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ELECTROMIGRATION IN MACROSCOPIC RELAXATION OF
STEPPED SURFACES∗

JOHN QUAH† AND DIONISIOS MARGETIS‡

Abstract. We study the effect of an external electric field E on macroscopic relaxation laws
for crystal surfaces in 2 + 1 dimensions. We derive a nonlinear, fourth-order partial differential
equation (PDE) for the surface height from the microscale motion of line defects (steps). This PDE
contains a linear-in-E convective contribution and reflects a variety of microscale kinetic processes.
A basic ingredient is an extended Fick’s law for the surface flux, which accounts for drift of adsorbed
atoms (adatoms), isotropic as well as anisotropic diffusion of adatoms on terraces between steps,
attachment-detachment of atoms at step edges, edge atom diffusion, and atom desorption into the
surrounding vapor. In particular, we discuss conditions that enable the neglect of desorption. By
resorting to stationary PDE solutions, we show how E can possibly influence spatial changes of
the slope profile near a macroscopically planar surface region (facet). We start with the Burton–
Cabrera–Frank model for the motion of interacting steps, which is viewed as a discrete scheme for
the macroscopic description, and apply coarse graining by separating local space variables into fast
and slow.
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1. Introduction. Patterns on crystal surfaces figure prominently in the fab-
rication of novel optoelectronic devices. The stability of nanoscale surface features
has attracted much interest in recent decades, for example, in the context of mobile
communications technology [48]. Emerging issues concern the control of surface mor-
phological evolution, e.g., by varying temperature, elastic stress, material deposition
from above, or the effect of an external electric field on charged surface atoms (“elec-
tromigration”). In particular, electromigration plays a crucial role in the degradation
or failure of connections in microelectronics [14].

Crystal surface evolution is driven by the diffusion of adsorbed atoms (adatoms)
on nanoscale terraces, along with other microscale kinetic processes such as desorption
of atoms from the surrounding vapor, and atom attachment-detachment at line defects
(steps). These mechanisms are intrinsic to crystals. The theoretical underpinnings of
step motion were set forth by Stranski [52] and Burton, Cabrera, and Frank (BCF) [2].

External effects such as an electric field [14] are introduced experimentally to
control surface patterns [16, 30]. The field can accelerate the rate of thermal decay
of surface morphologies. Related experimental data are used to estimate the effective
charge of adatoms [13]. The electric current causes a bias in the diffusion of adatoms:
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668 JOHN QUAH AND DIONISIOS MARGETIS

at long times, the adatoms tend to move along the applied current. This effect coexists
with processes captured by an anisotropic adatom mobility at the macroscale [28].

In this article, we extend previous macroscopic descriptions of crystal surface dy-
namics [26, 28, 39] to incorporate the effect of an electric field into a partial differential
equation (PDE) for the surface height in 2+1 dimensions. In our approach, the PDE
emerges as the limit of a discrete scheme for step flow and incorporates a rich variety
of kinetic processes (drift, desorption, and terrace anisotropy). We study how the
applied field influences the slope profile, especially near a macroscopically flat surface
region (facet). We focus on relaxation, when surfaces evolve toward planarity by low-
ering their free energy. The resulting PDE combines (i) a kinetic anisotropy with a
drift velocity for the adatom flux, and (ii) a variational principle for a thermodynamic
force, the step chemical potential. The PDE is in principle not valid across surface
peaks and valleys [28].

Our intention with this work is twofold. First, we aim to clarify the limiting
procedure by which the BCF model is coarse-grained in the presence of joint physical
effects, e.g., desorption and electromigration, for monotonic step trains. Second,
we seek to gain analytical insight into how the electric field (which affects a PDE
coefficient) can possibly influence the slope profile near a facet. For this purpose, we
use stationary solutions and assume that the slope profile approaches zero near the
facet edge.

This work is motivated by the need to describe systematically how microscopic
parameters for surface kinetics are related to the macroscopic decay of the height
profile in electromigration. Features of this decay are experimentally measurable [13].

We start with a microscopic model that incorporates an electric field into the BCF
theory and has been widely established in theoretical treatments of electromigration;
see, e.g., [3, 4, 12, 13, 14, 17, 18, 19, 20, 21, 22, 29, 31, 34, 36, 37, 42, 43, 44, 49,
50, 57, 58]. These previous works focus on the development of instabilities (e.g., step
meandering and bunching) across scales, often from a dynamical system viewpoint.
We, on the other hand, place electromigration in the context of connecting discrete
schemes for interacting steps to global PDE laws and variational principles in 2 + 1
dimensions [5, 26, 28, 32, 33, 39, 41, 46, 47, 56]. Our work is an extension of previous
two-dimensional (2D) laws [28, 39]. Numerics for the PDE with an electric field and
negligible step line tension (without facets) are presented elsewhere [1].

The starting point of our analysis consists of coupled differential equations for
step positions. The macroscopic PDE is sought for a coarser scale, in the limit of zero
step size. This description has compelling advantages, involving only one dependent
variable, the surface height. (By contrast, at the BCF level many steps are tracked.)

There is a vast body of literature in epitaxial phenomena. For broad reviews on
this subject, the reader may consult, e.g., [8, 16, 18, 30, 35].

1.1. Microscale motion. Generally speaking, there are three distinct scales for
crystal surfaces: atomistic scale, nanoscale, and macroscale. The atomistic approach
in principle seeks solutions to many-body equations for electrons and nuclei or suitably
defined atoms over relatively short time and length scales [54]. This description,
although vital to obtaining material parameters, is not of our concern here.

At the nanoscale, below the roughening transition temperature [16], crystal sur-
faces have distinct steps and terraces and can develop facets. According to the BCF
model [2], step edges move by mass conservation in response to the following: (i) atom
attachment and detachment at step edges; and (ii) diffusion of adatoms on terraces.
Additional kinetic effects are atom desorption and edge atom diffusion. Furthermore,
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the step edge curvature (or stiffness) and step entropic and elastic dipole interac-
tions [23] contribute to a thermodynamic driving force, the step chemical potential.
In this perspective, the aggregate adatom motion on each terrace is approximated by
a continuous adatom density. This density satisfies a diffusion equation for which the
step edges are continuous moving boundaries.

1.2. Electromigration and desorption at BCF level. An externally applied
(vector-valued) electric field, E, tends to force adatoms to move in its direction,
causing a drift velocity v. This v is related to E by [4, 13]

(1.1) v =
Ds(Z

∗e)E
T

,

where Ds is the adatom diffusivity, Z∗e is the effective adatom charge,1 and T is the
temperature (or, Boltzmann energy kBT in units where kB = 1). At the level of
steps, the electric field amounts to the addition of a convective (linear in the density
gradient) term in the diffusion equation for the adatom density; see (3.2). Regarding
(1.1), |Z∗| is larger than unity for metals but can be much smaller than unity for
semiconductors [4]. This Z∗ has been estimated in experiments via comparisons of
data for decay rates with predictions of the microscopic model; see, e.g., [13]. Note
that E influences the temperature in an experimental setup, since it directly controls
the electric current that flows through and eventually heats up the sample.

Theoretical works in electromigration appear to have initially been motivated by
experimental observations of different stability regimes of vicinal Si(111) surfaces [20].2

Related proposals (although not directly relevant to our focus here) include but are
not limited to the early work by Stoyanov [49] and more recent investigations by
Pierre-Louis and Métois [34, 37], and by Zhao, Weeks, and Kandel [57, 58].

In addition to electromigration, we will allow adatoms to desorb into the vapor
with characteristic time τ. So, the term C/τ is added in the adatom diffusion equation
where C is the adatom density. We study if and how this addition at the BCF
level influences the macroscopic limit. Note that a phenomenological approach to
desorption in crystal morphological evolution is offered by Villain [55]. We derive τ -
dependent corrections of the large-scale flux and describe how large τ needs to be so
that desorption can be neglected in the macroscopic laws. In addition, we enrich the
microscale model with other kinetic processes, namely, anisotropic terrace diffusion
and edge atom diffusion.

1.3. Macroscopic limit and assumptions. The macroscopic limit aims to
describe a continuous surface at sufficiently large scales. Previous studies of electro-
migration and desorption apparently have not focused on global evolution laws for
the surface height, and hence carry a perspective different from ours. These works (i)
focus mainly on stability issues, (ii) make use primarily of nanoscale models where
steps are everywhere parallel, and (iii) allow steps to interact mainly through terrace
diffusion (with less emphasis on step-step entropic or elastic dipole interactions).

Our derivation uses the multiscale expansion introduced in [28], which is essen-
tially not limited by the (2 + 1)-dimensional geometry. The expansion parameter is
the step height a. This formulation relies on the separation of local variables for in-
teracting steps into fast and slow, and can encompass additional physical effects such

1Here, we follow the notation of [4]. The symbol Z∗ (with an asterisk) should not be confused
with the usual symbol for the conjugate of a complex number.

2The index (111) indicates the direction of the normal vector, i.e., the surface orientation with
respect to the high-symmetry (x, y) plane.
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670 JOHN QUAH AND DIONISIOS MARGETIS

as desorption and electromigration. As a result, we derive a fully continuum model
in 2+ 1 dimensions that is more general than the model developed in [28]. The addi-
tional effect of anisotropic terrace diffusion is also incorporated subsequently, offering
an extension of a previous theory [39].

The (geometric in nature) assumptions underlying the macroscopic limit are worth
stressing [28]. We require that the (microscale) terrace width is of the order of the
step height a and small compared to the following: (i) the step radius of curvature; (ii)
the length over which the step curvature varies; and (iii) the macroscopic length over
which the step density varies. A step train satisfying these conditions is referred to as
“slowly varying” [28]. The step height a is the smallest possible length in this setting.
The full continuum limit is reached formally as a/λ ↓ 0 where λ is a macroscopic
length. The step density is fixed and approaches the surface slope. We assume that
the initial (at t = 0) ordering of steps is preserved by the flow (for t > 0),3 and that
step trains are monotonic, say, with descending steps in the direction of increasing
coordinate.

Furthermore, we require that certain kinetic parameter groups involving the step
height a remain O(1) (as a/λ ↓ 0). In particular, we take Ds/(ka) = O(1) where k is
any relevant kinetic rate for attachment-detachment of adatoms at a step edge.

1.4. Main results. The central result of our work is an extension of Fick’s law
expressing the vector-valued flux J for diffusion and drift of adatoms at large scales:

(1.2) J = −Cse
μ/TM ·

(
∇μ− v

T

Ds

)
,

where M is an effective mobility, in principle a second-rank tensor given by (4.4) for
isotropic terrace diffusion [28, 39], μ is the macroscale step chemical potential, and
Cs is the equilibrium density of adatoms at a straight step edge; see section 5.1. In
the case with |μ| � T , (1.2) becomes

(1.3) J = −CsM ·
[
∇μ− v

T

Ds

(
1 +

μ

T

)]
;

see Proposition 4.1. Because of the relative simplicity of the derivation and the wide
applicability of the linearization with μ [16], (1.3) is derived first while (1.2) is provided
as an extension. Equations (1.2) and (1.3) rely on an approximate solution to the
2D adatom diffusion equation; see Proposition 3.1. An assumed condition is |v| � k
where k is a typical kinetic rate of atom attachment-detachment at a step; see Remark
3.2. This condition implies that the adatom drift is slow relative to atom attachment-
detachment at step edges and is met in physical situations; see, e.g., [4, 13].

Various forms of the tensor mobilityM have been derived. Extensions of (1.2) and
(1.3) to desorption and anisotropic terrace diffusion are described in sections 5.2 and
5.3, paving the way to a reasonably general macroscopic theory of surface relaxation.

For entropic and elastic dipole step interactions, the μ entering (1.3) is the vari-
ational derivative of the surface free energy (see, e.g., [26, 28] and references therein)

(1.4) E[h] =

∫
dAγ(x, y), γ = g1 |∇h|+ (g3/3)|∇h|3,

where g1 is proportional to the step line tension, g3 is the step-step interaction
strength, and dA = dxdy; see (4.2). (Note that the energy density γ is singular

3This property should be derivable from microscale dynamics. This aspect is not studied here.
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at ∇h = 0.) In this model, surface regions defined as Ft = {(x, y, h) ∈ R
3 | ∇h = 0}

correspond to facets, i.e., macroscopic plateaus (of spatially constant height). By
complementing (1.2) or (1.3) and μ with the adatom mass conservation law (4.1), we
obtain a PDE for h; see (4.16) with (4.14) and (4.15) under |μ| � T . This PDE is
not applicable across Ft.

Connections of the macroscopic PDE with documented step instabilities under an
electric field are discussed for one-dimensional (1D) geometries. Such instabilities arise
from backward-diffusion terms in the PDE; see section 6.1. Straight- and circular-
step morphologies are considered here. In particular, the radial case (with a radial
drift) has not been studied experimentally and thus appears less tangible practically.
However, there is no physical principle that prohibits having a radial setting with
drift. We adopt the view that our radial model may illustrate the interplay of step
curvature and drift in physical situations (where steps are curved). Our analysis
indicates that a step-up drift can be tuned to balance the destabilizing effect of step
curvature (line tension).

