. Correction terms follow from the higher order terms in the expansion for I (δ2); see
section 3.2.

Remark 1. By (17), the total force dipole interaction energy of steps 1 and 2 is

W nc
int ∼ 
r1

∫ π

0

√
r2

L(β)

√
1 −

(
c

L(β)
sin β

)2
(

2P

r2 − L(β)

)2

dβ,

where by abusing notation we write L(β) = L(δ(β), λ(β)). Now consider variations in c of
this energy (perturbing the radial setting, c = 0) with 0 < c � r2 − r1 � r1, r2. We find
that the interaction energy of non-concentric circular steps exceeds the energy, W cir

int , of the
radial case by �Wint = W nc

int − W cir
int ∼ 6π
P 2√r1r2

c2

(r2−r1)4 . So, the force dipole interaction
disfavors relative displacements (offsets) of the circle centers.

4. Perturbation of concentric circular step profiles

In this section we address the computation of the force dipole interaction energy, Vint, of
smooth step profiles that form perturbations of concentric circles. The steps are represented in
a polar coordinate system (with the same center). An assumption is that the polar coordinates
r1 and r2 differ by a sufficiently small length, by analogy with the radial case (section 3.2),
and are sufficiently slowly varying. From the viewpoint of our analysis, which employs the
Mellin transform, the requisite integrals are directly amenable to approximations if |r1 − r2|
is small compared to r1 and r2, and derivatives of r1 and r2 in the angle variables are small
compared to |r1 − r2|.

The geometry is shown in figure 6. The system consists of (i) step profile 1 with the
polar graph (r1(α), α), and (ii) step 2 described by (r2(β), β). Here, we parameterize step 1
by α since we will eventually compute the total force dipole interaction energy of steps 1 and
2 (see remark 2); rj (θ) (j = 1, 2 and θ = α, β) are smooth, −π < θ � π . If the unit
vectors of the basal xy plane are ex and ey, the local orientation of a force dipole on step profile
j is dlj = (ṙj cos θ − rj sin θ)ex + (ṙj sin θ + rj cos θ)ey where the dot on top of rj denotes
differentiation in the angle (α or β) variable.

11
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(α)

R(β)

O

A

B

x

y

β
α

Figure 6. Geometry of step profiles forming perturbations of concentric circles in the polar
coordinate system of center O.

Fix α and consider a force dipole along dl1 at a distance R from a dipole at β on step 2.
By analogy with the radial case (section 3.2) we give the following definitions.

• Set λ(α) = 2
√

r1(α)r2(α) for −π < α � π .

• Define δ(α) = [r2(α) − r1(α)]/λ(α) and assume 0 < δ � 1 for all α.

Accordingly, we write r2(β) = r1(α)+ρ(α)[1 + r̃2(β;α)] where ρ(α) = r2(α)− r1(α) =
λδ and r̃2(β;α) = [r2(β) − r2(α)]/[r2(α) − r1(α)] signifies the breaking of rotational
symmetry. For later algebraic convenience, let r̃2(β;α) =: sr̄(s;α) where s = sin

(
β−α

2

)
.

Note that ρr̄(0) = 2ṙ2 and ρr̄ ′(0) = 2r̈2 at α; and dl1 · dl2 = (ṙ1ṙ2 + r1r2)(1 − 2s2) + 2(ṙ1r2 −
r1ṙ2)s

√
1 − s2, where the prime (dot) denotes differentiation in s (β or α). We assume that

r̄(s;α) and its derivatives in s are small for all α.
By suppression of α, the distance R is now written as R(s; δ, λ)2 = λ2Q(s; δ2) where

Q = Q0 + r̄ ς(δ) δ s3, with

Q0(s; δ2) = s2 + δ2[1 + sA(s)], A(s) = r̄(s)[2 + sr̄(s)], (18)

and ς(δ) = 2(
√

1 + δ2 − δ). Assume that r̄(s;α) 
= 0 for definiteness. The computation of
the interaction energy per unit length involves integration in s (−1 � s � 1).

Before we compute the desired energy, we argue why we can keep only Q0 in the
denominator of the requisite integrals. The relevant factor is split as

1

R3
= 1

λ3

{
1

Q3/2
0

− δ
r̄ςs3[2Q0 + Q1/2

0 (Q0 + r̄ςδs3)1/2 + r̄ςδs3]

Q3/2
0 (Q0 + r̄ςδs3)3/2[(Q0 + r̄ςδs3)1/2 + Q1/2

0 ]

}
.

