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Finite-size effects in wave transmission through plasmonic crystals: A tale of two scales
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We study optical coefficients that characterize wave propagation through layered structures called plasmonic
crystals. These consist of a finite number of stacked metallic sheets embedded in dielectric hosts with a
subwavelength spacing. By adjustment of the frequency, spacing, number as well as geometry of the layers,
these structures may exhibit appealing transmission properties in a range of frequencies from the terahertz to the
mid-infrared regime. Our approach uses a blend of analytical and numerical methods for the distinct geometries
with infinite, translation-invariant, flat sheets and nanoribbons. We describe the transmission of plane waves
through a plasmonic crystal in comparison to an effective dielectric slab of equal total thickness that emerges
from homogenization, in the limit of zero interlayer spacing. We demonstrate numerically that the replacement of
the discrete plasmonic crystal by its homogenized counterpart can accurately capture a transmission coefficient
akin to the extinction spectrum, even for a relatively small number of layers. We point out the role of a
geometry-dependent corrector field, which expresses the effect of subwavelength surface plasmons. In particular,
by use of the corrector we describe lateral resonances inherent to the nanoribbon geometry.

DOI: 10.1103/PhysRevB.102.075308

I. INTRODUCTION

In the past few years, the advent of two-dimensional (2D)
materials with remarkable optoelectronic and thermal trans-
port properties has revolutionized several aspects of nanopho-
tonics [1–4]. In particular, doped monolayer graphene has
an optical conductivity that allows this material to interact
strongly with light in a wide range of frequencies, from the
terahertz to the mid-infrared regime [5,6]. This feature has in-
spired novel designs of plasmonic devices and metamaterials
with tunable optical properties [7–9].

Plasmonic crystals are a promising class of metamaterials.
These structures consist of stacked metallic layers which are
arranged parallel to each other with subwavelength spacing
and are embedded in heterogeneous and anisotropic dielectric
hosts. By the tuning of the frequency, electronic density, in-
terlayer distance, or number of layers, plasmonic crystals may
acquire unconventional optical properties [10–14]. To predict
such properties, an approach is to model the crystal as an
effective continuous medium [10,14,15]. This description may
result from a homogenization procedure, in the asymptotic
limit of vanishing interlayer spacing [16,17]. The validity
and implications of this simplified description for plasmonic
structures with a finite, possibly small, number of layers are
the subjects of this paper. This focus distinguishes this work
from the homogenization of periodic plasmonic structures of
previous treatments [14,17].

*maier@math.tamu.edu; https://www.math.tamu.edu/∼maier

In recent experiments, the transmission properties of stacks
consisting of graphene sheets and insulators are measured
or investigated at terahertz frequencies; see, e.g., [18–21]. A
notable outcome is that an increase in the number of layers,
say, from one to five, may cause a significant increase to the
extinction spectrum of the structure [18]. For such a small
number of layers, it is natural to wonder if the replacement
of the inherently discrete, layered structure by a suitably
determined continuous dielectric medium can allow for the
accurate prediction of useful transmission properties. This
issue lies at the heart of modeling photonic heterostructures
and metamaterials of various geometries at the nanoscale
[2,22–27].

In this paper, our goal is to address aspects of plasmonic
metamaterials that may be intimately connected to experi-
ments. We provide an answer to the following question of
practical appeal: Can the homogenization procedure, which
yields an effective continuous medium, provide accurate pre-
dictions for wave transmission through layered plasmonic
structures with prescribed number of conducting sheets and
geometries of physical and technological interest? Our ap-
proach is to apply homogenization theory in the (nonperiodic)
setting of layered structures with finite thickness. This view
enables us to study the effect of the number of layers, an
experimentally controllable parameter, on optical properties
of practical importance.

First, we consider the prototypical setting with translation-
invariant, planar graphene sheets intercalated between
isotropic and homogeneous dielectric hosts. For this con-
figuration, we compute the Fresnel coefficients analyti-
cally in closed forms via the transfer-matrix approach for
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transverse-magnetic (TM) polarization of the fields [28,29].
We also compare our findings to the respective homogeniza-
tion results for structures of finite total thickness, adopting
elements of a previous theory for periodic structures [14,30].

Second, we numerically examine the more realistic ge-
ometries with graphene nanoribbons embedded in dielectric
hosts. This study is carried out by the following means: (i)
the direct numerical computation of an appropriately defined
transmission coefficient via the finite element method [31];
and (ii) the application of homogenization, which introduces
the notion of the corrector field to the leading order in the
interlayer spacing [17]. This field expresses the effect of the
surface plasmon-polariton (SPP), a subwavelength mode that
can be excited in 2D materials of suitably tuned conductiv-
ities. In this work, we combine the corrector field with the
(finite) number of layers. This approach renders our treatment
and results distinct from those in [17]. We show that the
corrector field of the homogenized structure can keep track of
microscale lateral resonances inherent to the actual geometry
of a single nanoribbon. This surface wave interference effect is
distinguished from interlayer resonances. The latter effect can
also characterize the wave interaction between translation-
invariant flat sheets at subwavelength spacing, when the
corrector tends to vanish. Our numerics indicate possible
discrepancies between predictions of the theory for the actual
structure and the corresponding effective model.

Our approach is motivated by the need to develop physical
insight as well as viable computational schemes for the design
of complex nanophotonic devices. In particular, the homoge-
nization theory captures signatures of microscale details in the
form of weighted averages of material parameters such as the
permittivity of the dielectric host and the surface conductivity
of each sheet. In this framework, a structure that consists of
a finite number of conducting sheets at adjustable spacing,
and their dielectric hosts, is replaced by a suitably defined
continuous medium (as the spacing tends to zero) with the
same total thickness. Hence, the number of parameters and
variables of the original problem is reduced in the effective
model. However, the weight for the requisite averages is
in principle provided by the corrector field which solves a
boundary value problem in the appropriately defined “cell” or
“representative volume element” [16,17]. This cell problem at
the microscale is a key ingredient of periodic homogenization.
Our goal here is to describe applications, advantages, as well
as possible limitations of this simplified approach for the wave
transmission through realistic plasmonic structures.

Surprisingly, we find that the leading-order, low-energy
homogenization accurately captures the behavior of the rel-
evant transmission coefficient as a function of frequency
even for a small, less than 10, number of layers. In fact,
the associated relative error can be negligible in situations
of possibly practical interest, and decreases as inverse pro-
portional to the number of layers (Secs. V and VI A). The
analytical and numerical computation of discrete corrections
to the homogenized result, due to the finite number of layers
(or, finite interlayer spacing) in the structure, for two selected
geometries and a wide range of frequencies is a highlight of
our approach. These “finite-size” effects exemplify the pivotal
role of the corrector field in the description of the effective
dielectric medium if the sheets (i.e., nanoribbons in our study)

are not translation invariant in 2D. This situation arises, for
example, in the presence of edges or other defects on each
sheet. In this setting, the cell problem is characterized by
plasmonic lateral resonances, which we describe numerically.
We reiterate that in the special case of translation-invariant
layers, the corrector field vanishes identically. We compare
our findings to previous theoretical models of similar flavor
for plasmonic crystals (Sec. VI C).

Notably, our theoretical results for translation-invariant
sheets here are found in qualitative agreement with past exper-
iments using stacks with graphene sheets and insulators [18].
Furthermore, we point out that our predictions on microscale
resonances in nanoribbon configurations can be experimen-
tally testable (Sec. VI B). Bearing in mind possible practical
considerations, we discuss the stability of our homogenization
results under random perturbations of parameters (Sec. VI D).

Our work can be considered as an extension of previous
studies that focused on the “epsilon-near-zero” (ENZ) con-
dition in plasmonic heterostructures; see, e.g., [14,17,30,32–
36]. One should recall that if the ENZ condition holds, it is
theoretically possible for a wave to propagate along a specified
direction of the crystal with almost no refraction at certain
frequencies. In this paper, our results indicate that the ENZ
condition is in principle immaterial in the assessment of the
accuracy of the homogenized transmission coefficients. We
note in passing that for a sufficiently large number of layers,
which is not the main focus of this paper, the ENZ condi-
tion approximately characterizes the crossover between two
distinct behaviors of the wave transmission versus frequency
and number of layers (Sec. VI A). In seeking a connection
of our computations to previous studies in plasmonic crystals
[14,17,30,32–36], we analytically determine the behavior of
the homogenized Fresnel coefficients for a plasmonic slab in
the parameter regime where the ENZ condition is satisfied. In
particular, we show how dissipation in the 2D material affects
the homogenized result for wave transmission in this regime.

It is tempting to compare our transfer-matrix analysis for
structures with translation-invariant sheets to the treatment
of similar geometries for hyperbolic metamaterials in [10];
see also [37–40]. Here, we focus on the computation of
Fresnel coefficients for wave transmission through layered
structures. Hence, we do not address the dispersion relation of
subwavelength (“high-k”) surface modes that can be allowed
by the layered structure [10]. In the Bloch wave theory, such
modes manifest as singularities (poles) in the complex plane
for the Fresnel coefficients as functions of the wave-vector
component parallel to the sheets. The issue of how these
singularities can be computed accurately in a homogenized
model lies beyond our present scope. A related discussion,
which touches upon plausible implications and extensions of
our results, can be found in Sec. VI E.

We should alert the reader about other questions that are
left open in our treatment. For example, we focus on the
effects of TM-polarized fields, not addressing the case with
transverse electric (TE) polarization. We do not study the
effects that a nonlocal conductivity of the 2D material, say,
like the one caused by viscous hydrodynamic electron flow
[41], may have on the homogenization result. In our numerical
computations, we adhere to the treatment of structures with
flat conducting sheets; curved 2D materials would have to
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be the subject of a separate study. As we allude to above,
our homogenization procedure is tailored to the treatment of
relatively low wave numbers in the direction vertical to the
sheets. The modification of this procedure to take into account
interlayer wave phenomena at a length scale comparable to the
subwavelength spacing is an interesting direction of research.

The remainder of the paper is organized as follows. In
Sec. II, we apply the transfer-matrix approach to the compu-
tation of the Fresnel coefficients for a structure with a finite
number of translation-invariant, flat metallic sheets. In partic-
ular, we derive the limit of these coefficients for small enough
interlayer spacing. Section III focuses on the description of
the Fresnel coefficients under the ENZ condition. In Sec. IV,
we revisit the general homogenization framework for periodic
layered structures, particularly the emergent corrector field,
and then adopt the resulting effective permittivity for a plas-
monic structure of finite thickness. Section V provides numer-
ical results for plasmonic crystals in the distinct cases with
translation-invariant sheets and nanoribbons in comparison to
their homogenized counterparts. In Sec. VI, we discuss impli-
cations and extensions of our results. Section VII concludes
the paper with a summary of the results. The Appendices
provide technical yet nonessential derivations as well as a
review of the general homogenization theory [17]. The time
dependence is e−iωt throughout (ω is the angular frequency).