With regard to facets, as is known from 1D geometries [26, 27], it is assumed herein

that the positive surface slope, m(r, t) = |∇h|, exhibits the behavior m = O(d
1/2
⊥ ) for

sufficiently small d⊥, under slope continuity; d⊥ is the distance from a point of the
sloping surface to the facet boundary along its normal. In section 6.2, we discuss how
this behavior can possibly be manipulated by an electric field, by drawing examples
from the straight-step and radial cases with diffusion limited kinetics for stationary
PDE solutions. Interestingly, m tends to increase by a large enough drift velocity in
the step-down direction, but recovers its square-root behavior for a drift in the step-
up direction. Our analysis invokes slope continuity and (1.3) in a time-independent
setting, thus avoiding the (as yet unresolved) issue of boundary conditions near a
moving facet [27].

1.5. Limitations. We assume that steps move near thermodynamic equilibrium,
which is fairly reasonable for surface relaxation (in the absence of growth). We do
not make any effort to further justify the applicability of BCF theory [2], which is
invoked here. A macroscale theory under far-from-equilibrium conditions may still be
possible, but is not of our concern in this work.

Because of the step train monotonicity that we impose, our limiting procedure
is not strictly valid across (non-faceted or faceted) surface peaks and valleys, where
∇h = 0. An open question is how to carry out the macroscopic limit near these
surface extrema. In the case with axisymmetric mounds having a facet, the continuum
variational formulation of the PDE has been shown to be consistent with the step
motion if the facet size becomes vanishingly small, which is the limit of zero step
line tension [27]. In the presence of facets, however, solving the evolution equation
constitutes an essentially unresolved free boundary problem [15, 27, 47].

We assume that any possible surface instabilities do not violate the assumptions
for the full continuum limit. Previous studies of the microscopic dynamics for elec-
tromigration have shown that steps can bunch or meander [4, 12, 16, 21, 36, 42]. The
macroscopic PDE here does capture the tendency of steps to bunch, as discussed in
section 6.1. The fully continuum theory is, of course, applicable to regions where such
instabilities do not perturb the geometry too far from a slowly varying step train.

Patterns on crystal surfaces are also created by material deposition from above,
which adds a forcing in the adatom diffusion equation [38]. The deposition problem
is not studied here. One reason is that the corresponding macroscale PDE in 2 + 1
dimensions has a different character; the directions normal and parallel to step edges
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induce distinct dynamics. This case is the subject of work in progress. Another
reason is that the near-equilibrium character of the BCF model (which underlies the
present treatment) may be of limited applicability in growth. Our assumption of no
material deposition allows us to remove complications irrelevant to relaxation and
isolate conveniently the effect of an applied electric field.

1.6. Article outline. The remainder of this article is organized as follows. In
section 2, we review models of 1D steps. In section 3, we describe the geometry of a 2D
step train and formulate the equations of motion with an electric field; in particular,
we find explicit solutions for terrace diffusion. In section 4, we derive the macroscopic
limit of step flow with drift in 2+1 dimensions. In section 5, we propose extensions of
the macroscopic theory, encompassing a nonlinear (exponential) law for equilibrium
adatom density and step chemical potential, desorption of adatoms, and anisotropic
terrace diffusion and edge atom diffusion. In section 6, we discuss two interrelated
aspects of electromigration in 1D and possible extensions to 2D: in section 6.1, we
revisit step bunching instabilities; and in section 6.2, we indicate how the electric
field can influence the behavior of the slope profile near a facet edge. In section 7, we
summarize our results and discuss open directions. Throughout this article, the terms
“macroscopic limit,” “macroscale,” and “full continuum” are used interchangeably.

2. 1D microscale (step) models. In this section, we review briefly ingredients
of step motion, including repulsive entropic and elastic dipole step interactions, for
1D geometries: straight and concentric circular steps. Related versions of the adatom
diffusion equation with an electric field or desorption are solved explicitly.

The step configuration is shown in Figure 2.1. Both the diffusion of adatoms
(density gradient) and electric field (drift velocity) contribute to the flux in each
terrace. Each step advances or retreats in response to the net (normal) flux from the
neighboring terraces. The surface evolves as the steps move, lowering its free energy.

2.1. Straight steps. The position of the ith step is denoted by xi(t) (t is time),
where xi+1 > xi for all t, and Ci(x, t) is the adatom density on the ith terrace, i.e.,
the region xi < x < xi+1. A constant electric field is applied externally in the x
direction (perpendicular to steps), introducing a drift velocity v according to (1.1).
The diffusion equation satisfied by Ci(x, t) is

(2.1) Ds∂
2
xCi − v∂xCi − τ−1 Ci = ∂tCi ≈ 0 xi < x < xi+1,

Fig. 2.1. Schematic of 1D steps (cross section) with an applied electric field E. Steps are
descending with increasing x; E is shown to be in the step-up direction (E < 0); and ku (kd) is the
kinetic rate for atom attachment-detachment from a terrace to an up- (down-) step edge.
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where τ is the characteristic desorption time; cf. (1) in [4]. We use the quasi-steady
approximation, ∂tCi ≈ 0, by assuming that step motion is much slower than diffusion.
Equation (2.1) (particularly with τ = ∞) is used widely in modeling electromigration
[16], especially in determining the effective charge of adatoms [13].

The adatom flux on the ith terrace, Ji(x, t), is defined by Fick’s law with drift [4]:

(2.2) Ji(x, t) = −Ds∂xCi + vCi.

Linear kinetics prescribes the following boundary conditions at the step edges [16]:

−Ji = ku(Ci − Ceq
i ) x = xi,(2.3a)

Ji = kd(Ci − Ceq
i+1) x = xi+1;(2.3b)

ku (kd) is the kinetic rate for an up- (down-) step edge (accounting for an Ehrlich–
Schwoebel barrier [6, 45]), and Ceq

i is the equilibrium adatom density at the ith step.
This Ceq

i expresses step interactions via the relation [16]

(2.4) Ceq
i = Cs exp

(μi

T

)
∼ Cs

(
1 +

μi

T

)
, |μi| � T,

where μi is the ith-step chemical potential and Cs is the equilibrium adatom density
at an isolated step. The linearization with μi is a common approximation in many the-
oretical treatments and works reasonably well in comparisons with experiments [16].
This simplification is relaxed in section 5.1. For nearest-neighbor step interactions,

μi =
Ωg

a

d

dxi
[Vi,i+1 + Vi,i−1], g > 0,(2.5)

Vi,i±1 =
1

3

(
a

xi±1 − xi

)2

,(2.6)

where Vi,j describes the interaction between steps i and j, g (with units of energy)
measures the magnitude of the step-step interaction energy, and Ω is the atomic area.

The velocity of the ith step is expressed via mass conservation,

(2.7) ẋi =
dxi

dt
=

Ω

a
[Ji−1(xi)− Ji(xi)].

The system of equations for xi that results from (2.1)–(2.7), together with the initial
positions of steps, determine the subsequent evolution of the crystal surface.

To illustrate the model, we distinguish the cases (i) τ → ∞ (no desorption) and
nonzero v, (ii) v = 0 with finite τ , and (iii) nonzero v and finite τ . For 2D, see
section 5.2. The explicit time dependence is dropped (unless noted otherwise).

2.1.1. Electric field with no desorption. Solving (2.1) for τ → ∞ yields

(2.8) Ci(x) = Aie
vx/Ds +Bi xi < x < xi+1.

The adatom flux on the ith terrace, Ji(x), is computed by (2.2):

(2.9) Ji(x) = vBi.

Substituting for Ci and Ji in (2.3) via (2.8) and (2.9) leads to the system

(2.10)

(
evxi/Ds 1 + v/ku
evxi+1/Ds 1− v/kd

)(
Ai

Bi

)
=

(
Ceq

i

Ceq
i+1

)
.
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This matrix equation is solved explicitly to yield

(2.11) Ji(x) = Ji(xi) = −v
Ceq

i+1 − ev(δxi)/DsCeq
i

ev(δxi)/Ds(1 + v/ku)− (1 − v/kd)
,

where δxi := xi+1 − xi = O(a) is the terrace width. The step velocities, and thus the
equations of motion for xi(t), are then obtained from (2.4)–(2.7).

In Appendix A we study the full continuum limit of (2.11) for the purpose of
comparison with results of section 4; see (A.1). We find that, in the limit δxi ↓ 0 with
fixed a/δxi, (2.11) reduces to the 1D version of (1.3) with the mobility M replaced
by the scalar (Ds/T )(1 + q|∂xh|)−1, where h(x) is the height profile, q = 2Ds/(ka),
and k = 2(k−1

u + k−1
d )−1. Here, we use the linear approximation (2.4), Ceq

i ∼ Cs(1 +
μi/T ) → Cs(1 + μ/T ) ∼ Ceq where Ceq = Cse

μ/T denotes the continuum-scale
equilibrium density and μ is the respective chemical potential; cf. Corollary 4.4.

2.1.2. Desorption with zero drift. Now consider diffusion equation (2.1) with
v = 0 and finite τ . The solution reads

(2.12) Ci(x) = Aie
bx +Bie

−bx, b := (Dsτ)
−1/2.

The mass flux is Ji(x) = −Ds∂xCi = −Dsb(Aie
bx − Bie

−bx). Boundary condi-
tions (2.3) yield the matrix equation

(2.13)

(
ebxi(1− θu) e−bxi(1 + θu)
ebxi+1(1 + θd) e−bxi+1(1− θd)

)(
Ai

Bi

)
=

(
Ceq

i

Ceq
i+1

)
,

where θl := Dsb/k� (� = u, d). The mass flux on the ith terrace at x = xi is

(2.14) Ji(xi) = −Dsb
Ceq

i+1 − [cosh(b δxi) + θd sinh(b δxi)]C
eq
i

(1 + θuθd) sinh(b δxi) + (θu + θd) cosh(b δxi)
.

The flux at x = xi+1 can be obtained by the interchanges u ↔ d and Ceq
i ↔ −Ceq

i+1.
The step velocities stem directly from (2.4)–(2.7).

In Appendix A, we outline the limit of (2.14) as δxi ↓ 0; see (A.2) and (A.3).
We find that, if Ds/(k�a) = O(1) and a � k�τ (� = u, d), the effect of desorption is
negligible since it is of higher order in the small scale a. This property is shown more
generally in section 5.2 (see Remark 5.3). The resulting large-scale flux is given by
the 1D version of (1.3) with v = 0, assuming that Ceq is linearized with μ via (2.4).

Remark 2.1. The fluxes in (2.11) and (2.14) are not simply proportional to
Ceq

i+1 − Ceq
i (which in the macroscopic limit, δxi = xi+1 − xi = O(a) ↓ 0, becomes

proportional to the gradient of the macroscale chemical potential μ). In section 4 we
argue more generally that (2.11) and (2.14) reduce to different macroscopic laws for
the flux: The electric-field drift has a distinct macroscopic signature in the resulting
Fick’s law; in contrast, the desorption effect is of higher order (in the expansion
parameter a) and is deemed negligible for a broad class of materials and conditions.

2.1.3. Drift with desorption. Next, we solve the full equation (2.1). The
density reads Ci(x) = Aie

b+x + Bie
−b−x where b± := ±[bv ±√b2v + 4b2]/2 > 0 and

bv := v/Ds. Boundary conditions (2.3) yield the system

(2.15)

(
eb+xi(1− θ+u + v/ku) e−b−xi(1 + θ−u + v/ku)
eb+xi+1(1 + θ+d − v/kd) e−b−xi+1(1− θ−d − v/kd)

)(
Ai

Bi

)
=

(
Ceq

i

Ceq
i+1

)
,
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where θ±l = Dsb±/k� (� = u, d). The ith-terrace mass flux at x = xi is

Ji(xi) = − Ds

Dτv
i

{
(b+ + b−)C

eq
i+1 −

([
θ+d (bv + b−)eb+x + θ−d (bv − b+)e

−b−x
]

+
[
(bv + b−)eb+x − (bv − b+)e

−b−x
]
(1− v/kd)

)
Ceq

i

}
,(2.16)

where

Dτv
i = (1 + θ+d − v/kd) (1 + θ−u + v/ku)e

b+δxi

− (1− θ+u + v/ku)(1− θ−d − v/kd)e
−b−δxi .(2.17)

In Appendix A, we sketch the macroscopic limit of (2.16). We find that desorption
can plausibly be neglected compared to drift. More precisely, the sufficient conditions
enabling this approximation include v � k� and v/Ds � (k�τ)

−1 (� = u, d), con-
sistent with Remark 5.3, the analysis in [4], and the remarks in section 2.1.2. If the
continuum-scale Ceq is linearized with μ, the resulting large-scale flux J(x) is given by
the 1D version of (1.3) for nonzero v; cf. Corollary 4.4. More generally, by considering
the nonlinear dependence of Ceq with μ, Ceq = Cse

μ/T by (2.4), we obtain

(2.18) J(x) = −Ds
∂xC

eq −D−1
s vCeq

1 + q|∂xh| = −CsDs

T
eμ/T

∂xμ− TD−1
s v

1 + q|∂xh| ,

in agreement with the 1D form of (1.2) and the derivation of section 5.1.
The above microscopic model is consistent with the description invoked by Dufay,

Frisch, and Debierre [4], who carry out a linear stability analysis under material depo-
sition. Our focus here is the macroscopic limit of step flow, and thus our perspective
differs from that in [4]. We recognize that, from a fully continuum view, deposition
is special, leading to a different type of PDE, and is thus not touched upon here.