The second term on the right-hand side behaves as (s|s|)−1δ if δ ↓ 0. As indicated in
appendix C (through evaluation of germane integrals by the Mellin transform), the
corresponding integral would be of the order of δ ln(1/δ2) or smaller. Thus, we can neglect the
term r̄ ς(δ) δ s3 in Q provided we restrict attention up to (bounded) terms O(1) in asymptotic
expansions in δ of the requisite integrals

∫ 1
−1

slf (s)

Q0(s)3/2 ds (see (20)).

12
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We now proceed with the calculation of the force dipole interaction energy, Vint, per unit
length of step 1, for the fixed angle α. After some algebra, we obtain the formula

Vint(α) = P 2


�1

∫ π

−π

(ṙ1ṙ2 + r1r2) cos(β − α) − (ṙ1r2 − r1ṙ2) sin(β − α)

R3
dβ

∼ 2
P 2

�1λ3

{
r1(r1 + ρ)I00 +

1

2
ṙ1ρI01 + 2ρr1I10 − 2ṙ1(r1 + ρ)I11

+
1

2
ṙ1ρI12 + ρr1I20 − 2(r1 + ρ)r1I21 − 3ṙ1ρI22

− 3ρr1I30 − ṙ1ρI31 − ρr1I40

}
, �1(α) =

√
r1(α)2 + ṙ1(α)2, (19)

where the integrals Ilk are classified according to the power l of s appearing explicitly in each
numerator. These integrals are defined by

Ilk(δ
2) =

∫ 1

−1

ds√
1 − s2

slflk(s)

Q0(s; δ2)3/2
, l = 0, 1, 2, 3, 4, (20)

f00(s) = 1, f01(s) =
√

1 − s2r̄(s) (k = 0, 1),

f10(s) = r̄(s), f11(s) =
√

1 − s2, f12(s) =
√

1 − s2r̄ ′(s),

f20(s) = r̄ ′(s), f21(s) = 1, f22(s) =
√

1 − s2r̄(s),

f30(s) = r̄(s), f31(s) =
√

1 − s2r̄ ′(s), f40(s) = r̄ ′(s).

As δ2 ↓ 0, the most singular integrals are I0k(δ
2) (k = 0, 1).

In appendix C, the above integrals are approximated for small δ2 (δ2 � 1) by use of
the Mellin transform. The main idea is to single out the contributions of the underlying
divergences (as δ2 ↓ 0) in the form of appropriate residues of a complex-valued function. Our
results, up to (and including) logarithmic corrections, are summarized as follows:

I00(δ
2) ∼ 2

δ2
+

1

2
ln

16

δ2
− 1

2
[2A′(0) − A(0)2 + 3], (21)

I01(δ
2) ∼ 2r̄(0)

δ2
+

1

2
r̄ ′′(0) ln

16

δ2
+

1

2

{
r̄(0)[A(0)2 − 1]

− 2r̄ ′′(0) − 2[r̄ ′(0)A(0) + r̄(0)A′(0)]
}
, (22)

I10(δ
2) ∼ r̄ ′(0)

(
ln

16

δ2
− 2

)
+ r̄(0)A(0) + C10, (23)

I11(δ
2) ∼ A(0), I12(δ

2) ∼ r̄ ′′(0)

(
ln

16

δ2
− 2

)
+ r̄ ′(0)A(0) + C12, (24)

I20(δ
2) ∼ r̄ ′(0)

(
ln

16

δ2
− 2

)
+ C20, I21(δ

2) ∼ ln
16

δ2
− 2, (25)

I22(δ
2) ∼ r̄(0)

(
ln

16

δ2
− 2

)
+ C22, (26)

13
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I30(δ
2) ∼ C30 =

∫ 1

−1

ds√
1 − s2

r̄(s) sgn(s), I31(δ
2) ∼ 2[r̄(1) − r̄(0)], (27)

I40(δ
2) ∼ C4 =

∫ 1

−1

ds√
1 − s2

r̄ ′(s) |s|, (28)

where sgn(s) = −1 if s < 0 and sgn(s) = 1 if s > 0, and

C10 =
∫ 1

−1

ds√
1 − s2

[
r̄(s) − r̄(0)

s
− r̄ ′(0)

]
|s|−1, (29)

C12 =
∫ 1

−1

ds√
1 − s2

[√
1 − s2r̄ ′(s) − r̄ ′(0)

s
− r̄ ′′(0)

]
|s|−1, (30)