II. TRANSFER-MATRIX APPROACH:
TRANSLATION-INVARIANT SHEETS

In this section, we apply the transfer-matrix formalism
[28,29] to the calculation of the reflection and transmission
coefficients for a plasmonic crystal with finite thickness under
TM polarization of the electromagnetic field. The crystal con-
sists of a finite number of infinitely extended sheets embedded
in dielectric hosts, as shown in Fig. 1. The interlayer spacing
of the structure is d , and the number of conducting sheets is
(N − 1); thus, the total thickness is H = Nd . Each dielectric
host and conducting sheet is translation invariant in y and z
(but not in x). This geometry should be contrasted to the case
with nanoribbons which is studied numerically in Sec. V (see
also Sec. IV A for the respective Fresnel coefficients).

We assume that each sheet has the homogeneous and
isotropic surface conductivity σ (ω). The dielectric host can

FIG. 1. Problem geometry. The layered structure has interlayer
spacing d . The conducting sheets are isotropic with conductivity σ ,
and the dielectric host has tensor permittivity ε = diag(ε⊥, ε||, ε||)
in the indicated coordinate system. The structure lies between air
(permittivity ε0) and substrate (permittivity εs ). All materials have
uniform permeability μ. A plane wave (wave vector k) is incident
upon the structure from air.

be anisotropic with permittivity represented by the spatially
constant matrix

ε(ω) = diag(εx(ω), εy(ω), εz(ω)),

where in general ε� are distinct (� = x, y, z). This anisotropic
permittivity is necessary for the study at hand, particularly
the computations of Sec. V. Our motivation for choosing this
model for ε is twofold. First, anisotropic dielectric materials
such as the hexagonal boron nitride (hBN) are of theoretical
and experimental interest in plasmonics [8,9]. Second, the
Fresnel coefficients derived in this section, in an anisotropic
setting, are used in Sec. IV when the discrete system is re-
placed by an effective continuous medium (which is a single,
macroscopically thick slab). In that case, the anisotropy in the
effective description emerges from homogenization.

The layered structure lies in the region with 0 < x < H
between two unbounded, uniform dielectrics that have scalar
permittivities ε0 (for air) and εs (substrate). Thus, the free
space and substrate occupy the regions with x < 0 and x > H ,
respectively. The magnetic permeability is equal to μ in all
media.

A. Formulation

Assuming that the electromagnetic field (E, B) is TM
polarized, we set E = (Ex, 0, Ez ) and B = (0, By, 0) where
all field components are y independent. Suppose that a plane
wave is incident upon the layered structure from the air, for
x < 0. This wave is partially reflected from and transmitted
through the structure. In our configuration (Fig. 1), the z
component kz of the wave vector k of any associated plane
wave is a prescribed invariant of the problem. In view of the
fixed polarization, we can thus reduce the boundary value
problem for Maxwell’s equations for (E, B) to the trans-
mission problem for a single field component, e.g., the z
component Ez of E [14,31].

Hence, we aim to compute the related reflection and trans-
mission coefficients by the following procedure. For every
dielectric slab of the configuration, we write

Ez(x, z) = E (x) eikz z, E (x) = A e−ikx x + C eikx x,

where Re kx > 0 for definiteness. In the dielectric host, the
wave number kx is found to be

kx =
√

ε�

ε⊥

(
k2
⊥ − k2

z

) = β(kz ), k2
⊥ = ω2με⊥, (1)

where ε⊥ = εx and ε=εz; see Appendix A for a derivation
of dispersion relation (1) for kx. For ease in notation, we
henceforth denote the kx in the host slab by β. Note that in
the present case with TM polarization, the “lateral” matrix
element εy of the diagonal ε becomes irrelevant; thus, we
could have used the permittivity matrix ε = diag(ε⊥, ε,ε)

without loss of generality.
The amplitudes A and C entering E (x) depend on the

corresponding medium and layer, and can in principle be
determined from the requisite transmission conditions, as out-
lined below. In particular, in air (x < 0) the field component
Ez is expressed as

E air
z = Eair(x) eikz z, Eair(x) = eikx,0 x + R e−ikx,0 x,
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where kx,0 =
√

k2
0 − k2

z and R(kz ) is the reflection coefficient
with k2

0 = ω2με0. In the substrate (x > H), the solution for
Ez(x, z) becomes

E sub = E sub(x) eikz z, E sub(x) = T eikx,s x,

where T (kz ) is the transmission coefficient and kx,s =√
k2

s − k2
z with k2

s = ω2μεs.
The task at hand is to determine R(kz ) and T (kz ) explicitly.

We thus apply the necessary boundary conditions through the
dielectric interfaces and conducting sheets; see Appendix A
for details. First, we impose continuity of Ez(x, z) across
each conducting sheet as well as across the interfaces of
the dielectric host with air or substrate; thus, E (x) must be
continuous at x = nd for n = 0, 1, . . . , N [31]. Second, we
require that the nonzero tangential (y) component of B, which
is proportional to dE/dx, be continuous across the dielectric
interfaces (at x = 0, H). In addition, this component must
experience a jump equal to the surface current, σEz, across
each conducting sheet (at x = nd for n = 1, . . . , N − 1) [31].

B. Formulas for Fresnel coefficients

Consider the layered structure of Fig. 1. We now address
the full transmission problem by the transfer-matrix approach
[28,29]. Here, we briefly outline the procedure, and state
the main results for the Fresnel coefficients R(kz ) and T (kz ).
Details of the derivation can be found in Appendix A.

The main idea is to view the whole transmission problem
as a cascade of elementary propagation problems. We then
connect the amplitudes of Ez(x, z) for x < 0 and x > H via
the multiplication of the constituent transfer matrices. In this
vein, we define the following matrices:

TI =
(

e−iβd 0

0 eiβd

)
= TI(d ),

TII =
(

1 − id
2β

[(βeff )2 − β2] − id
2β

[(βeff )2 − β2]
id
2β

[(βeff )2 − β2] 1 + id
2β

[(βeff )2 − β2]

)
,

where βeff denotes the effective wave number

βeff(kz ) =
√

β(kz )2 + i
ωμσ

d

k2
⊥ − k2

z

k2
⊥

. (2)

In the above, TI characterizes the propagation of the z-directed
electric field E (x) in the dielectric host by distance d . The
matrix TII describes the transmission of E (x) through a sheet
of surface conductivity σ that is immersed in the dielectric
host at position x = 0 (see Appendix A). The effective wave
number βeff is introduced in hindsight, for later algebraic con-
venience: this definition serves our purpose of homogenizing
the structure in the limit βd → 0 by keeping certain nondi-
mensional parameters fixed. The role of this βeff becomes
more clear in Sec. II C. In particular, we will require that
βeffH is independent of d as βd → 0. This requirement is
equivalent to the statement that σ scales linearly with d (or
σ�d � const) if the other material parameters are considered
as fixed [17]. The physical significance of this scaling of σ

with d is discussed in Sec. II C.

By the transfer-matrix approach, the amplitude vector
(A,C) for E (x) in the first slab with 0 < x < d is connected
to the respective amplitudes in the last slab where (N −
1)d < x < H . This is carried out by the successive appli-
cation of TI(nd ) and TII through the layered structure (for
n = 1, . . . , N − 1). Subsequently, we have to relate the field
amplitudes in the above extremal slabs to the pairs (R, 1) and
(T, 0), in the air and substrate (see Fig. 1). To this end, we
impose the continuity of Ez and By at x = 0 and H .

After some algebra, we arrive at the following closed-form
expressions for the reflection and transmission coefficients R
and T (see Appendix A):⎧⎨

⎩
R = − ε̃s+ t1−−ε̃s− t2− ei2βd

ε̃s+ t1+−ε̃s− t2+ ei2βd ,

T = e−ikx,sH eiβd t1+ t2−−t2+t1−
ε̃s+ t1+−ε̃s− t2+ ei2βd .

(3)

Here, we define the matrix elements ti j (i, j = 1, 2) by(
t11 t12

t21 t22

)
= (TIITI )

N−1,

and also introduce the parameters

ε̃�± = 1 ± ε�

ε⊥

k2
⊥ − k2

z

β kx,�
for � = 0, s,

ti± = ti1 ε̃0± + ti2 ε̃0∓ (i = 1, 2).

We note in passing that the analytical computation of the
matrix elements ti j can be carried out via the diagonalization
of TIITI; see Appendices A and B. Specifically, by writing
TIITI = S diag(λ+, λ−)S−1 where S is a nonsingular matrix
and λ± are the eigenvalues of TIITI, we apply the identity(

t11 t12

t21 t22

)
= S diag(λN−1

+ , λN−1
− )S−1.

Explicit formulas for S and λ± are given in Appendix B.

C. Limit of small interlayer spacing (βd → 0)

Next, we illustrate the derivation of approximate formulas
for the coefficients R and T in the limit as the number of layers
N is sufficiently large (N � 1) and the interlayer spacing d is
small enough. We discuss the underlying key assumptions in
detail. In our limiting process the parameter βH = Nβd and
the ratio σ�d are kept fixed (cf. [17]). The resulting limit
formally expresses the homogenization of plasmonic crystals
of finite thickness.

Specifically, a set of assumptions is described by [17]

|βd| 	 1,

∣∣∣∣ωμσ (ω)

β

∣∣∣∣ 	 1,

with fixed βH . The first condition (|βd| 	 1) means that d
is small compared to the wavelength of propagation in the
x direction inside the dielectric host. The second condition
(|ωμσ�β| 	 1) implies the subwavelength character of the
TM-polarized SPP associated with an isolated conducting
sheet in the (unbounded) dielectric host. This condition ex-
presses the separation of two distinct length scales: One scale
is related to the wave number β describing the x-directed
propagation in the dielectric slab, and another is related to
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the SPP wave number, which scales as 1/σ on the conducting
sheet [14,17]. Note that TM-polarized SPPs cannot be excited
on a single sheet by plane waves in the present geometry.
Nonetheless, the above interpretation in terms of a scale
separation helps us to point out the role of the spacing d , as
we explain next.