2.2. Concentric circular steps. In this section, we apply the BCF formulation
to an axisymmetric setting. First, we aim to clarify details of the macroscopic limit
by analogy with the methodology for zero drift followed in [28]. Second, since in
actual experiments steps are curved, we view the radial geometry as a convenient (yet
nontrivial) setting where drift and step curvature coexist and may compete.

So, consider steps that are concentric circles of radii ri(t) with ri+1 > ri. The
electric field E is taken to be radial, viz., E = erE (er: radial unit vector) where E
may vary with the polar coordinate r. To simplify the exposition, we set E = E(r)/r.4

The electric field produces the radial drift velocity v = erv = er V/r according to
(1.1), where V = Ds Z

∗e E/T . The radial adatom flux, Ji(r) = er · Ji(r), is

(2.19) Ji(r) = −Ds∂rCi + vCi ri < r < ri+1.

The terrace diffusion equation under the quasi-steady approximation thus reads

(2.20) 0 ≈ −divJi−τ−1Ci = Ds(∂
2
rCi+r−1∂rCi)−r−1V∂rCi−r−1(∂rV)Ci−τ−1Ci

(where r−1(∂rV)Ci = (divv)Ci). In the following, we neglect the term r−1(∂rV)Ci

assuming that, for v �= 0, |∂rV|Ci � |V∂rCi|; this holds, for example, if V(r) varies

4In experimental setups, E must be generated and sustained by feasible charge distributions.
The issue of sources for E is not addressed here. These practical concerns suggest that the radial
case here is a toy model for studying the interplay of drift and step curvature. We repeat that there
is no physical principle forbidding rotational symmetry in future electromigration setups.
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sufficiently slowly.5 Because of this approximation, (2.20) does not preserve terrace
adatoms; i.e., adatoms in each terrace are not exactly balanced by fluxes at bounding
steps. However, as pointed out in Remark 5.4 for 2D, in the macroscopic limit the
effect of the neglected term is of higher order in a. Equation (2.20) becomes

(2.21) 0 ≈ Ds(∂
2
rCi + r−1∂rCi)− r−1V∂rCi − τ−1Ci.

Boundary conditions analogous to (2.3) that complement (2.21) follow from linear
kinetics at the step edges:

(2.22) −Ji(ri) = ku[Ci(ri)− Ceq
i ], Ji(ri+1) = kd[Ci(ri+1)− Ceq

i+1].

In this case, where steps have finite curvature, the equilibrium adatom density Ceq
i ∼

Cs(1 + μi/T ) contains information not only about the step interactions but also the
energetic cost (line tension) of creating a step. The step chemical potential is [15, 28]

(2.23) μi =
Ω

a

[
β

ri
+

1

ri
∂ri(riU

int
i )

]
,

where

U int
i = g[V (ri, ri+1) + V (ri, ri−1)],(2.24)

V (r, r′) =
1

3

2r′

r + r′

(
a

r − r′

)2

,(2.25)

β is the step line tension (assumed to be constant), and U int
i is the interaction energy

per unit length of the ith step; note the prefactor 2r′
r+r′ for V in (2.25) [15].

The difference of fluxes from neighboring terraces at the ith step edge yields the
step velocity ṙi =

dri
dt according to mass conservation,

(2.26) ṙi =
Ω

a
[Ji−1(ri)− Ji(ri)].

The coupled step flow equations with drift and desorption form an extension of the
axisymmetric model by Israeli and Kandel [15] and Fok [10].

Next, we study the case with τ → ∞, where explicit radial solutions are relatively
simple. This case suffices for our purposes. A more general discussion including
desorption in full 2D can be found in section 5.2.

2.2.1. Electric-field solution with no desorption. We solve (2.21) for τ →
∞. By successive integrations we obtain the formula

(2.27) Ci(r) = Bi +Ai

∫ r

ri

1

z
exp

[
D−1

s

∫ z

ri

v(r′) dr′
]
dz ri < r < ri+1.

By (2.19), we compute the corresponding (radial) flux:

Ji(r) = Ai

{
−Ds

r
exp

[
D−1

s

∫ r

ri

v(r′) dr′
]

+ v(r)

∫ r

ri

1

z
exp

[
D−1

s

∫ z

ri

v(r′) dr′
]
dz

}
+ v(r)Bi.(2.28)

5This condition is also expected to hold for V of the form V = c rω with sufficiently large r.
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Substituting (2.27) and (2.28) for Ci and Ji in conditions (2.22), we find
(2.29)⎛⎜⎝ − Ds

kuri
1 +

vi
ku(

1− vi+1

kd

)∫ ri+1

ri

φi(z) dz +
Ds

kd
φi(ri+1) 1− vi+1

kd

⎞⎟⎠(Ai

Bi

)
=

(
Ceq

i

Ceq
i+1

)
,

where vj := v(rj)
6 and

(2.30) φi(r) :=
1

r
exp

[
D−1

s

∫ r

ri

v(r′) dr′
]
.

Solving for Ai and Bi we have

(2.31) Ai =
DA

Dv
, Bi =

DB

Dv
,

(2.32) Dv :=
Ds

kuri

(
1− vi+1

kd

)
+

[
Ds

kd
φi(ri+1)+

(
1− vi+1

kd

)∫ ri+1

ri

φi(z) dz

]
×
(
1+

vi
ku

)
,

(2.33) DA :=

(
1 +

vi
ku

)
Ceq

i+1 −
(
1− vi+1

kd

)
Ceq

i ,

(2.34) DB :=
Ds

kuri
Ceq

i+1 +

[
Ds

kd
φi(ri+1) +

(
1− vi+1

kd

)∫ ri+1

ri

φi(z) dz

]
Ceq

i .

The above formulas are simplified considerably if rv is treated as a constant.
For r = ri the radial flux reads

(2.35) Ji(ri) = −DsAi

ri
+ vi Bi.

The value Ji−1(ri) can be obtained similarly. The step velocities are described
by (2.23)–(2.26), given that Ceq

i ∼ Cs(1 + μi/T ).
In Appendix A we outline the full continuum limit of (2.35), as ri+1 − ri =

O(a) ↓ 0; see (A.5). The resulting, large-scale flux is found in agreement with the
radial version of (1.3) when Ceq is linearized with μ via (2.4); see also Corollary 4.4.

We conclude this subsection by noting in passing that the term (divv)Ci, which
was neglected above, can be included in the diffusion equation without difficulty
(although the algebra is lengthier and less transparent). An idea is to treat the
term in question as a forcing, apply Duhamel’s principle and thus derive an integral
equation for Ci, which can be solved via a Born–Neumann series by iteration. This
approach is undertaken in section 5.2 for 2D; see Remark 5.4. Alternatively, Ci can
be expressed in terms of confluent hypergeometric functions [7].

3. 2D step model. In this section, we consider steps of reasonably arbitrary
shape and formulate their equations of motion under a macroscopic electric field
E without desorption (τ = ∞, i.e., b = (Dsτ)

−1/2 = 0). Of particular interest
are unidirectional electric fields with magnitudes that vary over a length scale large
compared to the typical width of a terrace. So, we impose

(3.1) |(divv)Ci| � |v · ∇Ci|.
6This distinction is redundant if v(r) is macroscopic; i.e., it varies slowly.
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Fig. 3.1. Schematic (top and side views) of steps; a is the (microscopic) step height, eη ·eσ = 0,
and δρ = δρi :=

∫ ηi+1
ηi

ξη dη is the terrace width. On top, steps are projected on a reference plane.

Condition (3.1) is satisfied trivially by divv ≡ 0, e.g., if E is constant, which cor-
responds to many experimentally relevant situations.7 The neglect of the (divv)Ci

term in the diffusion equation leads to, strictly speaking, violation of mass conserva-
tion at the level of terrace adatoms (i.e., adatoms lost or gained in each terrace are
not exactly balanced by fluxes at the bounding step edges). However, as pointed out
in Remark 5.4, at the macroscale the corresponding correction for the adatom flux is
negligibly small (being of higher order in a).

With regard to the actual step geometry, we assume that the step edges are
represented by smooth, closed curves on the reference plane (x, y), which do not
cross or self-intersect, as is ensured physically by the step-step repulsive (entropic and
elastic dipole) interactions.

3.1. Step geometry. We now describe the step configuration in more detail.
The step train is monotonic, with steps descending outward from a top terrace (surface
peak); see Figure 3.1. Their edges are numbered 1, 2, . . . , N, starting from the topmost
step. Following [25, 28], we introduce local coordinates (η, σ): The nondimensional
coordinate η identifies the step edges and measures their distance from a reference
point on the top terrace; the ith step edge is the level set η = ηi, and the ith terrace is
the region ηi < η < ηi+1. The coordinate σ measures the location along a step edge;
for definiteness, we take σ to increase counterclockwise (top view). The unit vectors
eη and eσ are orthogonal, in the direction of increasing η and σ, respectively. The

7If the three-dimensional E inducing surface electromigration depends only on (x, y), the coor-
dinates in the reference (high-symmetry) plane, then (3.1) is trivially satisfied (by divv ≡ 0) in the
absence of charge distribution. In this case, curlv = 0 for a static field.
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relevant metric coefficients are defined by

ξη := |∂ηr|, ξσ := |∂σr| [r = (x, y) : position vector].

In the following, ξη and ξσ are treated as O(1) and slowly varying with σ.

3.2. Equations of motion. In view of (3.1) and the quasi-steady approxima-
tion, the adatom density field Ci in the ith-terrace region (ηi < η < ηi+1) solves

(3.2) 0 ≈ ∂tCi = div(Ds · ∇Ci)− v · ∇Ci, ∇ = (∂x, ∂y) = (ξ−1
η ∂η, ξ

−1
σ ∂σ),

where Ds is in principle a tensor function of position r. Here, we consider a scalar
constant, Ds = Ds; see section 5.3 for anisotropic terrace diffusion. The (vector-
valued) adatom flux Ji is

(3.3) Ji = −Ds∇Ci + vCi.

Robin-type boundary conditions for (3.2) inform Ci of the following: (i) attach-
ment and detachment of atoms at steps; and (ii) step energetics, especially step-step
interactions, via the equilibrium concentration, Ceq

i . These boundary conditions read

−Ji,⊥(ηi, σ) = ku[Ci(ηi, σ)− Ceq
i (σ)],(3.4)

Ji,⊥(ηi+1, σ
′) = kd[Ci(ηi+1, σ

′)− Ceq
i+1(σ

′)]; Ji,⊥ := eη · Ji, ku/kd = O(1).(3.5)

Recall that each step advances or retreats according to the locally incoming and
outgoing normal fluxes. This mass conservation is expressed by the step velocity law

(3.6) vi = eη · dri
dt

=
Ω

a
(Ji−1,⊥ − Ji,⊥) η = ηi.

