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We apply classical homogenization to derive macroscopic relaxation laws for crystal surfaces with distinct
inhomogeneities at the microscale. The proposed method relies on a formal multiscale expansion in one
spatial coordinate. This approach transcends the coarse graining applied previously via Taylor expansions.
Our work offers an extension of the static homogenization formulated in a brief report [D. Margetis,
Homogenization of reconstructed crystal surfaces: Fick’s law of diffusion, Phys. Rev. E 79 (2009) 052601]
to account for surface evolution. The starting point is the Burton-Cabrera-Frank (BCF) model for the
motion of line defects (steps) separating nanoscale terraces. We enrich this model with sequences of
distinct material parameters, i.e., disparate diffusivities of adsorbed atoms (adatoms) across terraces,
kinetic sticking rates at step edges, and step energy parameters for elastic-dipole interactions. Multiscale
expansions for the adatom concentration and flux are used, with a slow diffusive time scale consistent
with the quasi-steady regime for terrace diffusion. The ensuing macroscopic, nonlinear evolution laws
incorporate averages of the microscale parameters.
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1. Introduction

Crystal surface structures are critical ingredients of thin film
epitaxy as well as surface chemistry and catalysis. Aspects of
surface evolution remain an area of active interest [ 1-3]. A crucial
issue is to elucidate how the microscale dynamics of constituent
atomic defects influence the surface morphological evolution at
large scales. This concern broadly motivates the present paper.

Vicinal crystal surfaces are characterized by nanoscale flat
regions (terraces) oriented in the high-symmetry direction and
separated by line defects (steps) which are typically one atomic
layer high. The steps considered here are monotonic (of the same
‘sign’). Their number is fixed by the miscut angle set in laboratory
experiments [2].

A standard approach to deriving macroscopic limits of stepped
surfaces essentially relies on Taylor expansions for the step
positions and step density; see, e.g., [4-9]. This coarse graining is
appropriate when material parameters remain unchanged across
terraces. However, this approach is in principle inadequate if the
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surface has strong inhomogeneities, namely, distinct diffusivities
and kinetic rates across terraces at the nanoscale. We herein call
such a stepped surface ‘composite’.

In this paper, we address the question: What is the macroscale
description of surface relaxation consistent with the microstruc-
ture inhomogeneities of a composite stepped surface? To provide
an answer, we invoke singular perturbations, i.e., classical homog-
enization and multiscale expansions, in one spatial coordinate.
This approach is deemed more general than the previously ap-
plied coarse graining. Our main results comprise evolution laws
that contain microscale averages of material parameters.

It is tempting to claim that homogenization is not needed
since the requisite averaging may stem from an electric circuit
analog for the stepped surface [6,10]. In this view, for instance,
sequences of terrace diffusivities correspond to in-series electric
conductances per unit length; hence, the average diffusivity would
be the appropriate, effective circuit parameter. We believe that this
view is incomplete for at least two reasons. First, it is static, leaving
out the issue of time scales and evolution. Second, in this picture
effective circuit parameters are determined at the (microscale)
level of a few steps and terraces. This way of determining effective
parameters is conceptually different from the averaging required
by homogenization in the macroscopic limit.

The present work forms an extension of a recent, brief report
on Fick’s law for surface diffusion [11]. Here, more details on the
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derivation of Fick’s law are provided, the roles of time scales and
the mesoscale are quantified and discussed extensively, and the
continuum laws comprise more variables, e.g., the step chemical
potential (a thermodynamic force).

Our analysis is formal, leaving open questions. The main focus
is the consistency of macroscopic laws with a microscale model of
a composite surface. Accordingly, the continuum limit is assumed
to exist. OQur derivation of Fick’s law relies on arguments in
terms of the classical solution for a microscale diffusion equation.
Strictly speaking, our asymptotic (multiscale) expansion approach
is mathematically inadequate since the related coefficients of the
diffusion equation do not satisfy certain regularity assumptions.
Here, we do not address this issue, circumventing the use of
more elaborate techniques [12,13]. Instead, we aim to give some
intuition and guidance for further, more mathematically rigorous
analysis by exemplifying physical assumptions and the core
elements of the homogenization procedure.