In regard to the spacing d , we additionally assume that

ωμσ (ω)

β2d
� const,

which means that the length |ωμσ (ω)�β2| scales linearly
with d as βd → 0. By Eq. (2), this assumption is compatible
with βeffH being kept fixed, independent of d . This choice
of scaling for ωμσ (ω)�β2 here implies that the wavelength
of the TM-polarized SPP associated with the isolated sheet
becomes comparable to the interlayer spacing. Hence, in
the limit βd → 0 the strength of the coupling of possible
SPPs, or surface plasmonic modes, on neighboring sheets is
nearly constant. The dimensionless parameter ωμσ�(β2d )
expresses the strength of this coupling.

An alternative way to state the above scaling is to write

σ�d � const

if the material parameters other than σ are considered as fixed,
independent of d [17]. This choice of scaling σ linearly with
d implies that the total surface current on the sheets remains
finite in the limiting process (βd → 0).

Without sacrificing the essential physics of the problem,
for the sake of simplicity we set εs = ε0. In other words,
we assume that the whole layered structure is immersed in
a homogeneous and isotropic medium (air). Consider normal
incidence of the incoming plane wave, i.e., take kz = 0.

Let us now turn our attention to the exact formulas of
Eq. (3). By expanding the Fresnel coefficients in powers of
βd , we obtain the following results to the leading order in βd
(see Appendix B):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

R � Reff = −
[
(βeff )2 − k2

0

]
tan(βeffH )[

(βeff )2 + k2
0

]
tan(βeffH ) + 2 ik0βeff

,

T � T eff = e−ik0H 2 ik0β
eff sec(βeffH )[

(βeff )2 + k2
0

]
tan(βeffH ) + 2 ik0βeff

.

(4)

These equations define the homogenized Fresnel coefficients
for the layered medium of total thickness H . Equation (4) can
be extended to the case with kz 
= 0, i.e., oblique incidence of
the plane wave from air. This extension in the effective Fresnel
coefficients can be carried out by replacing k0 by the wave
number

k̃0 = k0
k0

kx,0

k2
⊥ − k2

z

k2
⊥

.

A few remarks on the above approximate formulas for R
and T are in order. These coefficients suggest that the layered
structure is effectively replaced by a continuous medium
characterized by the wave number βeff for propagation in the
transverse (x) direction. By Eq. (2) with kz = 0, we have

βeff = βeff(0) =
√

k2
‖ + i

ωμσ

d
; k‖ = ω

√
με‖.

Accordingly, in this limit, the wave in the plasmonic struc-
ture encounters the effective dielectric permittivity εeff =
diag(εeff

⊥ , εeff
‖ , εeff

‖ ), where εeff
⊥ = ε⊥ and

εeff
‖ = ε‖ + i

σ (ω)

ωd
.

The emergent anisotropy of the effective dielectric permittiv-
ity εeff is intrinsic to the structure geometry: As βd → 0, the
surface conductivities of individual sheets conspire to give
rise to a bulk property (volume conductivity) that necessarily
modifies only the lateral matrix elements of ε in the effective-
medium description. More generally, geometric asymmetries
between the transverse and lateral directions, relative to each
layer, at the scale of the interlayer spacing d are expected to
give rise to material anisotropy in the homogenization limit
[16,17].

The results of this section are compatible with the disper-
sion relation derived via Bloch wave theory in [14,30] for a
periodic array of conducting sheets. Recall that Eq. (3) is valid
for infinite, translation-invariant layers. In this case, there are
no (lateral) plasmonic resonances inherent to the geometry
of the isolated 2D material. In contrast, each nanoribbon is
characterized by resonances related to the strip width. These
subtle effects of geometry are captured by the corrector field
[17]. Regarding the general homogenization theory and the
corrector field, the interested reader is referred to Sec. IV.

Numerical comparisons of a transmission property (“com-
plementary transmission spectrum”) related to the homoge-
nized coefficients (4) to the exactly computed formula based
on Eq. (3) indicate that the homogenization results are rea-
sonably accurate. The accuracy persists even for a relatively
small number N of layers. A quantitative study of this issue
for the practically appealing cases [18] with N = 4, 8, and 16
is presented in Sec. V.

III. TRANSMISSION AT THE ENZ CONDITION

In this section, we describe the effect of a generalized ENZ
condition on the homogenized coefficients of Eq. (4). In our
setting (Fig. 1), the idea underlying this condition is suggested
by the observation that a wave propagating in the effective
medium of the plasmonic crystal in the (x) direction transverse
to the layers can be suitably tuned to experience almost no
phase delay [14,30].

This theoretical possibility is typically introduced for pe-
riodic plasmonic crystals without Ohmic losses (see, e.g,
[30]). Our study here offers an extension of this concept to
include finite-number-of-layers and dissipation effects. The
possible role of the ENZ condition in the description of
wave transmission through a plasmonic structure with a finite
number of layers for a wide range of frequencies is discussed
in Sec. VI A.

First, we review the concept of the ENZ condition in the
absence of dissipation (for Re σ � 0). A means of arriving at
the ENZ condition is to require that the effective wave number
of Eq. (2) vanishes for any given kz. Alternatively, at least one
(real) eigenvalue of the effective permittivity tensor becomes
zero [17]; here, this requirement yields εeff

‖ = 0. For periodic
plasmonic crystals, this condition entails that a branch of the
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dispersion relation kx(kz ) for the layered structure approaches
a Dirac cone near the center of the Brillouin zone [14,30].

More generally, if the dielectric media are lossless but each
conducting sheet is dissipative (Re σ > 0), we define the ENZ
condition by

Re εeff
‖ = 0 ⇒ Re

{
ε‖ + i

σ (ω)

ωd

}
= 0. (5)

This equation entails d = (Im σ )/(ωε‖). Assuming again nor-
mal incidence of the incoming plane wave, i. e., kz = 0, as
well as εs = ε0, by Eqs. (2) and (5) we obtain

[βeff(0)]2 = iωμ(Re σ )

d
⇒ βeff = βeff(0) = γ k‖,

where k‖ = ω
√

με‖ = ω
√

με and

γ = eiπ/4 k−1
‖

√
ωμ(Re σ )

d
= (1 + i)

√
Re σ

2 Im σ
.

In the above equation, we replaced d by (Im σ )/(ωε‖) ac-
cording to the ENZ condition. The dimensionless complex pa-
rameter γ measures the effect of dissipation and indicates the
deviation of condition (5) from its dissipation-free counterpart
[14,30]. Typically, for a range of terahertz frequencies in
doped monolayer graphene, we expect that |γ | 	 1 [4]. Note
that the symbol γ here should not be confused with the same
symbol used typically to denote the (positive) damping figure
of merit for SPPs [4]. Qualitatively, however, both quantities
express the effect of dissipation; more precisely, −iγ 2 equals
the standard SPP damping ratio [4].

We proceed to provide simplified formulas for Reff and T eff

when condition (5) holds. Equation (4) yields⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Reff → RENZ =
(
k2

0 − γ 2k2
‖
)

tan(γ k‖H )(
k2

0 + γ 2k2
‖
)

tan(γ k‖H ) + 2iγ k‖k0
,

T eff → TENZ = e−ik0H 2 iγ k0k‖ sec(γ k‖H )(
k2

0 + γ 2k2
‖
)

tan(γ k‖H ) + 2 iγ k0k‖
.

It is reasonable to assume that k‖H is fixed and not large
(see Sec. II C). Thus, the smallness of |γ | in weakly dissipative
2D materials should imply that |γ k‖H | 	 1. Accordingly, we
can expand the coefficients RENZ and TENZ in powers of the
parameter γ k‖H . By expanding up to second order in this
parameter, after some algebra we obtain

RENZ � k0H

2 i + k0H

+ iγ 2

(2 i + k0H )2

{
2

3
− 2 + 2i k0H

(k0H )2

}
(k0H )(k‖H )2

and

eik0H TENZ ≈ 2 i

2 i + k0H

− iγ 2

(2 i + k0H )2

{
2

3
− 2i + k0H

k0H

}
(k0H )(k‖H )2.

It is of interest to note that the above approximate relations
entail

RENZ + eik0H TENZ � 1 and |RENZ|2 + |TENZ|2 � 1.

IV. HOMOGENIZATION THEORY, CORRECTOR
FIELD, AND RESONANCES

In this section, we revisit the established general theory
of homogenization for periodic layered plasmonic structures
[14,17]. In this theory, the corrector field can encode subwave-
length plasmonic resonances inherent to the geometry of the
constituent 2D material. Although the general homogeniza-
tion theory has already been derived in [17] for arbitrary ge-
ometries of 2D materials in periodic structures (Appendix C),
it is now tailored to the computation of experimentally observ-
able quantities for practically appealing configurations, e.g.,
layered structures with graphene nanoribbons.

We use a simplified set of material parameters for the
dielectric host and conducting sheet. In Sec. IV A, we de-
rive formulas for the homogenized Fresnel coefficients, by
adopting ingredients of the general homogenization theory in
the present case with structures of finite thickness. To avoid
technical complications, we restrict our attention to models
that yield a diagonal effective permittivity matrix under TM
polarization (cf. Sec. II). The resulting formulas for the optical
coefficients provide a nontrivial extension to their counter-
parts for infinite, translation-invariant sheets; cf. Eq. (4). The
role of the corrector field is discussed in Sec. IV B.

More precisely, our procedure regarding the Fresnel co-
efficients consists of the following stages. First, we provide
the effective permittivity tensor εeff that results from the
homogenization of a periodic array of conducting sheets with
arbitrary geometry. For general configurations, this εeff has
been derived from a two-scale asymptotic expansion for the
fields obeying Maxwell’s equations in the limit k0d → 0 [17];
alternatively, one may use the Bloch wave theory for simple
enough geometries [14]. The methodology of asymptotic ex-
pansions has the advantage that it is not limited to plane-wave
solutions. Second, we replace the layered plasmonic crystal
(Fig. 1) by a single homogenized anisotropic dielectric slab
that has the permittivity tensor εeff and the same thickness
as the layered structure. We then compute directly the cor-
responding, effective Fresnel coefficients Reff and T eff when
εeff is diagonal (Sec. IV A). The results of this computation
are relevant to nanoribbons (Sec. V).