To determine Ji,⊥, we need to address the energetics of a step train, i.e., express
Ceq

i by (2.4) in terms of step positions. This is discussed for 2+ 1 dimensions in [28].
We briefly review these energetic considerations. The step free energy EN = EN ({ri})
(N : number of steps) is defined by

(3.7) EN =

N∑
i=1

∫
Li

ds (β + gVi,i+1),

where Li is the ith-step curve, β is the step line tension, and gVi,i+1 expresses the
elastic dipole and entropic step-step interaction. Following [28], we further introduce
Vi,i+1 = (1/3)m2

iΦ(ζi, ζi+1), where Φ is a shape factor, mi is the step density, and
ζi = ρi/λ is the nondimensional step position (λ: macroscopic length); ρ =

∫ η

0 ξη′ dη′

is the distance from the origin measured along a σ-level curve.
The step chemical potential, μi, is defined by

(3.8) μi = Ω
δEN

δρi
,

the variation of EN . The equilibrium concentration Ceq
i is determined by (2.4).
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3.3. Approximate solution of diffusion equation. By use of the local coor-
dinates (η, σ), diffusion equation (3.2) for Ci(η, σ) reads

(3.9) 0 =
Ds

ξηξσ

[
∂η

(
ξσ
ξη

∂ηCi

)
+ ∂σ

(
ξη
ξσ

∂σCi

)]
− v⊥ξ−1

η ∂ηCi − v‖ξ−1
σ ∂σCi,

where ηi < η < ηi+1; v⊥ := eη · v and v‖ := eσ · v.
By analogy with the case of zero electric field [28], we solve (3.9) with recourse to

the following proposition (which forms an extension of the procedure applied in [28]).
Proposition 3.1. Consider the boundary value problem consisting of PDE (3.9)

on the terrace Ui = {(η, σ) | ηi < η < ηi+1}, and conditions (3.4) and (3.5) on the
boundary, ∂Ui, of Ui. Suppose the following: (i) the boundary data exhibit a scale
separation in the sense that, for some geometric parameter ε � 1, Ceq

i is a fixed,
O(1) function of the slow variable σ̃ := εσ, i.e., Ceq

i = Ceq
i (σ̃), while the rates ku, kd

are ε-independent; (ii) the metric coefficients ξη and ξσ depend on (η, σ̃) and are O(1)
as ε ↓ 0; and (iii) curlv = 0 (i.e., ∂xvy = ∂yvx)

8 and min{ku, kd} > (1/2)|v|. Let
Ci be a C2 (twice continuously differentiable) function on Ui and C1 (continuously
differentiable) function on U i, the closure of Ui. Then, for η = O(1), Ci(η, σ) =

C
(0)
i (η, σ̃) + o(1) where

(3.10) C
(0)
i (η, σ̃) = Bi(σ̃) +Ai(σ̃)

∫ η

ηi

dz
ξη|z
ξσ|z exp

[∫ z

ηi

(v⊥ ξη)|η′

Ds
dη′
]
,

and o(1) → 0 as ε ↓ 0. The integration constants Ai and Bi are given by
(3.11)

Ai(σ̃) =
(1 + v⊥|ηi/ku)C

eq
i+1 − (1− v⊥|ηi+1/kd)C

eq
i

Ds

kuξσ|ηi

(
1− v⊥|ηi+1

kd

)
+

(
1 +

v⊥|ηi

ku

)[
Ds

kdξη
∂ηfi|ηi+1 +

(
1− v⊥

kd

)
fi|ηi+1

] ,
(3.12) Bi(σ̃) =

(
1 +

v⊥|ηi

ku

)−1[
Ceq

i (σ̃) +
Ds

kuξσ|ηi

Ai(σ̃)

]
,

where fi(η, σ) is defined by

(3.13) fi(η, σ) :=

∫ η

ηi

ξη|z
ξσ|z exp

[∫ z

ηi

(v⊥ξη)|η′

Ds
dη′
]
dz (η, σ) ∈ Ui.

In the above, Q|z denotes the value Q(η = z). The role of parameter ε is to
express small variations of the step edge curvature, which in turn cause slow variations
of Ci = Cε

i (η, σ) with respect to σ, permitting a perturbative treatment. In the limit
ε ↓ 0, the step edges become 1D, approaching concentric circles or straight lines
(depending on limits of ξη and ξσ). We also assume that ku and kd are positive (as
is typical in crystalline materials). For comments on the condition |v|/k� < 2 where
� = u, d, see Remark 3.2; note that in many physical situations |v| � k� [4].

Proof. For convenience and notational economy, in this proof we set Ds = 1 (or,
define the inverse length v̂ := v/Ds and drop the hat) and suppress the terrace index
i unless noted otherwise. Assuming that a solution C(r) = Cε(r) exists and is unique,
as implied below, we partly separate scales in PDE (3.9) for η = O(1). So, we expand
formally Cε(r) in an ε-power series; each coefficient, C(j), is allowed to be a function

8Alternatively, it can be assumed that v(r) varies slowly, e.g., v = v(ε1η, ε1σ), ε1 � ε.
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of (η, σ, σ̃) which are treated as independent variables:9

(3.14) Cε(η, σ) = C(0)(η, σ, σ̃) +
∑
j≥1

εj C(j)(η, σ, σ̃) = C0(η, σ, σ̃) + o(1),

where the remainder approaches 0 as ε ↓ 0, using continuity of the solution with ε.10

In addition, the operator ∂σ is replaced by the linear combination

∂σ ⇒ ∂σ + ε ∂σ̃.

By dominant balance of O(ε0) terms, (3.9) entails the (zeroth-order) PDE

(3.15)

{
1

ξηξσ

[
∂η

(
ξσ
ξη

∂η

)
+ ∂σ

(
ξη
ξσ

∂σ

)]
− v⊥

∂η
ξη

− v‖
∂σ
ξσ

}
C(0) = 0 (r ∈ U),

which must be solved under conditions (3.4) and (3.5) for C(0) (for ε-independent ku
and kd).

Next, we show that, for given continuous Ceq(σ̃), the above boundary value prob-
lem for C(0) has at most one solution. We apply a standard energy method [9]; the
same argument carries through for proving uniqueness of Cε. First, by the transfor-

mation C(0) = C̆e
(1/2)

∫ r
ri

v·dr′
, PDE (3.15) is converted to the Helmholtz equation

ΔrC̆ − 1
4 (|v|2 − 2divv)C̆ = 0 (r ∈ U : terrace), where C̆ obeys the Robin bound-

ary condition −ν · ∇C̆ =: −∂νC̆ = K(r) C̆ − k(r)Ceq e
−(1/2)

∫ r
ri

v·dr′
(r ∈ ∂U); ν

is the unit outward normal vector, K(r) := k(r) − (1/2)ν · v, and k(r) = ku for
an up-step edge (η = ηi where ν = −eη) while k(r) = kd for a down-step edge
(η = ηi+1 where ν = eη). Consider sufficiently small |v| so that K(r) > 0, yet
|v|2 ≥ 2divv, consistent with the neglect of the term (divv)Cε in the diffusion
equation. Now suppose there exist two solutions, say C̆1 and C̆2, of the boundary
problem for C(0), with ϕ := C̆1 − C̆2; this ϕ satisfies the given Helmholtz equa-
tion with boundary condition −∂νϕ = K ϕ. Second, define the nonnegative energy
E [ϕ] = 1

2

∫
U |∇ϕ|2 + �2ϕ2 where �2 := (1/4)(|v|2 − 2divv). By Green’s identity,

E [ϕ] = ∫
∂U

(ν · ∇ϕ)ϕ = − ∫
∂U

K ϕ2 ≤ 0; thus, ϕ ≡ 0 which entails C1 ≡ C2.
Based on this uniqueness assertion, we construct solution (3.10)–(3.12). The σ̃-

dependence of Ceq in the boundary data suggests that we look for a C(0)(r) that
depends on η and σ̃ (but not σ). Such a C(0)(r), if it can be constructed plausibly, is
interpreted as the leading-order, unique solution of the boundary value problem.

Hence, we solve (3.15) by dropping the σ-derivatives. Two successive integrations
with respect to the variable η immediately yield

(3.16) C(0)(η, σ̃) = B(σ̃)+Â(σ̃)

∫ η

ηi

exp

{
−
∫ z

ηi

[
ξη′

ξσ
∂η′

(
ξσ
ξη′

)
− (v⊥|η′)ξη′

Ds

]
dη′
}

dz,

where Â and B are integration constants. Equation (3.16) readily reduces to (3.10)
by direct integration (in η′) of the first term in the exponent and the subsequent
substitution A(σ̃) := (ξσ/ξη)|ηiÂ(σ̃).

The coefficients A(σ̃) and B(σ̃) are determined through boundary conditions (3.4)
and (3.5) with σ = σ′. Accordingly, we obtain the system⎛⎜⎜⎝ − Ds

kuξσ|ηi

1 +
v⊥|ηi

ku
Ds

kdξη
∂ηf |ηi+1 +

(
1− v⊥/kd

)
f |ηi+1 1− v⊥|ηi+1

kd

⎞⎟⎟⎠( A
B

)
=

(
Ceq

i

Ceq
i+1

)
,

9The use of the extra slow variable η̃ = εη, although formally justifiable, is not deemed necessary.
10This physical property is invoked in conjunction with the assumption that eliminating the

curvature variation (as ε ↓ 0) results in a well-defined adatom density, as suggested by section 2.
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where f(η, σ) is defined by (3.13). Solving this system leads to (3.11) and
(3.12).

Henceforth, we drop the dependence of v⊥ = v · eη (and v‖ = eσ · v) on i, since
v is considered macroscopic and eη and eσ vary slowly with η. It can be verified that
(3.10) reduces to the solutions for 1D settings of sections 2.1.1 and 2.2.1.

Remark 3.2. Thus far, we invoked the condition |v|/k� < 2 (� = u, d). By
definition (1.1) for v, this restriction amounts to imposing

|v|
2k�

=
Ds

2k�a

|Z∗e| |E|a
T

< 1, � = u, d.

In typical experimental situations, Ds/(2k�a) is of the order of 102 or smaller [16],
|eE|a/T is of the order of 10−5, and |Z∗| ranges from 10−4 (or even smaller values)
to about 10 [4, 13]. Hence, |v|/k� would not exceed values of the order of 10−2.
From the perspective of perturbation theory adopted here, Ds/(k�a) is treated as an
O(1) quantity, whereas |v|/k� will be considered as o(1) (see Proposition 4.1) when
a ↓ 0. Physically, this means that the drift of adatoms is slow compared to the atom
attachment-detachment at steps. This assumption is consistent with the numerical
values implemented in recent studies, e.g., [4]. Practically, setting |v| � k� appears to
more closely describe semiconductor surfaces, where |Z∗| can be much smaller than
unity [13]. Mathematically, this view offers a convenient choice for obtaining the
distinguished-limit contribution of v as a ↓ 0.

In section 4.2 we impose |v|/k� � 1; as a result, Fick’s law for the large-scale flux
does not distinguish between up- and down-step edges, being symmetric in ku and kd.

4. Macroscopic limit in 2D. In this section, we derive the macroscopic limit
of step motion laws by regarding step flow as a discrete scheme for a PDE satisfied by
the surface height h. Our main task is to extract this PDE. Three essential relations
contribute to macroscale relaxation: (i) the mass conservation law, which emerges
from the limit of step velocity (3.6); (ii) the step chemical potential in terms of the
surface height gradient, which follows from the energy of a step train, (3.7); and (iii)
the constitutive relation (Fick’s law) between adatom flux and step chemical potential,
which follows from (3.3)–(3.5), by account of the drift (linear-in-v) term.

Relations (i), (ii), and (iii) without an electric field (v = 0) have been well estab-
lished [28]; in particular, (i) and (ii) were derived from a strong and a weak formulation
standpoint. In contrast, macroscopic relation (iii) in the presence of an electric field
has apparently not been addressed adequately.

4.1. Mass conservation and step chemical potential. Next, we review
briefly relations (i) and (ii) mentioned above, which do not depend upon the elec-
tric field. The law of mass conservation, in the absence of edge atom diffusion [39]
and material deposition from above, reads

(4.1) ∂th+ΩdivJ = 0,

where Ω is the atomic volume and J(r, t) is the macroscale surface flux. Equation (4.1)
stems directly from (3.6) via the limit eη · ṙi → ∂th/|∇h| as a ↓ 0 (since each terrace
is a level set for h); for details, see [28].

The macroscale chemical potential μ is regarded as a smooth interpolation, through
a suitable Taylor expansion, of the microscale step chemical potential μi. In the weak
sense, μ can be expressed as the first variation in L2 of the macroscale surface free
energy E = limN→∞ EN , which comes from (3.7) via the limit a

∑
i →

∫
dh and the
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coarea formula [28]. This E takes the form (1.4) with g1 = β/a and g3 = (g/a)Φ0

where Φo = Φ(ζi, ζi). Hence, the chemical potential reads [28]11

(4.2) μ = Ω

(
δE

δh

)
L2

= −Ωdiv

{
∂m[m(g1 + g3m

2)]
∇h

|∇h|
}
, m := |∇h|.

4.2. Macroscopic Fick’s law with drift. In this section, we derive the con-
stitutive relation between macroscale flux and chemical potential in full 2D. The
restrictions to 1D geometries then follow as special cases. We choose units where the
macroscopic length λ is unity (λ = 1) for convenience.

Proposition 4.1. Suppose that in the macroscopic limit, a ↓ 0, the step density
mi = a/(ξηδηi) and the kinetic parameters Ds/(k�a) are O(1) while v/k� = o(1),
where � = u, d and δηi := ηi+1 − ηi. Then, the solution to (3.9) under boundary
conditions (3.4) and (3.5) gives rise to the macroscale constitutive relation

(4.3) J =

(
J⊥
J‖

)
= −CsM ·

[
∇μ− T

Ds
v
(
1 +

μ

T

)] (
v =

Ds Z
∗eE

T

)
,

where the (E-independent) mobility M (with units of length2/energy/time) is a second-
rank tensor. In the coordinate system (η, σ), this M has the representation [28]

(4.4) M =
Ds

T

1

1 + q|∇h|
(

1 0
0 1 + q|∇h|

)
, q :=

2Ds

ka
, k :=

2

k−1
u + k−1

d

.