We restrict attention to one spatial coordinate; and do not
study composite stepped surfaces in full 2 + 1 dimensions. We
believe that the extension of continuum laws to 2 4+ 1 dimensions
would require a modified homogenization approach. This case is
discussed in Section 4.

We assume that the reader is familiar with the basic concepts
of epitaxial relaxation. For reviews on related topics, see, e.g.,
[1,2,14,3,15].

1.1. Physical motivation

There are at least two categories of applications that physically
motivate our study. First, semiconductor surfaces may naturally
exhibit structural phases that depend on the temperature and crys-
tal misorientation angle. This “surface reconstruction” amounts to
material parameters that can vary appreciably across adjacent ter-
races and has received considerable attention. In particular, the
Si(001) system manifests a reconstruction in which dimer rows
(chains of bonded atoms) alternate from perpendicular to parallel
to step edges across terraces [16-19].

Another category of phenomena involves surface compounds
created by small amounts of solutes added on a crystal. Such
additions can cause dramatic morphological changes, affecting the
crystal shape and stability [20-24]. This observation implies that
artificial, composite surfaces may have interesting, unconventional
properties, and need to be explored systematically.

A feature common to both of the above cases is the existence
of microstructure inhomogeneities. However, it is reasonable to
expect that the surface appears homogeneous at a large enough
length scale.

1.2. Averaging and mesoscale

Our homogenization approach is adopted from the basic theory
of composites, e.g., [25,26]. The central theme is to identify
separate scales from the physical setting and governing equations
for steps, and then average out microscopic details in order to pass
to the full continuum limit. The averaging procedure is intimately
connected to the structure of the governing laws at the microscale.
By requiring that classical solutions, e.g., the mass concentration
and flux, of step flow remain bounded in the limit that the number
of steps is large, one can obtain a “solvability condition” giving rise
to an effective macroscopic description.

In this framework, the notion of the mesoscale arises natu-
rally [25]. Intuitively, one may think of the mesoscale as a surface
region small enough to capture the underlying inhomogeneities
yet sufficiently large to allow for reliable averaging. The variation of
material parameters and variables (e.g., step velocity) across steps

and terraces is evident at the mesoscale; but the corresponding av-
erages of interest vary slowly across such mesoscale regions so that
the full continuum limit makes sense.

The above idea permeates the study of diffusion in layered
media [27]. The homogenization scheme in [27] is static from
the outset; and includes the layer boundaries through the
values of a fast, continuous spatial variable. The mass (adatom)
concentration and flux are assumed to be continuous across these
boundaries [27]. In contrast, our setting encompasses relaxation
dynamics. The step edges (terrace boundaries) are moving; hence,
the step velocity law and step interactions play arole. Furthermore,
densities and fluxes are in principle discontinuous across step
edges because of the assumed attachment-detachment kinetics at
steps. The microscale Fick’s law for diffusion is complemented with
the step chemical potential.

1.3. Kinetic processes

Next, we spell out the physical mechanisms underlying our
model. We focus on surface relaxation, in the absence of growth.
The steps move as a result of mass conservation under two main
kinetic effects [2]: (i) the diffusion of adsorbed atoms (adatoms)
on terraces, often simplified via the “quasi-steady approximation”
by which adatom diffusion is supposed to equilibrate faster than
steps move; and (ii) the atom attachment-detachment at steps.
A variable entering this description is the (discrete) step chemical
potential, which is a thermodynamic force equal to the variation of
the step free energy with respect to the step positions. In our study,
this energy accounts for entropic and nearest-neighbor elastic-
dipole step-step interactions. Elements (i) and (ii) permeate the
celebrated Burton-Cabrera-Frank (BCF) model [28].