To simplify the exposition, we assume that ε0 = εs. To
avoid complications due to the microscale material parameters
per se, we posit that the dielectric host has the (isotropic and
homogeneous) permittivity ε = diag(ε, ε, ε) and the conduct-
ing sheet has the scalar surface conductivity σ . The surface of
the sheet is assumed to be smooth enough, having a uniquely
defined normal vector at every point of its interior (away
from the boundary). The sheet can have edges. We alert the
reader that the generality of our homogenization result for εeff

mainly concerns the sheet geometry (see Appendix C). It can
be shown that for a representative volume element of linear
size equal to d in all directions (Fig. 2), the matrix elements
of the effective permittivity εeff take the form

εeff
i j = εδi j − σ (ω)

iωd3

∫
�

[τ j + ∇τχ j (r)] · ei dr. (6)

Here, χi is the ith component of the corrector field χ (further
described below); � is the surface region of the conducting
sheet inside the representative volume element; r = (x, y, z)
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FIG. 2. Schematic of representative volume element (box) in
nanoribbon configuration: the conducting strip lies in the yz plane,
with each edge being parallel to the y axis. For the purpose of peri-
odic homogenization, the representative volume element is repeated
periodically with interlayer spacing equal to d (in the x direction).

and δi j is Kronecker’s delta with i, j = x, y, z. To define the
remaining quantities in Eq. (6), let ν denote the (uniquely
defined) unit vector normal to �. Accordingly, τ i(r) is the
projection of the i-directed Cartesian vector ei to the plane
tangential to � at point r, viz., τ i = ei − (ei · ν)ν; and ∇τ

is the surface gradient on �, i.e., ∇τ = ∇ − (∇ · ν)ν. Note
that � is finite. In the special case where � is flat and lies
on the yz plane, we have τ j · ei = δi j if i, j = y, z and τ j ·
ei = 0 otherwise. Equation (6) describes a suitable weighted
average over microscale (d-dependent) details. The weight is
determined by the corrector field χ which is determined by a
Helmholtz-type boundary-value problem in the representative
volume element (see Appendix C). This field captures fine-
scale, low-order lateral plasmonic resonances that are possibly
excited in the 2D material (see Sec. V C).

A. Homogenized Fresnel coefficients in TM polarization

Next, we use the general homogenization result (6) for
εeff in order to compute the effective Fresnel coefficients of
a layered plasmonic structure in the limit k0d → 0 with finite
total thickness (see Fig. 1). The incident plane wave is TM po-
larized. For the sake of simplicity, we focus on geometries for
which the matrix εeff is diagonal, εeff = diag(εeff

x , εeff
y , εeff

z ),
where possibly εeff

x 
= εeff
y 
= εeff

z 
= εeff
x . This case accounts for

configurations with infinitely extended sheets, nanoribbons,
and circular nanotubes [17]. Note that this type of anisotropic
permittivity εeff may result even from the homogenization of
isotropic dielectric hosts with conducting sheets. Numerical
simulations based on our homogenization results for nanorib-
bons are presented in Sec. V.

The goal in this section is to replace the multilayer system
of Fig. 1 by a single-layer, continuous medium with dielectric
permittivity equal to εeff. This medium is of course located
between the air and dielectric substrate and has thickness
equal to H . To calculate the coefficients R and T for TM po-
larization, we apply the transfer-matrix approach of Sec. II B
with N = 1, ε⊥ = εeff

x , and ε‖ = εeff
z ; thus, we replace d by H .

Because of our assumption for a TM-polarized incident plane
wave, the matrix element εeff

y does not enter the calculation.
By inspection of the transfer-matrix procedure, we realize

that we can invoke Eq. (3) with t11 = t22 = 1 and t12 = t21 = 0

(see Sec. II B). Consequently, we find⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Reff = − ε̃s+ ε̃0− − ε̃s− ε̃0+ ei2βeffH

ε̃s+ ε̃0+ − ε̃s− ε̃0− ei2βeffH
,

T eff = e−ikx,sH

(
ε̃2

0+ − ε̃2
0−
)
eiβeffH

ε̃s,+ ε̃0+ − ε̃s− ε̃0− ei2βeffH
,

(7)

where ε̃�± (� = 0, s) are defined by

ε̃�± = 1 ± ε�

εeff
⊥

(keff
⊥ )2 − k2

z

βeff kx,�
; keff

⊥ = ω

√
μεeff

⊥

with εeff
⊥ = εeff

x . We invoke the effective wave number

βeff =
√

εeff
‖

εeff
⊥

[
(keff

⊥ )2 − k2
z

]
, (8)

where εeff
‖ = εeff

z .
We should point out that Eq. (7) is valid for a wide class of

sheet geometries, subject to the diagonal character of εeff, in
contrast to Eq. (4). The main difference of the present model
for εeff from its counterpart of the transfer-matrix approach
(Sec. II) is the effect of the corrector field χ. The derivation
of the effective Fresnel coefficients for a more general, homo-
geneous but nondiagonal εeff is tractable but nonessential for
our scope.

It is worthwhile to check that the coefficients of Eq. (7)
correctly reduce to the corresponding Fresnel coefficients for
the fully translation-invariant sheets of Sec. II. In this case,
the boundary value problem for χ (Appendix C) yields χ = 0.
By Eq. (6), we obtain εeff

x = ε and εeff
z = ε + iσ/(ωd ) =

εeff
y = εeff

‖ . For normal incidence of the incoming plane wave
(kz = 0), we have

βeff =
√

ω2μεeff
‖ =

√
β2 + iωμσ

d
,

where β2 = ω2με = k2
‖ , by the notation of Eq. (1). The

substitution of the above value for the effective wave number
βeff into Eq. (7) yields the homogenized Fresnel coefficients
in agreement with Eq. (4) if ε0 = εs.

B. Corrector field in nanoribbon geometry

We now illustrate the role of the corrector field χ by choos-
ing to focus on the nanoribbon configuration with an isotropic
dielectric host (Fig. 2). In this geometry, as outlined in the
context of the general homogenization theory (Appendix C),
all components of χ vanish identically except χz. Thus, by
Eq. (6) the effective permittivity tensor is written as εeff =
diag(εeff

x , εeff
y , εeff

z ) where

εeff
x = ε, εeff

y = ε − η(ω), (9a)

εeff
z = ε − η(ω)

1

d2

∫
�

[1 + ∂zχ‖(r)] dr. (9b)

In the above, η(ω) = σ (ω)
iωd , which is further discussed in

Sec. V, and the corrector χ‖(r) = χz(r) solves the associated
cell problem (Appendix C). More generally, if the dielectric
host has permittivity tensor ε = diag(ε⊥, ε‖, ε‖) with ε⊥ 
= ε‖
then ε → ε⊥ in εeff

x whereas ε → ε‖ in both εeff
y and εeff

z . Let
us recall that, for a TM-polarized incident plane wave, the
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Fresnel coefficients Reff and T eff are only affected by the pa-
rameters εeff

x and εeff
z . We should add the remark that Eqs. (9)

are applicable to the configuration with infinite, translation-
invariant sheets for χ‖ = 0, if the media parameters are
kept fixed.

The above corrector field χ‖(r), in principle, encodes
the response of the plasmonic microstructure to all possible
surface excitations by local plane waves [17]. In particular,
this response may include short-scale, subwavelength surface
modes on the 2D material, which we interpret as (lateral)
SPP resonances [42]. These modes are excited on the 2D
material because of the ribbon edges, and its finite width,
as the asymptotically “slow” macroscopic electromagnetic
wave solution approaches a plane wave in the homogenization
limit [17].

This interpretation is consistent with the following ob-
servation. In the special geometry with infinite, translation-
invariant sheets (Sec. II), the conducting material does not
admit such a surface excitation, and the corrector χ(r) van-
ishes identically [17]. In principle, the absence of microscale
surface excitations on the 2D material should be equivalent
to a vanishing corrector for the cell problem; consequently,
εeff

y = εeff
z = ε‖ − η(ω) 1

d2

∫
�

dr. In contrast, the configuration
with nanoribbons shows a dominant influence of the corrector
field χz(r) when the frequency ω is close to resonance fre-
quencies; see Sec. V for numerical results.

V. COMPUTATIONAL RESULTS

In this section, we numerically compare a quantity, the
complementary transmission spectrum (defined below), of
a fully layered structure to the respective result of the ho-
mogenization procedure. Our goal is to quantitatively assess
the accuracy of homogenized models for the computation of
wave transmission through plasmonic crystals for frequencies
and geometries of possible practical interest. Of particular
significance in applications is the dependence of the optical
coefficients on the number of layers [18], which we study in
some detail below. We assume that the electromagnetic field
has TM polarization.

We choose to focus on two geometries with conducting
isotropic 2D materials. One configuration consists of infinite,
mutually parallel sheets (Fig. 1) and another consists of
nanoribbons (Fig. 2). The former setting serves as a “reference
case” since it allows us to apply the exact results of the
transfer-matrix approach from Sec. II. In this geometry, how-
ever, there are no microscale lateral resonances. In contrast,
the nanoribbon configuration enables the appearance of such
resonances; in the homogenization limit, these effects can be
captured by the corrector field, as we show below. For the
nanoribbon case, we solve the full Maxwell system for the
electromagnetic field via the finite element method [31,42]
and compare the result to the respective homogenization out-
come through the numerical solution of the boundary-value
problem for the corrector field (see Sec. IV). In both cases
of layered configurations, we assume that the 2D material
is doped monolayer graphene. The microstructure includes
an isotropic dielectric host (ε‖ = ε⊥ = ε). The macroscopic
structure of thickness H lies between vacuum and a dielectric

substrate (with permittivity εs > ε0). All media are nonmag-
netic (μ = μ0 for definiteness).

A. Preliminaries

First, we outline the setup of our numerical computations.
For the homogenized Fresnel coefficients, we make use of
Eqs. (7), which in principle incorporate the effect of the
vector valued corrector field χ, in conjunction with Eqs. (9).
In the reference case (infinite planar sheets), the corrector
field vanishes identically (χ = 0). Recall that ingredients of
the homogenization theory for the nanoribbon geometry are
spelled out in Sec. IV B.

We apply a nondimensionalization of the relevant equa-
tions. In particular, we use the following rescaling of key
parameters:

ω̃ = h̄ω

EF
, k̃ = k

k0
, σ̃ (ω̃) =

√
μ0

ε0
σ (ω),

where EF denotes the Fermi energy, k is any relevant wave
number (e.g., ks, k⊥, and βeff), h̄ is the reduced Planck
constant, and μ0 = μ. We combine the above rescaling with
the Drude model for the scalar surface conductivity of the
(isotropic) 2D material [31]. Hence, we use the following
dimensionless surface conductivity [31]:

σ̃Drude(ω̃) = i ω̃p

ω̃ + i/τ̃
, ω̃p = 4 e2

4πε0 h̄c0
= 4 α.

Here, τ̃ = (EF/h̄)τ , τ is the (phenomenological) relaxation
time of the Drude model, and α denotes the fine-structure
constant; as usual, e stands for the elementary (electron)
charge and c0 is the speed of light in vacuum.