Proof. The starting point is the solution C
(0)
i derived in Proposition 3.1; see

(3.10). We drop the superscript (denoting perturbation order) in C
(0)
i for ease of

notation. The microscale adatom flux components are obtained by the formulas

Ji,‖ = −Dsξ
−1
σ ∂σCi + v‖Ci,

Ji,⊥ = −Dsξ
−1
η ∂ηCi + v⊥Ci.

The plan is to consider the restrictions of these components to η = ηi, and view these
restrictions as interpolations of (continuous) smooth functions, J⊥(r, t) and J‖(r, t).

First, we compute the requisite derivatives of Ci by (3.10):

∂σCi ∼ ∂σBi + ∂σAi

∫ η

ηi

ξη|z
ξσ|z exp

[∫ z

ηi

ξη′ v⊥|η′

Ds
dη′
]
dz,

∂ηCi = Ai
ξη
ξσ

exp

[∫ η

ηi

ξη′(v⊥|η′)

Ds
dη′
]
.

It follows that

Ji,‖ = −Dsξ
−1
σ ∂σBi + v‖Bi,(4.5)

Ji,⊥ = −Dsξ
−1
σ Ai + v⊥Bi η = ηi.(4.6)

Consider (3.11) and (3.12) (of Proposition 3.1) for Ai and Bi. In the limit a ↓ 0, or
δηi ↓ 0 with ξηδηi = O(a), these formulas simplify via the expansion

∫ ηi+1

ηi
F (η) dη =

11In carrying out the variational derivative of E, it is commonly assumed that boundary terms
vanish, e.g., by fixing the height h at the boundary or applying periodic boundary conditions.
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F (ηi) δηi + o(δηi), where F (η) is any continuous function. After some algebra and
neglect of o(δηi) terms, (4.5) and (4.6) become
(4.7)

Ji,‖|ηi ∼
v‖

[
Ds

ξηδηi

(
Ceq

i

kd
+

Ceq
i+1

ku

)
+ Ceq

i

]
−Ds

[
∂‖C

eq
i +

Ds

ξηδηi

(
∂‖C

eq
i

kd
+

∂‖C
eq
i+1

ku

)]
Ds

ξηδηi

(
1

ku
+

1

kd

)
+

(
1 +

v⊥
ku

) ,

(4.8) Ji,⊥|ηi ∼
Ds

ξηδηi
(Ceq

i − Ceq
i+1) + v⊥C

eq
i

Ds

ξηδηi

(
1

ku
+

1

kd

)
+

(
1 +

v⊥
ku

) as δηi ↓ 0; ∂‖ := ξ−1
σ ∂σ.

In the above, all variables are evaluated at (the same) σ along the ith step edge.
We seek further simplification of (4.7) and (4.8). In the macroscopic limit, we

invoke the (assumed as well defined) C1 function Ceq(r) where Ceq(r)|ηi ≡ Ceq
i ,

Ceq
i+1 ≡ Ceq(r)|ηi ++(∂ηC

eq)|ηiδηi+o(δηi), and ∂‖Ceq|ηi ≡ ∂‖C
eq
i = ∂‖C

eq
i+1+O(δηi).

We keep only those combinations of microscopic parameters that remain O(1). For
example, the step density mi = a/(ξηδηi) approaches the positive surface slope, i.e.,
lima↓0 mi = |∇h|. On the other hand, the ratio v⊥/ku, involved in the denominator
of Ji,‖ and Ji,⊥, is treated as negligibly small (compared to unity) by virtue of our
hypothesis; see also Remark 3.2.

Without further ado, we make the substitutions Ceq
i+1 − Ceq

i = (∂⊥Ceq) ξηδηi +
o(δηi) and Ceq ∼ Cs(1 + μ/T ) (|μ| � T ), where ∂⊥ := ξ−1

η ∂η. The resulting limits
for the flux components read

lim
a↓0

Ji,‖|ηi =: J‖(r)|ηi = −CsDs

T
∂‖μ(r) + Csv‖

[
1 +

μ(r)

T

]
,(4.9)

lim
a↓0

Ji,⊥|ηi =: J⊥(r)|ηi = −CsDs

T

∂⊥μ− T

Ds
v⊥
(
1 +

μ

T

)
1 + q|∇h| η = ηi.(4.10)

These relations are identified with (4.3) under definition (4.4) for the mobility
M.

It can be verified directly that the same limits emerge if the evaluation point of
fluxes is at η = ηi+1 [28]. Two remarks on results of Proposition 4.1 are in order.

Remark 4.2. In the absence of electromigration (v = 0), we recover the relation
J = −CsM · ∇μ found previously in [28]. For nonzero drift (v �= 0), the additional
term derived above is affine with μ. This new relation is recast to the zero-drift form
via an exponential transformation of μ; see section 4.4.

Remark 4.3. An alternate proof of Proposition 4.1 makes direct use of the adatom
concentration, Ci, and the normal flux component, Ji,⊥, avoiding entirely the use of
integration constants Ai and Bi. This approach treats boundary conditions (3.4) and
(3.5) for σ′ = σ as a system of equations for Ci(ηi) and Ji,⊥(ηi). This argument is also
applicable to situations where the boundary conditions couple the adatom densities of
different terraces, e.g., in the case with step permeability [40]. Details for the present
case are presented in Appendix B.

By Proposition 4.1, we state the following corollary for cases of symmetry.
Corollary 4.4. Consider 1D settings with v �= 0, where translation or rotation

symmetry causes all dependent variables to have zero σ-derivatives. The macroscopic
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surface flux corresponding to (4.3) is

(4.11) J = J(χ)eχ, J(χ) = −CsDs

T

∂χμ

1 + q|∂χh| +
Csv

1 + q|∂χh|
(
1 +

μ

T

)
,

where χ = x for straight steps and χ = r = |r| for concentric circular steps, and
q = 2Ds/(ka). Equation (4.11) is in agreement with the 1D limits computed directly
in Appendix A for τ = ∞ and discussed in sections 2.1 and 2.2.

Recall that, in the microscale model underlying the limit of this section, the
contribution (divv)Ci is left out from the terrace diffusion equation (see section 2.2).
For a discussion on a respective correction to the macroscopic limit, see Remark 5.4.

4.3. Evolution equation in Cartesian system. In this section, we describe
the PDE for the surface height by combining ingredients (4.1)–(4.4) and making use
of Cartesian coordinates, (x, y).

First, we introduce the nonsingular orthogonal matrix [28]

(4.12) S(∂xh, ∂yh) = (eη eσ) =
1

|∇h|
(−∂xh ∂yh
−∂yh −∂xh

)
(∇h �= 0).

The mobility tensor M, which is defined by (4.3) in the (η, σ) coordinate system, is
now expressed in the Cartesian coordinate system (x, y) by

(4.13) M(x,y) = SM(η,σ) S
T ;

as usual, ST denotes the transpose of S (ST = S−1). The Cartesian components of
the surface flux (4.3) read (el: orthonormal vectors, l = x, y):

Jx =− Cs

1 + q|∇h|
{
Ds

T

[(
1 + q

(∂yh)
2

|∇h|
)
∂xμ− q

(∂xh)(∂yh)

|∇h| ∂yμ

]
−
(
1 +

μ

T

)[(
1 + q

(∂yh)
2

|∇h|
)
vx − q

(∂xh)(∂yh)

|∇h| vy

]}
,(4.14)

Jy =− Cs

1 + q|∇h|
{
Ds

T

[(
1 + q

(∂xh)
2

|∇h|
)
∂yμ− q

(∂xh)(∂yh)

|∇h| ∂xμ

]
−
(
1 +

μ

T

)[(
1 + q

(∂xh)
2

|∇h|
)
vy − q

(∂yh)(∂xh)

|∇h| vx

]}
;(4.15)

vl = el · v (l = x, y).

The PDE for the surface height follows from the mass conservation statement.
Using the Cartesian representation of (4.1), we have

(4.16) ∂th = −Ω(∂xJx + ∂yJy).

This relation leads to a nonlinear, fourth-order parabolic PDE for h after substitution
for Jx, Jy, and μ from (4.14), (4.15), and (4.2).

4.4. Change of variables. We show that, if curlv = 0, (4.3) is recast to

(4.17) J = −cM · ∇ϑ (c = const),

leading to the nondimensional PDE

(4.18) ∂t̃h̃ = divα[M · ∇αϑ].
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We consider an initial height profile with typical amplitude H and lengths λx

and λy in the x and y directions, respectively. Naturally, we scale h by H and the

coordinates x, y by λx, λy. Hence, we make the substitutions h̃ := h/H , x̃ := x/λx,
ỹ := y/λy and define α := λx/λy. With these definitions, the gradient and divergence
operators are written as ∇ = λ−1

x ∇α and div = λ−1
x divα, where ∇α := (∂x̃, α∂ỹ)

and divα := ∂x̃ + α∂ỹ.
The chemical potential (4.2) is scaled by T , μ̃ := μ/T , and (4.3) reads

(4.19) J = −CsDs

λx
M̃ · [∇αμ̃− ṽ(1 + μ̃)],

where the mobility M̃—in the (x, y) representation—and drift velocity ṽ are

(4.20) M̃(x,y) := S̃ ·
⎛⎝ 1

1 + q̃ |∇αh̃| 0

0 1

⎞⎠ · S̃T , ṽ :=
λx

Ds
v; q̃ :=

qH

λx
.

The corresponding change-of-basis matrix is S̃ ≡ S(∂x̃h̃, α∂ỹ h̃); cf. (4.12).

Consequently, the PDE for the nondimensional height h̃ reads

(4.21) ∂t̃h̃ = divα{M̃ · [∇αμ̃− ṽ(1 + μ̃)]}; t̃ := t/t0, t0 :=
H λ2

x

ΩCsDs
.

To show (4.17) and (4.18), start with the transformation ϑ = (1+μ̃) fϑ. By virtue
of M · ∇αϑ = (Mfϑ) · [∇αμ̃+ (∇αfϑ/fϑ)(1 + μ̃)] and (4.19), we have the consistency

relations M fϑ = M̃ and (∇αfϑ)/fϑ = −ṽ. The second one yields

fϑ(x̃, ỹ) = Ae−
∫ (x̃,ỹ/α)
0 ṽ(z)·dz ⇒ M = A−1M̃(∇αh̃) e

∫ (x̃,ỹ/α)
0 ṽ(z)·dz (A = const).

Thus,

(4.22) ϑ(x̃, ỹ) =

{
1− μ̃0 div

α

[
g̃

∇αh̃

|∇αh̃| + |∇αh̃| ∇αh̃

]}
e−

∫ (x̃,ỹ/α)
0 ṽ(z)·dz.

5. Extensions of macroscopic limit. In an attempt to formulate a reason-
ably general theory of macroscopic surface relaxation, we enrich the BCF model
with additional microscale effects. These are the following: (i) the exponential law
Ceq

i = Cs exp(μi/T ) in the place of its linearization; (ii) atom desorption; and (iii)
anisotropic terrace diffusion and step edge atom diffusion [39]. Our broader goal with
these extensions is to reconcile the macroscopic theory with realistic situations where
an electric field is present. We show that (i) and (iii) can modify significantly the
constitutive relation between surface flux and chemical potential. In contrast, effect
(ii) arguably has vanishingly small influence on the macroscopic evolution law.

5.1. Exponential law for step chemical potential. To derive the constitu-
tive relation between large-scale flux and chemical potential, we approximated the
difference of equilibrium concentrations Ceq

i by use of the linearized form (2.4). The
quantitative justification for this approximation is not clear in the literature, par-
ticularly since the chemical potential μi is not measured directly.12 However, the

12It should be borne in mind that the linearization of Ceq
i with μi has been used widely in

comparisons of theoretical results and experimental data and seems to work reasonably well [16].
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PDE is easily modified to accommodate the complete, exponential law. For a similar
modification in 1+1 dimensions with v = 0 and long-range step interactions, see [56].

By skipping details irrelevant to the modification at hand, we start from (4.8).
By setting μi = μ(r)|ηi we expand the difference Ceq

i+1 − Ceq
i as follows:

Ceq
i+1 − Ceq

i = Cs

[
exp

(
μi+1

T

)
− exp

(
μi

T

)]
=

aCs

|∇h| exp

(
μ(η̌)

T

)
∂⊥μ(η̌)

T
, η̌ ∈ [ηi, ηi+1].

Hence, the normal flux component Ji,⊥ at (ηi, σ) becomes

(5.1) Ji,⊥|ηi =

− Ds

ξηδηi

aCs

|∇h| exp
(
μ(η̌)

T

)
∂⊥μ(η̌)

T
+ v⊥Cs exp

(
μ(ηi)

T

)
Ds

ξηδηi

(
1

ku
+

1

kd

)
+

(
1 +

v⊥
ku

) .