By comparison to realistic material systems, this setting appears
incomplete. For example, terrace diffusion anisotropies are not
included. The dipole character of step-step interactions here
does not fully describe long-range interactions that may be
present, e.g., on the reconstructed Si(001). Diffusion of atoms along
step edges, evaporation/condensation, desorption and external
material deposition are left out.

In particular, a study of surface reconstructions that accounts
for, e.g., the geometry of dimer rows with alternating orientations
on adjacent terraces of Si(100) [29,17], would require an in-depth
analysis of anisotropic effects in 2 + 1 dimensions. Furthermore,
the reconstruction generates internal stresses which may induce
monopole-dipole step-step interactions [30]. This effect is of
course not captured by the elastic-dipole model for steps used
here [31].

In the spirit of the BCF theory [28], we assume that step motion
occurs near thermodynamic equilibrium. This assumption is
believed to be adequate for surface relaxation at macroscopic time
scales. Material deposition from above and far-from-equilibrium
kinetics are not touched upon here.

We expect that the present one-dimensional (1D) setting is, in
a certain sense, minimal for surface reconstructions. Specifically,
our formulation singles out issues intimately connected to
averaging. We circumvent complications which may arise in a two-
dimensional (2D) geometry or richer kinetics.

1.4. Macroscopic limit

We pass to the full continuum in the limit of vanishing step
height, a, with fixed step density (surface slope). The ensuing
variables of interest are treated as ¢ (1), a-independent quantities.
As in previous treatments of continuum limits for step flow,
e.g., [5], the main macroscopic variables are the surface height, the
adatom flux, and the continuum-scale step chemical potential.
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Our analysis invokes certain simplifying hypotheses (and thus
bears respective limitations) that are usually present in the study
of continuum limits. Most notably, step trains are monotone and
facets are absent. The step monotonicity simplifies the analysis,
since the continuum limit is known to be questionable across
peaks and valleys; furthermore, the height function, h(x, t), is
considered invertible in x for any fixed t. Microscale effects near
facets are known to pose a challenging problem [32]. We assume
that (appropriate) microscale averages of interest vary sufficiently
slowly. The full continuum limit is assumed to exist rather than
proved to exist. The latter task would require a rigorous study of
(e.g., a priori estimates for) solutions to the discrete step flow.

We employ primarily formal arguments of classical homoge-
nization [33] similarly to studies of diffusion in layered media [27].
Mathematical niceties such as issues of convergence [34], although
necessary for a complete analytical understanding, lie beyond our
present scope.

1.5. Main results

Next, we summarize our main results, which include: (i)
Fick’s law, which relates the large scale adatom flux, $°(x, 7),
and step chemical potential w(x, ), on the basis of adatom
attachment-detachment boundary conditions at step edges; (ii) a
conservation law for the macroscopic height profile, h(x, 7), from
the step velocity law; and (iii) a variational formula for w(x, 7).
The macroscopic time variable t is discussed in Section 2.3. For
notational economy, we omit the time (7-) dependence unless we
indicate otherwise.

1.5.1. Adatom flux (Section 3.1)
We will show that the macroscopic adatom flux is

9%, T) = —De(x; m(x, 7)) 30°"°(x, 7). (1)

In the above, 00 is the continuum-scale version of the (discrete)
equilibrium concentration, p;%, at the ith step; and D, is the
effective parameter

e m(e) = — 2 2)
o 1+ me’
where D° is the average diffusivity
D°(x) = lim Dj,

*) Nim D

nj—00
—1

_ 1 Ly
Dj=Dj€= Yit1 — Vi (3)

Yie = Vi 4 Dir1(0)

Here, y; = x;/€ where x; is the i-th step position, D; are microscale
diffusivities, I; is a set of integers expressing the mesoscale (see
Section 2.2),and € = a/A (a: step height) where X is a macroscopic
length; T = €2t (t: time). The ¢° is