In our numerics, we choose to compute the quantity

Tc = 1 − |T (ω̃)|2, (10)

which we refer to as the the complementary transmission spec-
trum for the layered plasmonic structure of interest. This Tc is
akin (but not identical) to the extinction spectrum of layered
structures, which is usually measured in experiments [18]. An
advantage of using this Tc(ω̃) is that it satisfies the inequality
0 < Tc < 1. We compute Tc by (i) the transfer-matrix ap-
proach as well as the explicit homogenization formula for T
(with zero corrector field) for the reference case (Sec. V B),
and (ii) the numerical solution of the Maxwell system as well
as the homogenization procedure with a corrector field for the
nanoribbon configuration (Sec. V C).

We pay particular attention to the deviation of the homoge-
nized version of Tc from the corresponding quantity for the
original layered structure. We refer to this deviation as the
homogenization error. Recall that, in the homogenized prob-
lem, the layered structure is replaced by a slab of equal total
thickness with an effective continuous medium. We extend
the definition of the homogenization error to the computation
of resonance frequencies in the nanoribbon configuration
(Sec. V C).

To illustrate the homogenization error computationally, we
choose and fix the relevant material parameters as follows.
The dielectric permittivity of the substrate is εs = 4.4ε0, while
the medium above the layered structure is vacuum (with
permittivity ε0). The value for εs used here is typical for

075308-8



FINITE-SIZE EFFECTS IN WAVE TRANSMISSION … PHYSICAL REVIEW B 102, 075308 (2020)

FIG. 3. Real and imaginary parts of rescaled, nondimensional
effective wave number β̃eff as a function of ω̃ by Eq. (8), for the
geometry with infinite planar sheets.

quartz [43]. We assume that the dielectric host is isotropic
with ε‖ = ε⊥ = 2.3ε0. This choice roughly corresponds to
the permittivity values for polymer-based buffer materials in
layered plasmonic structures, if one ignores the frequency
dependence of the permittivity tensor ε [44].

By Eqs. (9) of the homogenization procedure, our parame-
ter rescaling leads to the following weight for elements of the
effective permittivity tensor [17]:

η̃(ω̃) = ω̃p

ω̃2(ω̃ + i/τ̃ ) d̄
,

where d̄ = d̃/ω̃ and d̃ = k0d; thus, d̄ is frequency indepen-
dent. In our numerical computations, we use the (dimensional)
relaxation time τ = 0.4 ps at the Fermi energy EF = 0.4 eV,
which are typical for monolayer graphene. These choices
imply the (nondimensional) parameter value τ̃ = 243.2. We
also fix the interlayer spacing to d = 25 nm, which yields
the parameter value d̄ = 0.050 68. This choice of spacing is
compatible with experiments on wave transmission through
stacks consisting of graphene sheets and insulator slabs [18].

B. Infinite planar conducting sheets

Next, we carry out computations for the layered configu-
ration of the reference case (Fig. 1). Our goal is to assess the
accuracy of the homogenization results. In particular, we point
out the negligible homogenization error even for small values
of the number N of layers. We remind the reader that the
(scaled) interlayer spacing d̄ is kept fixed in our computations.

As a starting point, in Fig. 3 we show plots of the (N-
independent) real and imaginary parts of the nondimensional
effective wave number β̃eff = βeff/k0 as a function of the
rescaled frequency ω̃. The parameter β̃eff is computed by
Eq. (8) with the appropriate, homogenized tensor permittivity.

In Fig. 4, we plot the complementary transmission spec-
trum Tc within the (exact) transfer-matrix approach as well
as the (approximate) homogenization procedure. We consider
N = 4, 8, and 16 layers. In these plots, the rescaled total
thickness of the plasmonic structure is H̄ = d̄N = k0H where
H = Nd takes the values 100, 200, and 400 nm, respectively,

FIG. 4. Complementary transmission spectrum Tc for infinite
planar sheets. The computations are carried out via transfer-matrix
approach (solid line) and homogenization procedure (dashed line).
We use N = 4, 8, 16 layers in each approach. The vertical dashed
line indicates the ENZ condition.

as N varies. In Fig. 5, we show the relative homogenization
error for the complementary transmission spectrum in a wide
range of the (rescaled) frequency ω̃.

A few remarks on the displayed numerical results are in
order. Regarding Fig. 3, the ENZ condition is attained at
the (N-independent) frequency ω̃ ≈ 0.63. The computation
of T eff at the ENZ condition (Sec. III) gives a value for
this coefficient in excellent agreement with the corresponding
value shown in Fig. 4 (dashed curve). By inspection of Fig. 5,
we see that the relative homogenization error remains well
below 1% for a wide frequency range. A maximum relative
error of about 10% occurs at ω̃ ≈ 0.2, 0.3, 0.46 when N =
4, 8, 16, respectively. This error is seen to decrease almost
inverse linearly with the number N of layers if N is sufficiently
large. The local minimum in the complementary transmission
spectrum for N = 16 (Fig. 4) can be attributed to an interlayer
resonance (in the x direction), to be distinguished from the

FIG. 5. Relative homogenization error for complementary trans-
mission spectrum Tc for the geometry with infinite planar sheets. We
use N = 4, 8, 16 layers.
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FIG. 6. Real and imaginary parts of rescaled, nondimensional ef-
fective wave number β̃eff as a function of nondimensional frequency
ω̃ by Eq. (8), for the nanoribbon geometry.

lateral resonances of the nanoribbon geometry (Sec. V C). For
increasing total thickness H , which scales linearly with N
(for fixed spacing d), these resonances are shifted to lower
frequencies. Indeed, by numerically computing Tc for the
cases with N = 32, 64, 128, which are not displayed in the
present plots, we observe roughly a doubling in the number
of the above minima in the frequency range 0 � ω̃ � 2 every
time N is doubled. We expect this trend to persist for higher
values of N .

C. Nanoribbon geometry

In this section, we study numerically the wave transmission
through the layered structure that contains mutually parallel
nanoribbons. In our numerical simulations, we set the width
of each nanoribbon as well as the lateral spacing between
nanoribbons in the yz plane equal to d . Hence, the represen-
tative volume element has a linear size equal to 2d in the
z direction but the interlayer spacing is kept equal to d (cf.
Fig. 2).

We compare outcomes of our numerics from two main
approaches: One approach is the direct numerical solution
of the full Maxwell system via the finite element method
(for transmission through the layered configuration) [31], and
another is the homogenization procedure (Sec. IV B). For the
homogenized structure, the boundary-value problem for the
corrector field χ is solved numerically by the finite element
method [17]. In this setting, we describe (lateral) SPP-related
resonances inherent to each nanoribbon.

In Fig. 6, we plot the (N-independent) real and imaginary
parts of the rescaled effective wave number β̃eff as a function
of the rescaled frequency ω̃. The parameter β̃eff is computed
by Eq. (8) with the effective tensor permittivity of the nanorib-
bon geometry. In the present case, this computation involves
a nontrivial corrector field.

The complementary transmission spectrum Tc, computed
by both the direct and homogenization approaches, is shown
in Fig. 7. The numerical computations here are carried out
for N = 4 and 8 layers. In Fig. 8, we display the relative

FIG. 7. Complementary transmission spectrum Tc for the
nanoribbon geometry. The computations are carried out via numeri-
cal solution of transmission problem for fully layered structure (solid
line) and homogenization procedure (dashed line). We use N = 4, 8
layers in each approach.

homogenization error versus frequency ω̃, in regard to the
computation of Tc for each of the chosen values for N .

In our numerics, the lateral resonances manifest in the form
of local peaks of the complementary transmission spectrum
at certain frequencies, for fixed number N of layers; see
Fig. 7. We reiterate that such resonances do not occur in the
configuration with infinite conducting sheets (Sec. V B).

It is worthwhile to further quantify these lateral resonances.
Let ω̃n denote the relevant (nondimensional) resonance fre-
quencies of the complementary transmission spectrum com-
puted directly for the actual layered structure; n is a positive
integer counting these frequencies in ascending order (ω̃n+1 >

ω̃n with n = 1, 2, . . .). Here, we set n equal to 1 for the lowest
resonance frequency computed in our numerics. In Table I,
we list the first eight (n = 1, 2, . . . , 8) of these resonance
frequencies, when the number of layers is N = 4 and 8.

FIG. 8. Relative homogenization error for complementary
transmission spectrum Tc for nanoribbon structure. We use
N = 4, 8 layers.
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TABLE I. First eight (n = 1, 2, . . . , 8) resonance frequencies
(ω̃n) for complementary extinction spectrum by distinct approaches
and computations. Second column: frequencies ω̃eff

n of the homog-
enization approach. Third column: frequencies ω̃D

n of Dirichlet ap-
proximation for single nanoribbon. Last two columns: frequencies
ω̃n by direct numerical computation for layered structure with N = 4
and 8 layers. The percentages in parentheses of last three columns
are the relative deviations of the computed frequencies from the
respective homogenization results ω̃eff

n .

n ω̃eff
n ω̃D

n ω̃n (N = 4) ω̃n (N = 8)

1 0.6501 0.7327 (13 %) 0.6446 (0.8%) 0.6484 (0.3%)
2 1.0237 1.0568 (3.2%) 1.0213 (0.2%) 1.0215 (0.2%)
3 1.2287 1.2530 (2.0%) 1.2241 (0.4%) 1.2242 (0.4%)
4 1.3814 1.4017 (1.5%) 1.3735 (0.6%) 1.3733 (0.6%)
5 1.5062 1.5242 (1.2%) 1.4928 (0.9%) 1.4928 (0.9%)
6 1.6130 1.6297 (1.0%) 1.5929 (1.2%) 1.5930 (1.2%)
7 1.7073 1.7230 (0.9%) 1.6788 (1.7%) 1.6789 (1.7%)
8 1.7920 1.8072 (0.8%) 1.7537 (2.1%) 1.7538 (2.1%)

We also compute the corresponding resonance frequencies
ω̃eff from the homogenization approach. For this purpose,
we locally fit a Lorentzian to the frequency response of
the effective wave number β̃eff(ω̃) near each resonance (see
Fig. 6). We report the results in Table I.

We also provide the resonance frequencies ω̃D
n that come

from the (N-independent) “Dirichlet approximation” pertain-
ing to a single, isolated nanoribbon. This approximation is
derived from the SPP excitation along a single conducting
strip of finite width as follows (see Fig. 2): At the edges of the
nanoribbon, impose homogeneous (zero) Dirichlet conditions
to the generated unperturbed SPP, a suitable trigonometric
function of z, for the z component of the electric field [42].
Accordingly, we find that the Dirichlet approximation ω̃D

n is
obtained by the relation

w̃
(
ω̃D

n

)
k̃spp

(
ω̃D

n

)
2 π

= 2n − 1

2
(n = 1, 2, . . .), (11)

where w̃(ω̃D
n ) = ω̃D

n d̄ is the width of an individual
nanoribbon and

k̃SPP
(
ω̃D

n

) =
√√√√ε̃‖ − 4 ε̃2

‖
σ̃
(
ω̃D

n

)2

denotes the rescaled SPP wave number [42] at frequency ω̃D
n .