C20 =
∫ 1

−1

ds√
1 − s2

[r̄ ′(s) − r̄ ′(0)] |s|−1, (31)

C22 =
∫ 1

−1

ds√
1 − s2

[√
1 − s2 r̄(s) − r̄(0)

]|s|−1, (32)

A(0) = 2r̄(0), A′(0) = 2r̄ ′(0) + r̄(0)2. (33)

The corresponding expansion for Vint = dWint/dl1 follows from (19)–(28):

Vint(α) ∼ 2
P 2

λ3

r1

�1
(r1 + ρ)

{[
2 +

ṙ1

r1

ρ

r1 + ρ
r̄(0)

]
1

δ2

+ 3

[
−1

2
+

ρ

r1 + ρ
r̄ ′(0) +

ṙ1

r1

ρ

r1 + ρ

(
r̄ ′′(0)

4
− r̄(0)

)]
ln

16

δ2
+

5

2
− 2r̄ ′(0)

}
. (34)

Here, we neglect terms of the order of ρr̄ or smaller inside the curly brackets. Recall that r1, ρ,
λ, δ, �1 and r̄(0) = r̄(s = 0) are evaluated at an angle α; ρ + r1 = r2. For r̄(s;α) ≡ 0 (radial
case), (34) reduces to formula (15). For a non-circular step 2, the logarithmic correction in
(34) involves the curvature of step 2 at α. We expect that higher order terms in δ for Vint

(properly computed) contain higher derivatives of r̄(s).
The leading-order term in (34) is consistent with the geometric factor based on local

coordinates in [22]. This is not surprising since the present geometry is a (regular) perturbation
of concentric circles.

We reiterate that the magnitude of corrections to (34) relative to terms omitted in (6) is not
known a priori. Adding corrections from other residues here might not be enough to ensure
overall accuracy. Estimating cross-terms in (6) that stem from dipole moments perpendicular
to the basal plane lies beyond our present scope.

Remark 2. It is of interest to mention an implication of (34) regarding energy variations of
modulated closed step profiles. In the spirit of [4], consider the steps represented by

r1(α) = R1[1 + ε sin(nα)], r2(α) = R2[1 + ε sin(nα + ϑ)],

where 0 < ε � δ := (R2 − R1)/
√
R1R2 � 1, n is a positive integer and ϑ is a

given phase shift, 0 � ϑ � π . By (34) we compute the force dipole interaction energy,
Vint = dWint/dl1, per unit length of step 1, and thereby determine the total interaction energy

14
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Wint = ∫ π

−π
Vint(α) �1(α)dα of steps 1 and 2. By subtracting the energy of the radial case

(where ε = 0), we find the leading-order excess energy

�Wint ∼ πP 2


4

√
R1R2

(R2 − R1)2
ε2

[
14 − 6 cos ϑ + 48

R1R2

(R2 − R1)2
(1 − cos ϑ) + 8n2 cos ϑ

]
.

(35)

Here, we neglected terms of the order of ε3 or smaller, as well as logarithmic and higher order
corrections in δ. This calculation indicates that the force dipole interaction does not favor step
modulations unless the wavenumber n is large enough, n � O(δ−1). Because of limitations
due to the nature of our asymptotics, which treats n as a fixed parameter, we do not discuss
this case of large n here.

5. Conclusion

We began this investigation in an attempt to verify, and possibly improve, a previously used
formula for the force dipole interaction energy between two concentric circular steps in
homoepitaxy. To this end, we applied the Mellin transform of the requisite interval with
respect to a parameter expressing the relative magnitude of the interstep distance and step
radii. This technique singles out the most important contributions to integration over the step
circumference in the form of residues of the transformed integral. Our derivation led to a
logarithmic correction to the previous formula.

We point out that the Mellin transform is not the only tool for evaluating asymptotically
integrals for elastic energies. A direct recourse to elliptic integrals is another route, as discussed
in appendix A. The Mellin transform reveals elegantly a connection of divergences of requisite
integrals to singularities in the complex plane.

We extended the calculation of the force dipole interaction energy to a class of smooth 2D
steps, which form perturbations of concentric circles. The leading-order term is consistent with
physical intuition: the energy per unit length decays as the inverse square of step separation,
as measured along the appropriate local normal. This property was invoked by Weeks, Liu
and Jeong [10] for perturbations of straight steps.