Similarly, the σ-derivative of Ceq
i appearing in (4.7) for the longitudinal flux compo-

nent, Ji,‖, now acquires exponential factors when expressed in terms of μi:

Ji,‖|i =
[
− Ds

ξηδηi

(
1

ku
+

1

kd

)
− 1

]−1{
−CsDs

ξηδηi
v‖

[
1

kd
exp
(μi

T

)
+

1

ku
exp
(μi+1

T

)]
− v‖Cs exp

(μi

T

)
+DsCs exp

(μi

T

) ∂‖μi

T
(5.2)

+
D2

sCs

kdξηδηi
exp
(μi

T

) ∂‖μi

T

+
D2

sCs

kuξηδηi
exp
(μi+1

T

) ∂‖μi+1

T

}
.

The coarse-graining procedure carries through as in Proposition 4.1. The compo-
nents of the flux J(r) are found to satisfy the equations

J⊥(r)
(
2

k
+

a

Ds|∇h|
)

= exp

[
μ(r)

T

] {
− aCs

|∇h|
∂⊥μ(r)

T
+ v⊥

aCs

Ds|∇h|
}
,(5.3)

Cs exp

[
μ(r)

T

]
∂‖μ(r)

T
= − 1

Ds

{
J‖(r) − v‖Cs exp

[
μ(r)

T

]}
.(5.4)

The last two equations result in the effective constitutive relation (1.2).
By inspection of (1.2), we have the following remark.
Remark 5.1. For curlv = 0, the modified constitutive relation for the macroscopic

flux results from the invariant under the law Ceq = Ceq[μ] form (4.18) and

(5.5) ϑ(r) := eμ(r)/T−D−1
s

∫
r
0
v(z)·dz,

which is a direct extension of the linearized version, (4.22).

5.2. Adatom desorption. The effect of desorption is expected to affect only the
relation between the large-scale surface flux and chemical potential. In this section,
we show that, under certain conditions, desorption does not appear in the macro-
scopic laws to leading order in a. Corrections due to desorption in Fick’s law for the
macroscale flux are computed and discussed.
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5.2.1. Solution for microscale diffusion. Following the rationale of slow and
fast step variables of section 3.3, we write the (quasi-steady) diffusion equation on the
ith terrace with desorption time τ and a drift velocity v (v⊥ = eη · v) as

(5.6) ∂η

(
ξσ
ξη

∂ηCi

)
− v⊥ξσ

Ds
∂ηCi ∼ ξηξσ

τDs
Ci (ηi < η < ηi+1).

A first observation is that, for v⊥ �= 0 and τ �= ∞, this equation does not admit a
relatively simple solution, i.e., in terms of elementary functions. (The radial case of
section 2.2 certainly alludes to the same conclusion.)

It is of interest to note that there are at least two ways of solving (5.6). First,
it can be converted to a canonical ordinary differential equation (ODE) solvable by
confluent hypergeometric functions [7]. This route is not particularly informative.
Alternatively, (5.6) can be recast to a Volterra integral equation, which can be solved
by iterations through a (convergent) Born–Neumann series [53].

We now focus on the (simpler) integral-equation formulation for (5.6).13

Proposition 5.2. Suppose Ci is a solution of the PDE (5.6). Then Ci satisfies
the following Volterra equation on ηi < η < ηi+1:

(5.7) Ci(η, σ) = [Bi(σ) +Ai(σ)fi(η, σ)] + [ui,1(η, σ) + ui,2(η, σ) fi(η, σ)],

where

ui,1(η, σ) = ui,1[Ci] = −(τDs)
−1

∫ η

ηi

fi(η
′, σ)ξ2η′Ci(η

′, σ)
W(η′)

dη′,(5.8)

ui,2(η, σ) = ui,2[Ci] = (τDs)
−1

∫ η

ηi

ξ2η′ Ci(η
′, σ)

W(η′)
dη′,(5.9)

W(η) = ∂ηfi =
ξη
ξσ

exp

[
D−1

s

∫ η

ηi

ξη′ (v⊥|η′) dη′
]
,(5.10)

fi(η, σ) is defined by (3.13), and the coefficients Ai(σ) and Bi(σ) are determined
through boundary conditions (3.4) and (3.5) for atom attachment-detachment at η =
ηi, ηi+1. Note that W(η) is the Wronskian of the two homogeneous (for τ = ∞)
solutions of ODE (5.6), namely, the functions 1 and fi(η, ·).

Proof. We provide a sketch of the proof since this relies on standard techniques
for linear ODEs and PDEs. Consider the (τ -dependent) term in the right-hand side
of (5.6) as a forcing. Apply Duhamel’s principle (or the method of “variation of
parameters”) to construct a particular solution of the ODE. This approach yields Ci

as a sum of the following: (i) a linear combination of the two homogeneous solutions, 1
and fi; and (ii) a τ−1-scaled particular solution, which involves two distinct integrals
of Ci/τ (one for each homogeneous solution). The coefficients Ai and Bi in the
aforementioned linear combination are determined via enforcement of the boundary
conditions.

Integral equation (5.7) can be solved by the conventional iteration (Born–Neumann)
scheme [53]: First, set Ci = 0 under the integral (in ui,1 and ui,2) and obtain
Ci ∼ Bi + Aifi; second, replace Ci by Bi + Aifi under the integral; next, repeat
successively with the updated Ci. Because the kernel is L2 and smooth, the series
generated by iterations converges to the solution Ci for all τ > 0 and yields a smooth
Ci. Since the kernel is proportional to τ−1, the procedure yields a power series in
1/τ , whose convergence is thus enhanced by increasing τ .

13For notational simplicity, we use σ in the place of the slow variable σ̃.
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The importance of the Born–Neumann scheme becomes evident for η − ηi � 1.
Since

∫ η

ηi
F (η′) dη′ = F (ηi) (η − ηi) + o(η − ηi) for any continuous F , the associated

iterated integrals contribute respective ascending powers of η − ηi. So, evidently, in
the limit maxi{δηi} = maxi{ηi+1 − ηi} ↓ 0, constructing a solution to (5.7) via a
Born–Neumann series corresponds to producing a Taylor series in η− ηi for Ci(η, σ).
This result is directly applicable to the macroscopic limit of the step system.

5.2.2. Limit a ↓ 0. Next, we derive a macroscopic Fick’s law with desorption
and external electric field. We follow the main procedure of Proposition 4.1 by use of
formula (5.7) (in Proposition 5.2) for Ci. Suppressing the σ dependence, we define

(5.11) Cv
i (η) := Bi +Ai fi(η),

which is the solution form without desorption.14 Thus, Ci satisfies

(5.12) Ci(η)− Cv
i (η) = (τDs)

−1

∫ η

ηi

ξ2η′
fi(η) − fi(η

′)
∂η′fi

Ci(η
′) dη′.

By differentiation of (5.12) with respect to η we obtain the normal flux component,
Ji,⊥ = eη · (−Ds∇Ci + vCi):

(5.13) Ji,⊥−Jv
i,⊥ = −∂⊥fi

τ

∫ η

ηi

ξ2η′ Ci(η
′)

∂η′fi
dη′+

v⊥
τDs

∫ η

ηi

ξ2η′
fi(η)− fi(η

′)
∂η′fi

Ci(η
′) dη′,

where Jv
i,⊥ := −Ds∂⊥Cv

i + v⊥Cv
i ; recall that ∂⊥ = ξ−1

η ∂η.
Now consider the limit δη := η−ηi ↓ 0. By Taylor expanding the right-hand sides

of (5.12) and (5.13), we readily obtain

(5.14) Ci(η)− Cv
i (η) = (2Dsτ)

−1 Cv
i (ηi) ξ

2
ηi
δη2 +O(δη3),

(5.15) Ji,⊥(η) − Jv
i,⊥(η) = −τ−1Cv

i (ηi) ξηi δη +O(δη2) as δη ↓ 0.

Next, we apply conditions (3.4) and (3.5) for σ′ = σ. With recourse to Cv
i (ηi+1) =

Cv
i (ηi) + (∂ηC

v
i )|ηiδηi + o(δηi), and likewise for Ji,⊥(ηi+1), we find

(5.16) −k−1
u Jv

i,⊥ = Cv
i − Ceq

i ,

k−1
d

[(
1 +

kd
Ds

δwi

)
Jv
i,⊥ + (∂⊥Jv

i,⊥)δwi

]
∼
[
1 +

(
v⊥
Ds

+
1

kdτ
+

δwi

2Dsτ

)
δwi

]
Cv

i − Ceq
i+1,(5.17)

where δwi := ξηi δηi, and Cv
i , J

v
i,⊥, and ∂⊥Jv

i,⊥ are evaluated at ηi. Note that (5.16)
does not involve τ explicitly. In contrast, (5.17) manifests desorption terms in the
right-hand side. If these, τ−1-scaled, terms can be neglected appropriately, the re-
sulting system becomes identical to that without desorption; the corresponding terms
in Ci and Ji,⊥ can then be dropped.

Remark 5.3. By inspection of the (attachment-detachment) boundary conditions
(5.16) and (5.17) for the adatom flux and density, sufficient conditions for neglecting
the desorption effect in the macroscopic limit (assuming k/k� = O(1), � = u, d) are

(5.18)
|v|
Ds

� 1

kτ
and |v| � k.

14Ai and Bi entering Cv
i in principle depend on τ via boundary conditions at step edges.
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Then, the large-scale adatom flux is not affected by τ uniformly in space coordinates.
In particular, the first condition amounts to having |v|τ � a and thus a � kτ when
Ds/(ka) = O(1). These conditions are expected to be met in a wide range of physical
situations; see, e.g., [4]. From the viewpoint of coarse graining and perturbation
theory, (5.18) simply state that the effect of desorption is of higher order (in a).

Interestingly, by keeping desorption terms, thus relaxing conditions (5.18) perhaps
naively, we acquire a macroscopic flux that is asymmetric in ku and kd. We proceed to
assert this claim. Let us consider attachment-detachment limited kinetics, kδwi/Ds �
1 (δwi: ith terrace width), under |v|/k � 1. By (3.4) and (3.5), Ai and Bi satisfy

− Ds

ξσku
Ai +

(
1 +

v⊥
ku

)
Bi = Ceq

i ,[
Ds

ξσkd
+

(
1− v⊥

kd

)
δwi

ξσ

]
Ai +

(
1− v⊥

kd
+

δwi

kdτ

)
Bi = Ceq

i+1,

with solution

(5.19) Ai = ξσ

−Ceq
i

(
1− v⊥

kd
+

δwi

kdτ

)
+ Ceq

i+1

(
1 +

v⊥
ku

)
Ds

(
1

ku
+

1

kd

)
+ δwi +

Ds

ku

δwi

kdτ

,

(5.20) Bi =

Ds

ku
Ceq

i+1 +

[
Ds

kd
+

(
1− v⊥

kd

)
δwi

]
Ceq

i

Ds

(
1

ku
+

1

kd

)
+ δwi +

Ds

ku

δwi

kdτ

.

After some algebra, the normal flux component at η = ηi is
(5.21)

Ji,⊥(ηi) ∼ −Ds

Ceq
i+1 − Ceq

i

δwi
−
(
v⊥
Ds

+
1

kdτ

)
Ceq

i

2Ds

k δwi
+

Ds

kukdτ

−−→
a↓0

−(ka)

∂⊥ −
(
v⊥
Ds

+
1

kdτ

)
|∇h|+ a

(ku + kd)τ

Ceq,

i.e., with a term in the numerator that singles out the down-step kinetic rate, kd. Our
computation suggests that the τ -dependent corrections for the normal flux might not
be trusted as they appear too sensitive to microstructure details.

With no restriction on Ds/(k�a), the normal flux component is

(5.22) Ji,⊥ −−→
a↓0

J⊥ = −Ds

∂⊥ − v⊥
Ds

− (1 + qd|∇h|) 1

2Dsτ

a

|∇h|
1 + q

(
|∇h|+ a

(ku + kd)τ

)
+

1

kτ

a

|∇h|
Ceq; qd :=

2Ds

kda
.

The corresponding parallel flux component reads

Ji,‖(ηi) −−→
a↓0

J‖ =
1 + q|∇h|

1 + q

(
|∇h|+ a

(ku + kd)τ

)
+

1

kτ

a

|∇h|
(−Ds∂‖ + v‖)Ceq,

which, in contrast to J⊥, is symmetric in ku and kd; cf. (4.3) and (4.4) with Ceq ∼
Cs(1 + μ/T ).
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We conclude this section with the following observation.
Remark 5.4. The (thus far neglected) term (divv)Ci in the terrace diffusion equa-

tion for the adatom density Ci can be treated on the same footing as the desorption
term Ci/τ . Hence, in assessing the validity of dropping the former, it is reasonable
to repeat the above procedure with τ−1 being replaced by divv, in an appropriate
sense.