Here, ε̃‖ = ε‖/ε0 is the relative permittivity.
We close this section with a few more remarks on our

numerics. An inspection of Fig. 8 indicates that the relative
homogenization error (versus ω̃) does not exceed about 1% for
a wide frequency range. In fact, this deviation is exacerbated,
with the relative error having local maxima in ω̃ that may
reach about 10%, near the resonance frequencies ω̃n. In regard
to the calculation of the frequencies ω̃n, overall we observe a
very good agreement between the directly computed values
of these frequencies (for the actual layered structure) and
their counterparts, ω̃eff

n , for the homogenized problem. More
precisely, the related deviation for N = 8 does not exceed
2.1% (see Table I). A close inspection of Fig. 7 reveals that
the behavior of Tc near each resonance can be described

(locally in ω̃) by a Lorentzian, as expected [17]. The width
of each Lorentzian depends on the dissipation, i.e., the real
part of the surface conductivity σ (ω). According to the Drude
model σ̃Drude(ω̃) used here, this dissipation is controlled by the
(rescaled) relaxation time τ̃ .

VI. DISCUSSION

In this section, we discuss implications of our study in the
wave transmission through plasmonic structures. In particular,
we point out the surprising accuracy of the homogeniza-
tion approach in regard to the complementary transmission
spectrum, and make an attempt to qualitatively compare our
theoretical predictions to related experimental observations.
Furthermore, we outline a possible extension of our study to
the computation of waveguide modes in layered plasmonic
structures with various sheet geometries.

A. Aspects of homogenized transmission

A central question motivating our computations is whether
the homogenization of a layered plasmonic structure with
finite thickness can yield sufficiently accurate results for the
wave transmission. In the homogenization procedure, the
error arises from the replacement of individual layers by a
continuous medium through a delicate averaging process [cf.
Eq. (6)]. The appropriate weight of the averaging in principle
encodes microscale details (e.g., material edges). This weight
is the corrector field.

We have assessed the accuracy of the homogenization re-
sults by numerically computing (i) the complementary trans-
mission spectrum Tc as a function of frequency; and (ii)
a few resonance frequencies ω̃n, that characterize the sheet
geometry in the case with nanoribbons. We deem both Tc and
ω̃n as experimentally measurable.

In regard to Tc, we observe that the relative homoge-
nization error remains less than 1% for a wide range of
frequencies, when the number N of layers is as small as 4. This
error may reach a maximum of about 10% near frequencies
that correspond to microscale resonances in the nanoribbon
configuration. For fixed ω̃, the error decreases almost inverse
linearly with N .

The computed resonance frequencies ω̃n (n =
1, 2, . . . , 8) signify the influence on wave transmission
of surface plasmons excited in the nanoribbon geometry.
Notably, these frequencies are accurately captured within the
homogenization approach via the numerical solution of the
boundary-value problem for the corrector field. In general,
the corresponding relative error ranges from 0.3% to 2.1%
in our numerics. We notice that this error increases with the
order n of the resonance. This behavior is a manifestation of
an expected limitation of our homogenization approach: the
averaging procedure underlying the homogenized formulas is
valid to the leading order in the spacing d̄ , for slowly varying
and low-energy incident plane waves. To achieve the same
accuracy for high resonance frequencies (n � 1), one would
need to properly modify the homogenization procedure. This
task is left for future work (see also Sec. VI E).

It is worthwhile to comment on the role of the ENZ
condition in the behavior of the complementary transmission
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spectrum Tc for the structure with translation-invariant sheets
(see Fig. 4). For fixed wave number kz (tangential to each
sheet), the frequency ω̃ENZ coming from this condition tends
to separate the frequency axis roughly into two regimes.
For ω̃ < ω̃ENZ, the computed Tc decreases with ω̃ and can
have appreciable values less than unity. In this range, if ω̃ is
kept fixed while N varies, Tc is found to increase with N .
On the other hand, for ω̃ > ω̃ENZ (roughly), the computed
Tc may be nonmonotone and tends to become small; thus,
wave transmission is enhanced. In this latter regime (ω̃ >

ω̃ENZ), Tc also loses its monotonicity with respect to N (for
fixed ω̃). These observations are consistent with the expected
asymptotic behavior of Tc for large enough values of N
(N > 100), not used in our plots. More precisely, in this limit
Tc should approach a step function with values nearly equal
to unity for ω̃ < ω̃ENZ and close to zero otherwise. By this
large-N picture, the character of the transmitted wave changes
abruptly at the critical value ω̃ = ω̃ENZ: as ω̃ decreases, the
wave becomes evanescent below the “cutoff” frequency ω̃ENZ

because of the switch in the sign of the emerging effective
permittivity.

Interestingly, we find hardly any connection of the ENZ
condition to the extrema of the homogenization error for
Tc, in the geometry with translation-invariant sheets (Figs. 3
and 5). Because of the absence of microscale (lateral) SPP-
related resonances, this configuration is ideal for examining
the frequency dependence of the homogenization error near
the ENZ condition.

In the nanoribbon geometry, the behavior of the macro-
scopic quantity Tc versus frequency is a direct consequence
of the excitation of fine-scale SPPs on each sheet, because of
the presence of material edges. These SPPs are encoded in the
corrector field χ (r). Near each resonance frequency, χ (r) has
a dominant contribution to the average of Eq. (6).

B. On the connection of theory to experiment

The setting of our study has been motivated by experi-
ments of wave transmission through stacks with large, planar
graphene sheets and insulator slabs [18]. Next, we briefly
discuss how trends of our results can be directly connected
to corresponding experimental observations.

First, the extinction spectrum measured in experiments is
a decreasing function of frequency [see Figs. 2(a) and 2(b) in
[18]]. This behavior is in agreement with the monotonicity of
the computed Tc for frequencies below ωENZ in the geometry
with translation-invariant sheets; see our plots in Fig. 4.

Second, for fixed frequency the measured extinction spec-
trum increases with the number N of layers in the structure
[Figs. 2(a) and 2(b) in [18]]. This monotonicity with N is
also observed in our computations for Tc when the sheets are
translation invariant, provided the frequency range is such that
ω < ωENZ (Fig. 4).

Furthermore, we make predictions that can possibly be
tested in future experiments with more complicated geome-
tries. In particular, we mention our prediction of resonances
in the wave transmission through the graphene nanoribbon
configuration. An aspect of our computations that deserves
attention for experimental designs is the possible tuning of
the (lateral) SPP resonance through geometric or material

parameters of the system. In this context, we highlight the role
of the corrector field. Similar considerations should hold for
other sheet geometries with edges and microscale defects.

C. Comparison to related homogenization results

The general homogenization result of [17], which provided
the main ingredient of our present study, is primarily con-
cerned with the derivation of an effective material property
in the form of the permittivity tensor εeff. This viewpoint is
less concerned with establishing concrete dispersion relations
for propagating modes. In the case with planar graphene
sheets (Sec. II), the homogenization result is compatible with
a dispersion relation derived via Bloch wave theory [14,30].

It is instructive to compare our effective permittivity tensor
εeff to the corresponding effective permittivity that underlies
the Kronig-Penney model for plasmonic crystals [45,46]. In
these works, with reference to the coordinate system of Fig. 2,
an arithmetic average is used to compute the matrix element
εeff

z while a harmonic mean is applied for εeff
x . This result

holds true in the long-wavelength limit which is equivalent
to our assumption that βd → 0. The homogenization result
is compatible with our Eq. (9) if the sheets are translation
invariant. In this case, the harmonic and arithmetic means give
the same result provided that the permittivity and conductivity
are spatially constant. More generally, however, the main dif-
ference between the two results is that the role of the harmonic
mean is replaced by a weighted arithmetic average governed
by the corrector field χ‖ in our formalism. For example, the
picture drastically changes from the situation of translation-
invariant sheets when one introduces fine-scale lateral SPP
resonances that do not vanish in the long-wavelength limit.
This is the case for the nanoribbon configuration (Secs. IV and
V): the resonances of Fig. 7 are solely caused by the corrector
field and cannot be captured directly by a harmonic average.

D. Stability of the homogenization result under
random perturbations

An important question concerns the stability of the homog-
enized Fresnel coefficients under some random variation of
the problem parameters. A complete or rigorous answer to
this question lies beyond our present scope. We are tempted,
however, to present some brief heuristic arguments that ad-
dress some notable cases. We mostly restrict our discussion to
the stability of the entries of the effective permittivity tensor
εeff. The stability of related observable quantities such as the
Fresnel coefficients can in principle be assessed from their
respective formulas by applying the normal distribution for
the error of εeff. In this vein, we do not expect an error
amplification [cf. Eqs. (7) and (8)]. We also do not address
any homogenization errors beyond the finite-size effects that
were already studied numerically in Sec. V.

Recall that the effective permittivity tensor εeff is given by
Eq. (6). We heuristically distinguish two types of perturba-
tions: (i) random variations that mainly influence the aver-
aging procedure and change the corrector contribution neg-
ligibly; and (ii) random variations that change the corrector
contribution appreciably. In the present setting of nanoscale
resonators (conducting sheets intercalated in dielectrics),
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examples for type (i) include random variations of periodicity,
alignment, and orientation that keep the shape and dimensions
of the nanoscale resonator intact. In this case, we expect
that the homogenization procedure is well controlled, and
thus stable.

The situation is different for random variations of type (ii),
which modify essential geometric features of the resonators.
Examples for this type include random variations of the ribbon
width, or the Drude weight of the surface conductivity. By
revisiting the Dirichlet approximation (11) and Table I, we
expect that the homogenization procedure remains stable as
long as random variations for length scales under type (ii) are
sufficiently smaller (in some sense) than the SPP wavelength:
then, resonance frequencies will only shift slightly. Hence, it
is reasonable to expect that random variations will only lead
to slight broadening of the computed, unperturbed resonance
behavior. (Regarding the complementary transmission spec-
trum, the unperturbed behavior is shown in Figs. 7 and 8).

E. Extension: Waveguide modes in plasmonic heterostructures

Our computational framework can be used to determine
waveguide modes supported by plasmonic crystals of flat
sheets at any given frequency ω. The objective is to obtain
the wave number kz as a function of ω (see Figs. 1 and 2).
In principle, a multitude of such modes may exist for some
fixed ω.