Our setting also differs from the geometry of Houchmandzadeh and Misbah [4], who
study perturbations of straight steps. In the spirit of these authors’ work, we studied variations
of the force dipole interaction energy caused by small-amplitude modulations of concentric
circular steps. We find that modulations of such steps are not preferred energetically (in the
force dipole model) for a fixed wavenumber. The possibility of creating energetically favorable
modulations by choice of the phase shift for large wavenumber is left open. Our asymptotics
does not treat this case. We expect that the step line tension will dominate over the elastic
contribution, causing an overall stabilizing effect (as discussed extensively in [4]).

Previous numerical studies of the step flow with circular steps [17, 19] made use of
the interaction energy formula from [16], which we now understand to be valid when step
separations are sufficiently small compared to the step radii (δ2 � 1 in our notation). A
more precise regime of validity of this formula should stem from considering limitations of
continuum elasticity as well; for example, the starting force dipole formula becomes inadequate
if the interstep distance becomes comparable to a few atomic lengths [26].

Our analysis has limitations. We did not address contributions of dipole moments
perpendicular to the basal plane. We did not compute the contribution of force monopole
step interactions, which arise in heteroepitaxy [4]. Our goal was to demonstrate the use of the
Mellin transform in simple yet nontrivial geometries. Other elastic step energies amenable to
the Mellin transform are the subject of work in progress.
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Appendix A. On elliptic integrals

In this appendix, we compute the integral Vint(δ
2) of the radial case, equation (10), in terms of

complete elliptic integrals [33].
Using (10), we express Vint(δ

2) as

Vint(δ
2) = 4
P 2r2

λ3

[
−2(2δ2 + 1)

d

d(δ2)
− 2

]
Ic(δ

2), (A.1)

where

Ic(δ
2) =

∫ 1

0

ds√
1 − s2

1√
s2 + δ2

. (A.2)

With s = cos θ in (A.2), we find

Ic(δ
2) =

∫ π/2

0

dθ√
δ2 + 1 − sin2 θ

= 1√
1 + δ2

K
(
1/

√
1 + δ2

)
, (A.3)

where K(χ) = ∫ π/2
0 dθ (1 − χ2 sin2 θ)−1/2 is the complete elliptic integral of the first kind

[33]. Thus, by (A.1) and χ = χ(δ2) = (1 + δ2)−1/2, we obtain

Vint(δ
2) = 4
P 2r2(δ, λ)

λ3
χ(δ2)

[
2 − χ(δ2)2

1 − χ(δ2)2
E(χ(δ2)) − 2K(χ(δ2))

]
; (A.4)

E(χ) = ∫ π/2
0

√
1 − χ2 sin2 θ dθ is the complete elliptic integral of the second kind [33].

This result is compatible with the asymptotic expansion of section 3.2. In particular, by
expanding (1 + δ2)−1/2 about δ = 0 and using an expansion of K(χ) about χ = 1 [33], we
recover Ic ∼ ln(16/δ2) and the assorted correction terms as δ ↓ 0.

Appendix B. Review of the Mellin transform

In this appendix, we review elements of the Mellin integral transform. For a more thorough
discussion including other applications, the reader may consult, e.g., [13, 14, 34–36]. We
include only technical elements that serve our present purposes.

Definition 1. The Mellin transform of F(x) : R+ → R (R: set of reals) is defined as

F̂ (ζ ) =
∫ ∞

0
F(x)x−ζ dx, (B.1)

where ζ lies in some vertical strip, S0, of the complex plane so that the integral converges.

Note that, once defined via (B.1) for ζ ∈ S0, the function F̂ (ζ ) can in principle be
continued analytically to the whole complex plane, C.
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Definition 2. The inverse Mellin transform of F̂ (ζ ) : C → C is defined by

(F̂ )ˇ(x) = 1

2π i

∫ τ+i∞

τ−i∞
F̂ (ζ )xζ−1 dζ (i2 = −1), (B.2)

where, for appropriate τ , the contour of integration must lie in S0 ⊂ C.

Under reasonably general assumptions on F(x), we henceforth take F(x) = (F̂ )ˇ(x)

(almost everywhere). In the following, we motivate formulas (B.1) and (B.2) with recourse to
a (presumably more familiar) variant of the Fourier transform.