5.3. Anisotropic terrace diffusion and edge atom diffusion. We now in-
voke the methodology of [39] to provide an extended formula for the macroscopic
surface flux J. At the microscale (BCF level), we consider anisotropic diffusion of
adatoms, i.e., a tensor diffusivity Ds, and edge atom diffusion with coefficient De.

The mass conservation statement now reads [39]

(5.23) vi = eη · dri
dt

=
Ω

a
(J tr

i−1,⊥ − J tr
i,⊥) + a∂s

(
De

∂‖μi

T

)
η = ηi,

where J tr
i,⊥ = eη · Jtr

i , Jtr
i is the flux of terrace adatoms, and the last term in (5.23)

describes diffusion along the step edge leaving out the electric-field drift of edge atoms.
The microscale diffusion equation (in the quasi-steady approximation) has the form

(5.24) −div(Ds · ∇Ci) + v · ∇Ci = 0 ηi < η < ηi+1,

still assuming that |(divv)Ci| � |v·∇Ci|, where the drift velocity is v = Z∗eDs ·E/T .
In the (η, σ) representation the (positive-definite) coefficient Ds is written as

(5.25) Ds = D11eηeη +D12eηeσ +D21eσeη +D22eσeσ :=

(
D11 D12

D21 D22

)
;

we have det(Ds) = D11D22 − D12D21 > 0. The form of attachment-detachment
boundary conditions (3.4) and (3.5) remains intact.

Next, we derive a relation between the large-scale terrace adatom flux, Jtr, and
the chemical potential gradient, ∇μ. For simplicity, we adopt the procedure of Taylor
expansions from [39], which has the flavor of the derivation in Appendix B. First, we
invert the microscale relation Jtr

i −vCi = −Ds ·∇Ci to obtain the partial derivatives
of Ci in terms of (J tr

i,⊥, J
tr
i,‖) and Ci:(

ξ−1
η ∂ηCi

ξ−1
σ ∂σCi

)
=−

(
D11 D12

D21 D22

)−1

·
(
J tr
i,⊥ − v⊥Ci

J tr
i,‖ − v‖Ci

)
=

1

|Ds|

(
−D22J

tr
i,⊥ +D12J

tr
i,‖ + (v⊥D22 − v‖D12)Ci

D21J
tr
i,⊥ −D11J

tr
i,‖ − (v⊥D21 − v‖D11)Ci

)
; |Ds| := det(Ds).(5.26)

Second, we resort to (3.4) and (3.5) with σ′ = σ + δσ: By Taylor-expanding
J tr
i,⊥(ηi+1) and Ci(ηi+1) at (ηi, σ) and dropping derivatives of J tr

i,⊥,
15 we have

−k−1
u J tr

i,⊥ = Ci − Ceq
i ,

−k−1
d J tr

i,⊥ = Ci + δηi ∂ηCi + δσ ∂σCi − Ceq
i+1 at (ηi, σ).(5.27)

15This approximation can be justified a posteriori and is consistent with independently derived
results for the following: (i) v = 0 and tensorial Ds; and (ii) v �= 0 and scalar Ds.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

692 JOHN QUAH AND DIONISIOS MARGETIS

In view of (5.26), replace (∂ηCi, ∂σCi) in terms of (J tr
i,⊥, J

tr
i,‖) and Ci, and set Ceq

i =

Ceq(r)|ηi for smooth Ceq(r). By adding equations (5.27), we conclude by dominant
balance that Ci ∼ Ceq|ηi as δηi ↓ 0 (see also [40]); by subtracting we have

|Ds|(k−1
d + k−1

u )J tr
⊥ = δw[(v⊥D22 − v‖D12)C

eq + (−D22J
tr
⊥ +D12J

tr
‖ )− |Ds|∂⊥Ceq]

+ δs[(v‖D11 − v⊥D21)C
eq + (D21J

tr
⊥ −D11J

tr
‖ )− |Ds|∂‖Ceq],(5.28)

where δw ≡ δwi = ξ−1
η δηi ∼ a/(|∇h|)|ηi and δs = ξ−1

σ δσ (ith-step edge infinitesimal
arc length). Thus, we obtain the following relations for (J tr

⊥ , J tr
‖ ):(

2|Ds|
ka

|∇h|+D22

)
J tr
⊥ −D12J

tr
‖ = −|Ds|∂⊥Ceq + (v⊥D22 − v‖D12)C

eq,

D21J
tr
⊥ −D11J

tr
‖ = |Ds|∂‖Ceq + (v⊥D21 − v‖D11)C

eq.(5.29)

Solving this system for (J tr
⊥ , J tr

‖ ) yields

(
J tr
⊥

J tr
‖

)
= (1 + q|∇h|)−1

[
−
(

D11 D12

D21 D22 +Dtr |∇h|
)
·
(
∂⊥Ceq

∂‖Ceq

)

+

(
1 0

−2D21

ka
|∇h| 1 + q|∇h|

)
·
(
v⊥
v‖

)
Ceq

]
;(5.30)

q :=
2D11

ka
, Dtr :=

2|Ds|
ka

.

This relation is recast to the familiar form

(5.31) Jtr = −CsM
tr ·
[
∇μ− TD−1

s · v
(
1 +

μ

T

)]
,

which is a direct generalization of (4.3); the adatom mobility Mtr is defined by [39]

(5.32) Mtr :=
1

T

1

1 + q|∇h|
(

D11 D12

D21 D22 +Dtr|∇h|
)
.

The total surface flux is J = Jtr + Je where Je is the contribution of edge atoms
by the step velocity law (5.23). From [39] we have the conservation law ∂th +
Ωdiv(Jtr + Je) = 0 where

(5.33) Je = Je
‖ eσ, Je

‖ = −aDe

TΩ
|∇h| ∂‖μ.

6. Discussion. In this section we discuss from a macroscopic perspective the
possibility of manipulating the surface morphology by use of an electric field. First,
we review and discuss the onset of step bunching instabilities in straight-step and
axisymmetric settings. Second, we capture stationary properties of PDE solutions for
h near the edge of a facet (where ∇h = 0), avoiding pending issues related to the
coupling of the PDE (outside the facet) with the microscale step motion on top of
the facet [27]. We only enforce slope continuity, thus requiring that the slope profile
approaches zero near the facet edge.
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6.1. On bunching instabilities. In this subsection, we review from a PDE
perspective bunching instabilities in 1D, i.e., for straight and circular steps (see
Corollary 4.4). Within full continuum, such instabilities arise through backward-
diffusion terms in the parabolic PDE for h. For related works, see, e.g., the reviews
by Krug [17, 18] and references therein. In particular, we indicate the plausible use
of an electric field for manipulation of bunching phenomena where the step curvature
can be important.

In the following (for this subsection) we use 1 + μ/T ≈ 1 when possible. We
consider attachment-detachment limited kinetics, assuming that the slope m = |∇h|
and kinetic parameter q = 2Ds/(ka) (k: harmonic average of ku, kd) satisfy the
condition qm � 1. (Facets, where m = 0, are precluded.)

6.1.1. Straight steps revisited. Consider a monotonic step train where ∂xh <
0. With recourse to the 1D version of (1.3) (see Corollary 4.4), the (x-directed) flux
and chemical potential read

J(x) =
kaCs

2T
(∂xh)

−1

(
∂xμ− T

Ds
v

)
,

μ(x) = ĝ3 ∂x[(∂xh)
2], ∂xh < 0, ĝ3 := g3Ω.

The formula for J(x) stems from coarse graining the step flow model described in
section 2.1.1; see Appendix A. By comparison to (4.2), note that the step line tension
(g1 term) does not contribute to μ(x) since div(∇h/|∇h|) ≡ 0 in this 1D setting. The
PDE for h is

(6.1) ∂th = −Ω∂xJ =
ΩkaCs

2T
∂x

{
ĝ3|∂xh|−1∂2

x[(∂xh)
2] +

T

Ds
(∂xh)

−1v

}
.

Remark 6.1. Consider positive material parameter k (k > 0) and negative slope
∂xh < 0. If v > 0, the drift velocity contributes a backward-diffusion term in (6.1) and
thus tends to destabilize surface motion; if v < 0, the drift velocity has a stabilizing
effect. In contrast, the effect of repulsive step interactions (g3 term with g3 > 0) is
always stabilizing, since it amounts to a forward, fourth-order diffusion term.

This conclusion has been further quantified by linearization of PDE (6.1) around
its (trivial) solution ∂xh = const [11] and is consistent with well-documented stability
analysis of the step model, carried out, e.g., in [4, 51]. Note that the stability effect
of v is reversed by the change of sign for k. This notion is introduced in [57] and is
placed within a macroscopic perspective in [24].

6.1.2. Radial case. It is known [11] that step curvature in the radial setting,
without an electric field, can cause bunching analogous to that from an electric field
in straight-step geometries. In hindsight, this is not surprising: the curvature-induced
step chemical potential gradient in the axisymmetric case creates a surface flux analo-
gous to the electric-field drift in (1+1)-dimensional morphologies. In this subsection,
we discuss the plausible joint effect of an electric field and step curvature in axisym-
metric morphologies. Then we describe from a macroscopic view how a (step-up)
electric force can possibly be tuned to cancel the destabilizing effect of curvature.

The radial surface flux and step chemical potential read

J(r) =
kaCs

2T
(∂rh)

−1

[
∂rμ− T

Ds
v(r)

]
,

μ(r) =
ĝ1
r

+
ĝ3
r
∂r[r(∂rh)

2]; ĝ1 := Ωg1 > 0, ∂rh < 0.
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Thus, the PDE for the positive surface slope, m = |∂rh|, is

(6.2) ∂tm =
ΩkaCs

2T
∂r

(
r−1∂r

[
m−1

{
ĝ1
r

− rĝ3∂r[r
−1∂r(rm

2)] +
T

Ds
rv(r)

}])
.

First, we state some results concerning instabilities by inspection of (6.2).
Remark 6.2. Consider k > 0 and ∂rh < 0. The step curvature term ĝ1/r

contributes a backward-diffusion effect in PDE (6.2), which tends to destabilize an
axisymmetric step train. In contrast, repulsive step interactions (ĝ3 > 0) are stabiliz-
ing. The effect of the electric field depends on the sign of v (similar to straight steps):
If v > 0, the drift is destabilizing; if v < 0, the drift is stabilizing.

Next, we address the plausibility of adjusting the electric field so that it suppresses
the destabilizing effect of step curvature. By (6.2), a condition for cancellation of step
curvature and electromigration effects in the PDE is

(6.3) ĝ1 +
T

Ds
r2v(r) = (K1r

2 +K2)r m,

where K1 and K2 are reasonably arbitrary integration constants (which may depend
on time t). In particular, for K1 = K2 = 0 condition (6.3) amounts to cancellation of
the corresponding surface fluxes if v(r) = vc(r) := −(Ds/T )g1r

−2. In this case, for a
monotonically descending step train (∂rh < 0), condition (6.3) suggests the possible
suppression of the curvature effect provided the drift velocity points in the step-up
direction and has magnitude |v| ≥ |vc|. The condition on v can be improved by
including in the electromigration part of J the μ/T term; then, v has to be adjusted
spatiotemporally to a correction depending on the slope profile m.

There are various limitations of our approach here. First, at the risk of redun-
dancy, we stress that the experimental significance of the present radial setting has
yet to be assessed. Second, even if such a radial setting is feasible, tuning v(r) as
dictated by (6.3) (or, its variants via improvements of J) may turn out to be imprac-
tical. Third, carrying out the extension of these considerations to full 2D geometries
is not thoroughly resolved as yet, even for the case with v = 0. Last, we have not
discussed the combined effect of step-step interactions with drift and curvature.

6.2. Slope profile near facet. Next, we address the singular behavior of m =
|∇h| at the edge of a facet (where ∇h = 0), assuming that m ↑ 0 as r approaches
the facet boundary from the sloping surface. We focus on 1D profiles; the extension
to full 2D is also discussed. We work with convenient units where DsCs/T = 1 and
restrict attention to diffusion-limited kinetics, i.e., take q|∇h| � 1; so, 1 + q|∇h| ∼ 1.