This problem is equivalent to searching for certain types
of singularities (poles) in the Fresnel coefficients R and T as
functions of the, in principle complex, variable kz. A related
question is how the resulting wave numbers kz of the layered
structure compare to their counterparts of the homogenized
crystal. An appeal of our formalism is the incorporation
of geometries other than translation-invariant sheets via the
corrector field (cf. [10]).

To illustrate some of the technical aspects of determining
kz(ω), we turn our attention to Eqs. (3) and (7) which pertain
to the Fresnel coefficients of the layered and homogenized
structure, respectively. By setting equal to zero the denomi-
nator of Eq. (3), we obtain the dispersion relation

ε̃s+ t1+ − ε̃s− t2+ ei2βd = 0.

The admissible solutions klr
z (ω) of this equation yield the

lateral waveguide modes of the full layered structure. On the
other hand, the homogenized dispersion relation is

ε̃s+ ε̃0+ − ε̃s− ε̃0− ei2βeffH = 0,

with possible solutions khm
z (ω). The question is how the values

for klr
z (ω) compare to those for khm

z (ω). This question can
be addressed numerically for distinct geometries. A detailed
study lies beyond our present scope.

It turns out that the answer to the above question depends
on the order of the mode, i.e., how high the value of |kz| needs
to be for fixed ω. Because our homogenization procedure is
valid for slowly varying and low-energy waves, it can provide
reasonably accurate results for low values of |kz|. In contrast,
our homogenized results may become questionable for suffi-
ciently large |kz|. The situation regarding the homogenization
error for kz (for fixed ω) versus the mode number is analogous

to that for ω̃n versus n depicted in the last two columns
of Table I.

These considerations point to the need for extending the
homogenization procedure to high values of |kz|. In the
transfer-matrix approach, for translation-invariant sheets, we
can seek this extension by relaxing the main assumptions of
Sec. II C. More precisely, in the limit as k0d → 0 we should
assume that

|βd| � const,

∣∣∣∣ωμσ

β

∣∣∣∣ 	 1, σ�d � const.

The first condition now replaces the previously applied state-
ment |βd| 	 1. The resulting expansions for R and T are
deemed as manageable in this case.

For more general geometries, when the transfer-matrix ap-
proach is not directly applicable as above, the homogenization
procedure needs a delicate modification to accommodate high
values of |kz|. In this case, microscale details of the conducting
sheets are incorporated into the appropriate (nontrivial) cor-
rector field. This problem is the subject of work in progress.

VII. CONCLUSION

In this paper, we studied analytically and numerically the
wave transmission through plasmonic crystals for a wide
range of frequencies. These structures consist of a finite
number of mutually parallel conducting sheets intercalated
between dielectric hosts, and are practically appealing. We
computed the associated Fresnel coefficients by two alternate
approaches. One method relies on direct computations for the
full layered structure. Another approach makes use of homog-
enization, i.e., the replacement of the individual layers by an
appropriately determined, in principle anisotropic, continuous
medium in a slab of equal total thickness. We considered
the two distinct geometries with infinite, translation-invariant
sheets and nanoribbons.

Our results indicate the very good accuracy of the homog-
enized formula for the complementary transmission spectrum
even for a relatively small number of layers. This result is
a highlight of our analysis and numerics. In the case with
nanoribbons, the maximum relative error occurs at SPP-
related resonance frequencies. Notably, the first few (lowest)
frequencies are captured accurately by the corrector field
of the homogenization procedure which enters the effective
permittivity tensor. This field incorporates effects from details
of the microscale geometry, e.g., edges and defects. The use
of the corrector in accurately identifying lateral resonances
in layered plasmonic structures with finite total thickness is
another noteworthy ingredient of our work.

A couple of open problems inspired by our work should be
mentioned. It would be of interest to extend the computations
to other configurations of possible experimental relevance
such as those with flat microdisks or curved sheets. Another
open task is that of a thorough stability analysis of the ho-
mogenization results under random variations of the problem
parameters that would quantify the heuristic arguments of
Sec. VI D. The homogenization procedure described here is
applicable to low enough wave numbers. It must be properly
modified to accurately capture effects of high wave numbers.
This issue arises in the study of waveguide modes allowed
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to propagate through the plasmonic crystal. This problem
deserves some attention.
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APPENDIX A: DETAILS OF TRANSFER-MATRIX
APPROACH

In this Appendix, we provide details for solving the
full transmission problem of Sec. II via the transfer-matrix
method. The incoming plane wave has TM polarization. First,
we review the derivation of the dispersion relation β(kz ) for
the wave number in the x direction in the anisotropic medium
of dielectric permittivity ε(ω). Second, we sketch the steps
for deriving explicit formulas for the Fresnel coefficients
R(kz ) and T (kz ) that characterize the plane-wave propagation
through the layered structure of Fig. 1. Our approach is based
on applying a cascade of elementary transmission problems.

1. Derivation of dispersion relation β(kz )

Let us first describe the dispersion of a TM-polarized plane
wave propagating in a homogeneous anisotropic medium
of permittivity ε = diag (εx, εy, εz ). Consider the following
ansatz for the electric field:

E(r) = E eik·r,

where k = (kx, ky, kz ), r = (x, y, z), and E is a constant vector.
Maxwell’s equations imply the statement

k × (k × E ) + ω2με E = 0,

which must be solved for nonzero E .
For TM polarization, we write E = (Ex, 0, Ez ) and k =

(β, 0, kz ). Hence, the above equation yields the system(
ω2με⊥ − k2

z βkz

βkz ω2με‖ − β2

)(
Ex

Ez

)
= 0,

where ε⊥ = εx and ε‖ = εz. This linear system has a nontrivial
solution (Ex, Ez ) if(

ω2με⊥ − k2
z

)
(ω2με‖ − β2) − β2k2

z = 0,

which yields Eq. (1) for β(kz ) (see Sec. II).

2. Two elementary transmission problems

Next, we study two basic transmission problems in order
to simplify the analysis for the full layered structure by the
transfer-matrix approach. These problems are as follows: (i)
propagation into an anisotropic dielectric of permittivity ε

by a given distance; and (ii) transmission through a sheet of
surface conductivity σ .

(i) Propagation in dielectric host by distance L. For alge-
braic convenience, we use the x-dependent part E (x) of the
z component Ez(x, z) of the electric field from Sec. II. At
position x = x1, this E (x) has the form

E (x = x1) = A−e−iβx1 + C−eiβx1 .

Hence, at position x = x2 = x1 + L we have

E (x = x2) = A+e−iβx1 + C+eiβx1 ,

where(
A+
C+

)
= TI(L)

(
A−
C−

)
, TI(L) =

(
e−iβL 0

0 eiβL

)
. (A1)

Recall that β is given by Eq. (1).
(ii) Transmission through conducting sheet. Suppose that

a sheet with conductivity σ is situated at x = 0, between two
dielectrics of permittivity ε. Let us take

E (x) = A−e−iβx + C−eiβx, x < 0.

After transmission through the sheet, the related amplitudes
change; thus, we have

E (x) = A+c−iβx + C+eiβx, x > 0.

We need to describe the matrix TII that connects (A+,C+) and
(A−,C−).

For this purpose, let us consider the boundary conditions
obeyed by the electromagnetic field across the sheet. First,
Ez(x, z) must be continuous at x = 0 [31]. Thus, we impose
the condition

E (0+) − E (0−) = 0, (A2)

where the statement x = 0+ (x = 0−) means that x approaches
0 from above (below). In addition, the surface current density
induced on the sheet causes a jump on the tangential compo-
nent By of the magnetic field at x = 0. By use of Maxwell’s
equations we can express By in terms of Ez. Thus, we
require that

iωε⊥
k2
⊥ − k2

z

{
dE (0+)

dx
− dE (0−)

dx

}
= σE (0), (A3)

where k2
⊥ = ω2με⊥ (see Sec. II).

By replacing E (x) in Eqs. (A2) and (A3) by the formulas
involving A± and C±, we obtain the relation(

A+
C+

)
= TII

(
A−
C−

)
,

where

TII =
⎛
⎝1 + ωμσ

2β

k2
⊥−k2

z

k2
⊥

ωμσ

2β

k2
⊥−k2

z

k2
⊥

−ωμσ

2β

k2
⊥−k2

z

k2
⊥

1 − ωμσ

2β

k2
⊥−k2

z

k2
⊥

⎞
⎠. (A4)
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For later algebraic convenience, we choose to rewrite the
above expression for transfer matrix TII in an alternate form
by using the effective wave number

βeff = β

√
1 + i

ωμσ

β

1

βd

k2
⊥ − k2

z

k2
⊥

.

Recall that d denotes the interlayer spacing (see Fig. 1). The
above definition of βeff is motivated by the homogenization
procedure of Sec. IV, where the ratio σ/d is treated as a (d-
independent) constant if |βd| 	 1 (see [14,17]). Accordingly,
we obtain the expression

TII =
[

1 − id
2β

[(βeff )2 − β2
] − id

2β
[(βeff )2 − β2]

id
2β

[(βeff )2 − β2] 1 + id
2β

[(βeff )2 − β2]

]
.

3. Transmission through full multilayer system

Next, we sketch a derivation for the Fresnel coefficients
R(kz ) and T (kz ) of the full layered structure (see Fig. 1). Our
procedure relies on the successive application of results for
the elementary problems (i) and (ii) stated above.

Let the field E (x) in a slab of the layered structure, for (n −
1)d < x < nd , be described by

E (x) = A(n) e−ikxx + C(n) eikxx, kx = β; n = 1, . . . , N.

From Appendix A 2, the amplitudes A(n) and C(n) satisfy(
A(n+1)

C(n+1)

)
= {TI(L)}−1TIITI(L)

(
A(n)

C(n)

)
, L = nd

if n = 1, . . . , N − 1. Note the identity TI(md ) = {TI(d )}m for
any integer m. By successively applying the above recursive
relation for (A(n),C(n) ), we obtain(

A(N )

C(N )

)
= T

(
A(1)

C(1)

)
, T = T 1−N

I (TIITI )
N−1, (A5)

where the symbol TI stands for TI(d ).
A remark on the analytical computation of the matrix T

is in order. This calculation is carried out via the diago-
nalization of TIITI (see also Appendix B). Accordingly, we
explicitly determine the invertible matrix S such that TIITI =
S diag(λ+, λ−)S−1 where λ± are the eigenvalues of TIITI.
Clearly, this S is formed by eigenvectors of TIITI, which are
calculable in closed form. Hence, we write

T = T 1−N
I S diag(λN−1

+ , λN−1
− )S−1,

where T 1−N
I = TI ((1 − N )d ). The formulas for S and λ± as

well as an ensuing approximation for T if N is large and
βd → 0 are discussed in Appendix B.