2D (x) _
0 0 .
T =5 © K (x) = n}lino (ek;),
anOO
1
kx)=21|n" Z 1 + 1 (4)
T ! koi  Kkai ’
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where k, ; and kq ; are sticking rates for up- and down-step edges
and the factor of 2 is included by convention; k,; and kq; are
O(e~ 1) (see Remark 3). In (2), the variable m is defined as the
(average) surface slope (cf. Remark 3)

m(x,7) = lim (7).
njHOO
-1

m; = ”j_1 Zmi(r)_l - <Xi niex,' )7 )

i€lj *

where m;(t) = €/w;(r) and wj is the ith terrace width. We use
x = x; for some i = i(j) € Ij; the choice of i becomes immaterial as
nje | 0 (with nj — o00).

Our derivation of (1) aims to clarify why the concentration
entering Fick’s law needs to be identified with ¢®%-°. This point was
stated but not shown in [11]. Egs. (1)-(5) are supplemented with
the constitutive law [2]

00 (%) = pul1 4+ pnx)/91, (6)

where ¢ is the Boltzmann energy (absolute temperature in units
of energy) and p, is a positive constant.

1.6. Adatom mass conservation (Section 3.2)

We will establish the relation
mx, DU (x, 1) + %F°(x, 1) =0, (7)

where u°(x, ) denotes the continuum-scale step velocity (see
Remark 4),

u(x, 7) = lim i,
J 8
=n"Yy w, w=e (1) = dxf/dr, ®)

and m(x, t) is given by (5). We will show that

a:h(x,7) = mkx, 1) u’(x, 1) (T =€ t), 9)

which describes the motion of the effective level set for the graph
h(x, T). Thus, (7) becomes the familiar conservation law d:h +
23,9° = 0(£2 = €? is the atomic area).

1.7. Chemical potential (Section 3.3)

The fully continuum version of the step chemical potential is
the variational derivative

B (68[h]> (10)
= )

which is equivalent to the formula [5]

&(1) =/u(x, 7) 8. hdx, (11)
Uu

where U expresses the relevant surface region. The functional
&[h(-, T)] is the large-scale surface free energy (continuum limit
of the energy, Ey, of N steps)

E[h(-, 7)] = lim(eEy)
€l0

3

The effective interaction parameter g°(x, v) is defined via (cf.
Definition 6)

= 7/ g%%x, vy m(x, v)° dx. (12)
u

gk, 1) = lim g(1),
nje 10
nj~>oc

gjmjz =n 2:(3‘§f,'/2)mi2

i€l

(13)
@& =o0),

where g; denotes the microscopic step-step interaction strength.
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The second line of (12) forms a choice in accord with the
elastic-dipole origin of the step interaction energy. Alternatively,
it suffices to define &[h] as lim._,o(€Ey) without resorting to the
effective parameter g°. In principle, g° depends on the surface
slope, m(x, 7). In the special case with a non-composite stepped
surface, by § = § = const. we have g®(x) = 3g/2 provided the
step densities squared, m,-z, vary sufficiently slowly within each I,
so that there is no difference between the mesoscale harmonic and
arithmetic averages.

1.8. Organization and notation

The remainder of the paper is organized as follows. Section 2
offers an overview of the model, our assumptions and the
homogenization formalism: we introduce the physical setting and
formulate the equations of step motion (Section 2.1); introduce
aspects of the relevant scales (Section 2.2); and briefly describe
notions of homogenization (Section 2.3). In Section 3, we give
details of the requisite multiscale expansions, order by order in
perturbation, for 1 + 1 dimensions; and subsequently derive the
desired evolution laws. In Section 4, we discuss our findings and
pending issues, particularly notions of the weak formulation for
homogenization and the case of 2 + 1 dimensions.