For a function f : R → R, the two-sided Laplace transform is

L(f )(σ ) =
∫ ∞

−∞
f (t)e−σ t dt, (B.3)

which follows from the Fourier transform [34]. By reasonably general conditions, f is
recovered from L(f ) via the inversion formula

f (t) = 1

2π i

∫ γ +i∞

γ−i∞
L(f )(σ )eσ t dσ, (B.4)

where the integration path lies in the region of convergence of the integral for L(f )(σ ).
The Mellin transform ensues from (B.3) by the change of variable x = et :

L(f )(σ ) =
∫ ∞

0
f (ln x)x−σ−1 dx, (B.5)

which leads to (B.1) via the definitions F(x) = f (ln x), ζ = σ + 1 and F̂ (ζ ) = L(f )(ζ − 1).
The inverse Mellin transform (B.2) with (F̂ )ˇ = F follows from (B.4).

We add a note on convergence. For arbitrary yet fixed c > 0, split integral (B.1) as

F̂ (ζ ) =
(∫ c

0
+

∫ ∞

c

)
F(x)x−ζ dx, (B.6)

and assume that F(x) is summable on any finite (c1, c2) ⊂ (0,∞) where c1 > 0,
F(x) = O(xp2−1) as x ↓ 0 and F(x) = O(xp1−1) as x → ∞. The first integral converges
provided Re ζ < p2, while the second one converges if p1 < Re ζ . Thus, if p1 < p2, F̂ (ζ ) is
originally defined (as a convergent integral) in the fundamental strip p1 < Re ζ < p2.

Appendix C. Asymptotics for integrals of a non-circular step

In this appendix, we evaluate approximately integrals of the form

Il(δ
2) =

∫ 1

−1

ds√
1 − s2

sl f (s)

Q0(s; δ2)3/2
, δ2 � 1, (C.1)

where Q0 is defined in (18), assuming that f (s) is smooth in (−1,1) with f (0) 
= 0, and l =
0–4. This type of integrals is needed in section 4, cf (20). We resort to the Mellin transform
Îl(ζ ). Each Îl(ζ ) is a meromorphic function and can be written as a Laurent series in the
vicinity of each pole. By starting with the definition of the Mellin transform in the fundamental
strip, we derive terms of the Laurent series by analytic continuation. So, the respective residues
are computed to yield an asymptotic expansion in δ with terms containing details of the step
curve.
Integral I0. This is the most singular integral. We compute

Î0(ζ ) = �(1 − ζ ) �
(

1
2 + ζ

)
�

(
3
2

) ∫ 1

−1

ds√
1 − s2

f (s)[1 + sA(s)]ζ−1 (s2)−ζ−1/2, (C.2)
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with the fundamental strip −1/2 < Re ζ < 0. To single out the simple pole ζ = 0, we write∫ 1

−1

ds√
1 − s2

f (s)[1 + sA(s)]ζ−1(s2)−ζ−1/2 = 2f (0)

×
∫ 1

0

ds√
1 − s2

(s2)−ζ−1/2 + O(1)

as ζ → 0, where O(1) is bounded. The last integral equals �(−ζ )�(1/2)/�(1/2 − ζ ); thus,

Î0(ζ ) ∼ −2f (0)/ζ as ζ → 0, (C.3)

which yields the first term in each of (21) and (22). In the same vein, we find zero residue at
ζ = 1/2 and thus no contribution O(1/δ) to I0(δ

2).
Regarding the double pole of Î0(ζ ) at ζ = 1, we write

f (s)[1 + sA(s)]ζ−1 = f (0) + s2[�0(s; ζ ) − �0(0; ζ )] + s2�0(0, ζ ) + K0(ζ )s,

�0(s; ζ ) = s−1

{
f (s)[1 + sA(s)]ζ−1 − f (0)

s
− K0(ζ )

}
,

K0(ζ ) = lim
s→0

f (s)[1 + sA(s)]ζ−1 − f (0)

s
.

As ζ̃ = 1 − ζ → 0, we have K0(ζ ) ∼ f ′(0) − ζ̃ f (0)A(0) and

�0(s; ζ ) ∼ s−1

[
f (s) − f (0)

s
− f ′(0)

]
− ζ̃

f (s) ln[1 + sA(s)] − sf (0)A(0)

s2
;

hence, �(0; ζ ) ∼ 1
2f ′′(0) − ζ̃ [f ′(0)A(0) + f (0)A′(0) − 1

2f (0)A(0)2]. By integration (in s),
we obtain the Laurent expansion

Î0(ζ ) ∼ f + f ′′

2ζ̃ 2
+

1

2ζ̃

{
f + 2f ′′ − 2(f A)′ + f A2

− (f + f ′′)
[
ψ

(
3

2

)
+ ψ

(
−1

2

)
− 2ψ(1)