The remaining task here is to relate the amplitudes A(n)

and C(n) for n = 1 and N to coefficients R and T . Therefore,
we need to apply the suitable transmission conditions at the
corresponding interface between dielectric host and air or
substrate, at x = 0 or x = Nd = H .

First, we consider the interface at x = 0. Recall that

E (x) = Eair(x) = R e−ikx,0 x + eikx,0 x, x < 0

while E (x) = A(1)e−iβx + C(1)eiβx if 0 < x < d . By requiring
that the field components Ez(x, z) and By(x, z) be continuous

at x = 0, we find that⎧⎨
⎩

A(1) + C(1) = 1 + R,

iωμε⊥
k2
⊥−k2

z
(iβ )(−A(1) + C(1) ) = iωμε0

k2
x,0

(ikx,0)(−R + 1).

This system yields⎧⎨
⎩A(1) = 1

2

[
1 + R − ε0

ε⊥
k2
⊥−k2

z

kx,0β
(1 − R)

]
,

C(1) = 1
2

[
1 + R + ε0

ε⊥
k2
⊥−k2

z

kx,0β
(1 − R)

]
.

(A6)

Similarly, consider the interface at x = H . The transmitted
wave is

E (x) = E sub(x) = T eikx,s x, x > H = Nd

while E (x) = A(N )e−iβx + C(N )eiβx for (N − 1)d < x < H .
Accordingly, we obtain the system⎧⎪⎨

⎪⎩
A(N ) e−iβNd + C(N ) eiβND = T eikx,sNd ,
iωμε⊥
k2
⊥−k2

z
(iβ )(−A(N ) e−iβNd + C(N ) eiβND)

= iωμεs

k2
x,s

(ikx,s)T eikx,sNd

which entails⎧⎨
⎩A(N ) = T

2 ei(β+kx,s )H
(
1 − εs

ε⊥
k2
⊥−k2

z

βkx,s

)
,

C(N ) = T
2 ei(−β+kx,s )H

(
1 + εs

ε⊥
k2
⊥−k2

z

βkx,s

)
.

(A7)

After some algebra, Eqs. (A5)–(A7) yield the Fresnel coeffi-
cients R(kz ) and T (kz ). The resulting formulas are displayed
compactly in Eq. (3) (Sec. II).

APPENDIX B: DERIVATION OF HOMOGENIZED SYSTEM
VIA TRANSFER-MATRIX APPROACH

In this Appendix, we outline the derivation of the homoge-
nized Fresnel coefficients Reff and T eff in the limit of small
interlayer spacing d , as βd → 0. To this end, we use the
framework of Appendix A.

Accordingly, we can write

TIITI = S
(

λ+ 0
0 λ−

)
S−1,

where S is a suitable nonsingular matrix and λ± are the two
eigenvalues of TIITI. A direct computation for λ± under the
conditions

|βd| 	 1,

∣∣∣∣ωμσ

β

∣∣∣∣ 	 1, σ�d � const

yields the formula

λ± � e±iβeffd ; βeff =
√

β2 + iωμσ

d

k2
⊥ − k2

z

k2
⊥

.

Recall that the effective wave number βeff was introduced
in Eq. (2) in an ad hoc fashion. After some algebra, the
transformation matrix S can be written as

S =
(

β̌ eiβd β̌ eiβd

λ+ − (1 + β̌ )eiβd λ− − (1 + β̌ )eiβd

)
,

075308-15



MAIER, LUSKIN, AND MARGETIS PHYSICAL REVIEW B 102, 075308 (2020)

where β̌ = id
2β

{β2 − (βeff )2}. A small-d expansion for[
t11 t12

t21 t22

]
= [TIITI]

N−1 = S
(

λN−1
+ 0
0 λN−1

−

)
S−1

furnishes the formulas

t11 � cos(βeffH ) − i
β2 + (βeff )2

2ββeff
sin(βeffH ),

t12 = −t21 � − i
(βeff )2 − β2

2ββeff
sin(βeffH ),

t22 ≈ cos(βeffH ) + i
β2 + (βeff )2

2ββeff
sin(βeffH ).

The homogenized coefficients of Eq. (4) are obtained by
substitution of the above approximations for ti j into Eq. (3),
and the simplifications kz = 0 and εs = ε0.

APPENDIX C: GENERAL PERIODIC HOMOGENIZATION

In this Appendix, we review the general homogenization
result for periodic plasmonic crystals [17]. The underlying
methodology relies on two-scale asymptotic expansions for
solutions of the time-harmonic Maxwell equations. The main
assumptions can be stated as follows. First, the material has
a suitable periodic microstructure. This means that material
parameters such as the permittivity of the dielectric host and
the surface conductivity of the sheets have a well-defined
microscopic periodicity which can be expressed via a rep-
resentative volume element (cell) (see Fig. 2). This element
is repeated periodically in all spatial directions; in partic-
ular, in the x direction its length is d which signifies the
microscale size.

Second, a separation of length scales has to occur. In this
regard, recall the hypotheses of Sec. II C. The main assump-
tion of scale separation is that the wavelength of plane-wave
propagation in air (with wave number k0) is much larger than
the length scale of the TM-polarized SPP on the single sheet.
The latter length scales linearly with σ [4,31] and should be
of the order of d here. Hence, we apply the familiar conditions
(see Sec. II C)

|βd| 	 1,

∣∣∣∣ωμσ

β

∣∣∣∣ 	 1, σ�d � const.

Consequently, the layered plasmonic crystal can be replaced
by an appropriate continuous anisotropic medium which has
an effective permittivity tensor εeff [17]. The formula for
this εeff in principle contains (i) a weighted bulk average of
the permittivity ε of the dielectric host, and (ii) a similarly
weighted surface average of the conductivity σ of the 2D
material. The weights for these averages depend on a (lo-
cal) fine-scale, vector-valued corrector field χ, defined in the
representative volume element (Fig. 2) [17]. This χ satisfies
a boundary-value problem in the representative volume ele-
ment; the boundary conditions account for wave transmission
through the arbitrarily shaped conducting sheet. In the present
case, where ε = diag(ε, ε, ε) describes the permittivity mi-
crostructure, the bulk average contribution trivially reduces
to ε [17]. In contrast, the surface average can be compli-
cated for arbitrary sheet geometry. More precisely, we obtain

the following formula for the effective-permittivity matrix
elements [17]:

εeff
i j = εδi j − σ (ω)

iωd3

∫
�

[τ j + ∇τχ j (r)] · ei dr, (C1)

where i, j = x, y, z; cf. Eq. (6). Each scalar field χi(r) is a
potential-type function that is periodic in the representative
volume element and encodes features (e.g., edges) of the
sheet geometry. Therefore, χi captures fine-scale lateral plas-
monic resonances that are possibly excited in the 2D material.
By asymptotics, we have obtained the governing differential
equation and associated boundary conditions for χi(r) [17]. In
particular, in the interior of the representative volume element
but outside the sheet �, the field χi(r) solves the Laplace
equation, viz.,

�χi(r) = 0; (C2)

� = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2 denotes the Laplacian.
In addition, χi obeys two transmission conditions across

�. First, the field χi(r) must be continuous across �; thus,
its tangential derivatives also are. This continuity condition
ensures that the tangential electric field is continuous on �.
Second, the normal derivative of χi has a jump discontinuity
proportional to σ across �, viz.,

ν · [(∇χi )
+ − (∇χi )

−] = σ (ω)

iωε
∇τ · (τ i + ∇τχi ) (C3)

on �. In the above, Q± denotes the value of the vector Q
on a prescribed side (±) of the oriented surface �, where by
convention the vector ν points outward the “+” side. Eq.s (C3)
entails that the electric field normal to the conducting sheet
experiences a jump proportional to the surface charge density
on �. This condition also accounts for the jump of the
tangential magnetic field due to the surface current density on
�. Note that the term containing ∇τ · τ i in Eq. (C3) can play
the role of a forcing for the Laplace Eq. (C2). This term can be
nonzero on a nonplanar surface � (e.g., a circular nanotube).

Another boundary condition for χi arises from the require-
ment that the electric field normal to possible edges of the
conducting sheet must vanish [42]. This condition can be
written as

n · (τ i + ∇τχi ) = 0 along edge, (C4)

where n is the outward-pointing unit vector normal to the
edge and tangential to the surface �. By this condition, the
term proportional to n · τ i can play the role of a forcing for
the Laplace equation obeyed by χi, if the edge is present and
n · τ i 
= 0 (e.g., for a nanoribbon). Equation (C4) holds in
the absence of a line charge density along the edge; see the
discussion and extension in [17].

We can provide a plausibility argument for the microscale
character of χi(r) by recalling our scaling hypothesis σ�d �
const. By assuming that χi(r) depends on r/d and nondimen-
sionalizing spatial coordinates, we realize that σ�d appears
on the right-hand side of Eq. (C3). Thus, this condition is
independent of d (as k0d → 0).

A few remarks on the geometry with nanoribbons are in
order (see Fig. 2 and Sec. IV B). In this configuration, the only
nonzero component of the corrector χ is χz (χx = 0 = χy)
[17]. We can explain the vanishing of the components χx
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and χy heuristically by resorting to the above boundary-value
problem. Simply notice that each of these components (χi

for i = x, y) satisfies the Laplace equation with homoge-
neous (forcing-free) boundary conditions across the surface
� and along the nanoribbon edges which form the boundary
of �. More precisely, ∇‖ · τ i = 0 on the right-hand side
of condition (C3) for all i; and n · τ i = 0 for i = x, y in
Eq. (C4). Hence, by the expected uniqueness of the solution
to the cell problem for χi, we have χx = 0 = χy. In contrast,
χz is nonzero because n · τz = ±1 along the edges. Thus,
the solution to the Laplace equation for χz is affected by
the forcing term in the requisite boundary condition along
the edges.

Hence, for the nanoribbon setting, Eq. (6) implies that the
effective permittivity tensor εeff is represented by a diagonal
matrix with distinct elements εeff = diag(εeff

x , εeff
y , εeff

z ) and
εeff

x 
= εeff
y 
= εeff

z 
= εeff
x ; see Sec. IV B for more details. This

observation motivates the simplified but practically useful
analysis of Sec. IV A.

We note in passing that, if needed, Eq. (C1) combined with
the above boundary-value problem for χ can be readily ex-
tended to a more general setting involving tensor-valued and
spatially dependent material models for permittivitiy ε(ω, r)
and surface conductivity σ (ω, r) [17]. In this paper, however,
we restrict the discussion to the more practical situation of
homogenization effects due to the sheet geometry alone.
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