6.2.1. Straight-step morphology. We consider the continuous graph y = h(x)
with the facet {(x, y) ∈ R

2 |h = const} in x ≤ 0, while ∂xh < 0 in x > 0; so the facet
edge is at x = 0. Setting ∂th ≡ 0 in the conservation law ∂th + Ω∂xJ = 0, where
J = −[∂xμ−D−1

s vT (1 + μ/T )] entails the ODE

(6.4) ∂xμ− l−1
v μ = l−1

v T −J0 ⇒ μ(x) = (μ0 + T − lvJ0)e
x/lv − (T − lvJ0) x > 0;

here, lv := Ds/v = b−1
v , J0 := J(0), and μ0 := μ(0). By μ = −Ωg3∂x(|∂xh|∂xh),

g3 > 0, we obtain the relation

(6.5) ĝ3(∂xh)
2 = (−T + lvJ0)x+ lv(μ0 + T − lvJ0)

(
ex/lv − 1

)
x > 0; ĝ3 = Ωg3.
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The above formula is simplified for 0 < x � |lv| (weak drift) and for x � |lv|
(strong drift). Accordingly, we obtain the approximation

(6.6) |∂xh| ∼ ĝ
−1/2
3

⎧⎨⎩
√
μ0x, x � |lv|,√
lv(μ0 + T − lvJ0) e

x/(2lv), x � lv > 0,√
(−|lv|J0 − T )x, x � −lv > 0.

For x � −lv > 0, a compatibility condition is

(6.7) −DsJ0 > T |v|.

By (6.6), changes of the electric-field magnitude and direction can cause a drastic
qualitative change in the slope behavior. In particular, a strong electric force Z∗eE
in the step-down direction causes an increase of the slope, as steps tend to bunch.
(Ultimately, of course, m approaches O(

√
x) as x ↓ 0.) This behavior is reversed

by a strong electric force in the step-up direction, which restores the familiar O(
√
x)

behavior, as this field tends to uniformize the step train.

6.2.2. Axisymmetric structure. The radial case provides a model for the
interplay of step edge curvature and electric field. Suppose that the surface is axi-
symmetric, h = h(r), with the facet {(r, h) ∈ R+ ×R |h = const} in 0 ≤ r ≤ rf while
∂rh < 0 for r > rf ; so, the facet edge is at r = rf . Consider a constant drift velocity
v. The ODE for μ(r) is ∂rμ− l−1

v μ = l−1
v T − rfJ0/r, with solution

(6.8) μ = (μ0 + T )e(r−rf)/lv − T − rfJ0

∫ r

rf

e(r−r′)/lv

r′
dr′ r > rf ,

where μ0 := μ(rf ), J0 := J(rf ). Taking into account that Ω−1μ = g1/r +
g3r

−1∂r[r(∂rh)
2] where g1 is the step line tension [26], by direct integration we have

ĝ3(∂rh)
2 ∼ [lvrfJ0 (1 − lv/rf )− ĝ1 − rfT ](r − rf ) + (T + μ0)lv

[
(r − lv)e

(r−rf )/lv

− rf + lv
]− lv(rfJ0) (r − lv)

∫ r

rf

e(r−r′)/lv

r′
dr′, 0 <

r − rf
rf

� 1;(6.9)

ĝl := Ωgl (l = 1, 3). Here, we consider distances r − rf from the facet boundary that
are small compared to the facet radius of curvature. By analogy with section 6.2.1,
we simplify the formula for ∂rh by imposing a relatively weak or strong drift:

(6.10) |∂rh| ∼ ĝ
−1/2
3

⎧⎪⎨⎪⎩
√
(μ0 − ĝ1/rf )(r − rf ), 0 < r − rf � |lv|,

[lv(μ0 + T − lvJ0)]
1/2 e(r−rf )/(2lv), r − rf � lv > 0,√

(|lv||J0| − T − ĝ1/rf )(r − rf ), r − rf � −lv > 0.

The approximation for r − rf � −lv > 0 is compatible with the condition

(6.11) −DsJ0 > (T + ĝ1/rf )|v|.

Finally, we add a comment on the extension of this analysis to a 2D setting.
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Remark 6.3. Approximations analogous to the radial case can be worked out in
2D by use of a local coordinate η normal to the facet boundary, and another coordinate
σ parallel to the facet edge. Variations with respect to η are dominant in the vicinity
of the facet, in the spirit of variable separation into fast and slow. This approach
provides formulas that directly generalize the radial case and is not further discussed
here.

7. Conclusion. Starting with the BCF model of step flow, we derived macro-
scopic evolution laws for the surface height in settings with an electric field. We
considered microscopic processes of isotropic as well as anisotropic adatom diffusion
on terraces, attachment and detachment of atoms at step edges with an Ehrlich–
Schwoebel barrier, diffusion of edge atoms, and desorption of atoms to the surround-
ing vapor. Energetic effects such as entropic and elastic dipole step interactions were
included. We provided a preliminary analysis of how the electric field can affect the
surface slope near the edge of a facet with recourse to stationary profiles.

Our central contribution is law (1.2), and its linearized version (1.3) or (4.3),
which relate surface flux J, chemical potential μ, and drift velocity v. The combina-
tion of μ and ∇μ of this law is consolidated into a single variable ϑ by exponential
transformation (4.22). Accordingly, the PDE for the height is recast to form (4.18),
derived previously for isotropic terrace diffusion without an electric field. We showed
that desorption is a higher-order effect in the sense of multiscale expansions in the
step height. Entertaining, however, the idea of assessing quantitatively the desorption
effect, we derived desorption-dependent corrections to the large-scale flux. The nature
(and possible value) of these corrections is unclear at the moment.

Many effects are absent from our analysis. For instance, material deposition from
above, where the PDE for the height is very different [38, 55], is not considered here.
The primary reason for this omission is a subtlety in handling directions normal and
parallel to step edges in the limiting procedure. Time-dependent, coupled electromag-
netic fields are not accounted for. In the same vein, the control of evolving surface
morphologies by electric fields was barely touched upon. Our assumption of a slowly
varying step train restricts the validity of the PDE outside facets and in regions where
the steps do not experience drastic instabilities. We also leave out long-range step
interactions, e.g., interactions mediated by bulk stress. The issue of boundary condi-
tions for the derived PDE was not addressed. The appropriate boundary conditions
must take into account the motion of steps at extrema of a step train [27].

Establishing a connection between the macroscopic theory and experimental data
is a largely elusive issue. Addressing this issue requires exhaustive numerical simula-
tions of PDE solutions for a physically admissible and accessible class of initial data.
Recent numerics [1] with negligible step line tension (suppressing facets) have demon-
strated intriguing relaxation phenomena that beg for quantitative understanding.

Appendix A. Macroscopic limits of 1D step models. In this appendix, we
delineate the limits of the adatom flux for the step models of section 2 as δx ≡ δxi =
xi+1 − xi ↓ 0 (straight steps); or δr ≡ δri = ri+1 − ri ↓ 0 (circular steps).

A.1. Straight steps. Consider τ = ∞. With vD−1
s δx � 1, (2.11) reduces to

(A.1) Ji(xi) ∼ −Ceq
i+1 − Ceq

i − vD−1
s δxCeq

i

2k−1 + δxD−1
s (1 + v/ku)

v/ku�1−−−−−→
δx↓0

−Ds
∂xC

eq −D−1
s vCeq

1 + q|∂xh| ,

which is in agreement with Proposition 4.1; cf. (4.11).



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MACROSCOPIC ELECTROMIGRATION ON STEPPED SURFACES 697

Next, consider v = 0 and finite τ . With bδx � 1, (2.14) yields

Ji(xi) ∼−Ds

Ceq
i+1 − Ceq

i −
(
Ds

kd
+

δx

2

)
b2δxCeq

i

2Ds

k
+ δx+

Dsb

ku

Dsb

kd
δx+

Ds

k
(bδx)2

−−−→
δx↓0

−Ds

∂xC
eq − (1 + qd|∂xh|)(2Dsτ)

−1 a

|∂xh|C
eq

1 + q|∂xh|+ Ds

kukdτ
+

1

kτ

a

|∂xh|
; qd :=

2Ds

kda
,(A.2)

which is consistent with (5.21) and (5.22). By the conditions Ds/(k�a) = O(1) and
a � k�τ (� = u, d), the continuum-scale flux (to leading order in a) is

(A.3) J(x) = −Ds
∂xC

eq

1 + q|∂xh| .

Now take v �= 0 and finite τ via (2.16) and (2.17). Of particular interest are
conditions under which the large-scale flux acquires the 1D form of (1.3). For b± δx �
1, v/Ds � (k�τ)

−1, and v � k� (� = u, d), the denominator Dτv
i reduces to

(A.4) Dτv
i ∼ v(b+ + b−)(δx/Ds + k−1

d + k−1
u ),

by use of the exact relations b+− b− = bv and b+b− = b2. Under the same conditions,
the numerator in (2.16) acquires the factor b+ + b−, which is canceled by the factor
in (A.4), and the mass flux reduces to (A.1).

A.2. Concentric circular steps. Set τ = ∞ with recourse to (2.35). For
D−1

s v δr � 1, we have

φi(r) ∼ r−1 exp[D−1
s v (r − ri)] ∼ r−1[1 +D−1

s v (r − ri)],∫ ri+1

ri

φi(z) dz ∼ ln
ri+1

ri
+D−1

s v

(
δr − ri ln

ri+1

ri

)
∼ δr

ri
.

Thus, (2.35) reduces to

Ji(ri) ∼−Ds

Ceq
i+1 − Ceq

i + (2v/k)Ceq
i

2Ds/k + (1 + v/ku)δr
+ v

Ds(k
−1
u Ceq

i+1 + k−1
d Ceq

i ) + δr Ceq
i

2Ds/k + (1 + v/ku)δr

v/ku�1−−−−−→
δr↓0

−Ds(1 + q|∂rh|)−1
(
∂rC

eq −D−1
s vCeq

)
,(A.5)

in agreement with Proposition 4.1; cf. (4.11).

Appendix B. Alternate proof of Proposition 4.1. In this appendix, we rely
on Taylor expansions avoiding use of integration constants to prove Proposition 4.1.
In the limit δηi ↓ 0, we expand in Taylor series about (ηi, σ) the adatom concentration
and normal flux that appear in the step-down boundary condition (3.5) for σ′ = σ:

Ci(ηi+1) = Ci(ηi) + δηi ∂ηCi(ηi) +O(δη2i ),(B.1)

Ji,⊥(ηi+1) = Ji,⊥(ηi) + δηi ∂ηJi,⊥(ηi) +O(δη2i ).(B.2)
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To express the η-derivatives in terms of Ci and Ji,⊥, we use Fick’s law (3.3) and its
η-derivative, along with the diffusion equation (3.2), rewritten here for convenience:

ξ−1
η ∂ηCi = −D−1

s (Ji,⊥ − v⊥Ci),(B.3)

∂ηJi,⊥ ∼ −Dsξ
−1
η ∂2

ηCi + v⊥∂ηCi, ∂ηξη, ∂ηv⊥ = o(1),(B.4)

∂2
ηCi = −(∂ηCi)

(
−ξηv⊥

Ds
+ ∂η ln

ξσ
ξη

)
.(B.5)

Substitution of (B.1) and (B.2) into the step-down boundary condition (3.5) yields

(B.6) Ceq
i+1 = Ci(ηi)

[
1 +

v⊥ξηδηi
Ds

(
1− v⊥

kd

)
− v⊥δηi

kd

(
−ξηv⊥

Ds
+ ∂η ln

ξσ
ξη

)]
+ Ji,⊥(ηi)

[
− 1

kd
− ξηδηi

Ds

(
1− v⊥

kd

)
+

δηi
kd

(
−ξηv⊥

Ds
+ ∂η ln

ξσ
ξη

)]
.

By accounting for the step-up boundary condition (3.4), we have
(B.7)(

Ceq
i

Ceq
i+1

)
=

⎛⎝ 1 1 +
v⊥ξηδηi

Ds

(
1− v⊥

kd

)
− v⊥δηi

kd

(
− ξηv⊥

Ds
+ ∂η ln

ξσ
ξη

)
1
ku

− 1
kd

− ξηδηi

Ds

(
1− v⊥

kd

)
+ δηi

kd

(
− ξηv⊥

Ds
+ ∂η ln

ξσ
ξη

) ⎞⎠T

·
(

Ci

Ji,⊥

)
,

where the variables on the right-hand side are evaluated at (ηi, σ). Left-multiply (B.7)
by the elimination matrix(

1 0

−1− v⊥ξηδηi

Ds
+ v⊥δηi

kd
∂η ln

ξσ
ξη

1

)

to obtain an equation for the normal flux component:

(B.8) Ji,⊥

[
1

ku
+

1

kd
+

ξηδηi
Ds

(
1 +

v⊥
ku

)(
1− Ds

kdξσ
∂η

ξσ
ξη

)]
= Ceq

i − Ceq
i+1

+
v⊥ξηδηi

Ds

(
1− Ds

kdξσ
∂η ln

ξσ
ξη

)
Ceq

i .

In the limit δηi ↓ 0, (B.8) approaches

(B.9) Ji,⊥

(
1 + 2

Ds

ka
|∇h|

)
= −DsCs

[∇μ

T
− v⊥

Ds

(
1 +

μ

T

)]
,

which we identify with the first (η-) component of (4.3). The σ-component of the flux
follows by differentiating with respect to σ the solution for Ci from (B.7).
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