] }
as ζ̃ → 0, (C.4)

where f , A and their derivatives are evaluated at s = 0. The residue for Î0(ζ )(δ2)ζ−1 at ζ̃ = 0
yields the remaining terms in expansions (21) and (22); ln(1/δ2) appears.
Integral I1. The Mellin transform of I1(δ

2) reads

Î1(ζ ) = �(1 − ζ )�( 1
2 + ζ )

�( 3
2 )

∫ 1

−1

ds√
1 − s2

sf (s)[1 + sA(s)]ζ−1(s2)−ζ−1/2

with the fundamental strip −1/2 < Re ζ < 1/2. Because of the factor s here, we conclude
by analytic continuation that ζ = 1/2 is a ‘removable singularity’. Next, consider the double
pole at ζ = 1, setting ζ̃ = 1 − ζ . For analytic continuation, apply the splitting

f (s)[1 + sA(s)]ζ−1 = s[�1(s; ζ ) − �1(0; ζ )] + s�1(0; ζ ) + f (0),

where

�1(s; ζ ) = f (s)[1 + sA(s)]ζ−1 − f (0)

s
.
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Note that �1(s; ζ ) ∼ s−1{f (s) − f (0) − ζ̃ f (s) ln[1 + sA(s)]} as ζ̃ → 0, uniformly in
s ∈ (−1, 1); in particular, lims→0 �1(s; ζ ) ∼ f ′(0) − ζ̃ f (0)A(0). By integration in s, we
find

Î1(ζ ) ∼ f ′(0)

ζ̃ 2
+
C1 + [2ψ(1) − ψ( 1

2 ) − ψ( 3
2 )]f ′(0) + f (0)A(0)

ζ̃
, (C.5)

as ζ̃ → 0, where C1 = ∫ 1
−1 ds (1 − s2)−1/2{s−1[f (s) − f (0)] − f ′(0)}|s|−1. The residue for

Î1(ζ ) (δ2)ζ−1 at ζ̃ = 0 yields expansions (23) and (24).
Integral I2. The Mellin transform of I2(δ

2) reads

Î2(ζ ) = �(1 − ζ )�( 1
2 + ζ )

�( 3
2 )

∫ 1

−1

ds√
1 − s2

[1 + sA(s)]ζ−1f (s) (s2)−ζ+1/2, (C.6)

with the fundamental strip −1/2 < Re ζ < 1. This function has a double pole at ζ = 1. We
analytically continue Î2(ζ ) to 1 � Re ζ < 3/2 via the splitting

�2(s; ζ ) := [1 + sA(s)]ζ−1f (s) = [�2(s; ζ ) − �2(0; ζ )] + �2(0; ζ ),

where �2(s; ζ ) ∼ {1 − ζ̃ ln[1 + sA(s)]}f (s) as ζ̃ → 0. By substitution in (C.6), we find

Î2(ζ ) ∼ f (0)

ζ̃ 2
+
C2 + f (0)[2ψ(1) − ψ( 1

2 ) − ψ( 3
2 )]

ζ̃
, (C.7)

where C2 = ∫ 1
−1 ds (1 − s2)−1/2 [f (s) − f (0)]|s|−1. The computation of the residue at ζ̃ = 0

for I2(ζ )(δ2)ζ−1 leads to expansions (25) and (26).
Integrals I3, I4. By contrast to Il(δ

2) for l = 0, 1, 2, the integrals I3(δ
2) and I4(δ

2) remain
convergent if δ = 0 in the integrands. Thus, by continuity in δ, we have I3(δ

2) ∼ I3(0) and
I4(δ

2) ∼ I4(0) as δ2 ↓ 0, which readily yield (27) and (28).
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[25] Eisenhart L P 1947 An Introduction to Differential Geometry (Princeton, NJ: Princeton University Press)

pp 224–30
[26] Najafabadi R and Srolovitz D J 1994 Surf. Sci. 317 221
[27] Eshelby J D 1956 Solid State Phys. 3 79
[28] Prévot G and Croset B 2004 Phys. Rev. Lett. 92 256104

Prévot G and Croset B 2006 Phys. Rev. B 74 235410
[29] Jackson J D 1999 Classical Electrodynamics (New York: Wiley)
[30] Kubo R and Nagamiya T 1969 Solid State Physics ed R S Knox (New York: McGraw-Hill)
[31] Mott P H and Roland C M 2009 arXiv:0909.4697
[32] Bateman Manuscript Project 1953 Higher Transcendental Functions vol I, A Erdélyi (New York: McGraw-Hill)
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