Throughout this paper, the terms ‘full continuum limit’,
‘macroscale’ and ‘macroscopic limit’ are used interchangeably.
The time dependence is often (but not always) suppressed for
notational economy. The symbol Q!(x, y), where [ is an integer,
denotes the coefficient of €' in the e-perturbation expansion for
Q.Byf = 0O(g) we imply that C; < |f(z)/g(z)| < C, for some
positive constants C; and C; as z approaches an extreme value. By
f = o(g) we mean that |f(z)/g(z)| | 0 as z approaches a given
limit. The statement 61 — Q is used loosely to imply that, in the

continuum limit, the average Qj (over the jth mesoscale region)
approaches Q.

2. Model and scale separation

Our goal with this section is to clarify the scale separation, and
related concepts and notation needed in homogenization.

First, we describe the setting of steps and terraces in 1 + 1
dimensions. Second, we discuss the underlying scales. The smallest
scale is the step height, a, and the largest scale is the size, A, of the
crystal sample. We define a mesoscale as an intermediate region
of size d, a <« d < . Third, we briefly review basic elements of
classical homogenization.

2.1. Microscale model

The geometry consists of N steps descending in the positive
x direction; see Fig. 1. We assume that all steps have the same
height, a. The step positions are x;(t); i = 0, ..., N — 1 and
N > 1. Let x;(0) > x;_1(0). The step ordering is assumed
fixed for t > 0 because of the dipolar repulsive step interactions
(see (19)). (A proof that the step ordering is preserved by the flow
is feasible but not pursued here.) We conveniently apply screw
periodic boundary conditions. To ensure that the surface slope is
fixed, we set w;(t) := x;(t) — xi_1(t) = O(a) for the ith-terrace
width, w;. By xy_1(0) — xq(0) = ©()) for N > 1, we (initially)
have

N—1
Z w;(0) = @(Na) asN — oo, (14)
i=1

where the total length is A = Na = ©(1). Define € = a/A and set
A=1

h

Xi-i Xj Xivi x

i

Fig. 1. Schematic (cross section) of steps with atomic height a and positions x;(t)
in one spatial coordinate (x). The ith terrace is the region {x|x;_1 < x < x;}.

Consider the ith terrace, 7y = {x | x_1(t) < x < x;(t)},
and let U; = Uf’;l Tit, lUs] = ©(X)). The adatom concentration,
pi(x, £) = pf (x, ), is defined via

0x[Di(x)9xpi] = 3¢ i

where D; = Df,t € (0,T]and T = T¢ is large enough to account
for macroscopic observations (Section 2.3). Note that we do not
apply the quasi-steady approximation, d;0; = 0, at this stage.
Accordingly, (15) gives rise to convective terms in the overall flux
of adatoms impinging on a step edge; cf. (17). The diffusivities D;(x)
are positive and satisfy
0 <Dy <Di(x) <Dy fori=0,1,...,N—1. (16)
Dy, and Dy are constants (independent of N).

Let o(-, t) be the extension of the adatom concentration on
U D U, (U;: closure of Uy) forall t > 0; e.g., U = [0, 1]. We must
have o€ = pf forx € 7;; and all t > 0. Let us assume that o (-, t)

is C2 (twice continuously differentiable in x) on U; and bounded on
U. At each x = x; this o€ satisfies [28]

forx € T, (15)

gf(xi_7 t) - viQE(X[_’ t) = kd.i[gg(xi_v t) - pieq]’ (173)
=465, 0 + it () = kilo (7, ) — o],
v = dXi/dt. (17b)

In the above, Q(xii) is the restriction of Q (x) (where Q = ¢, o) at
x = x; from left (—) or right (+). The variable ¢ (x, t) is the terrace
adatom flux defined by Fick’s law g¢(x, t) = —Df(x)dx0°(x, t)
in 73; this is supplemented with the convective term v;o¢ at
the step edge, where v; is the step velocity. Note that g¢(-, t)
is C! (continuously differentiable) on U; and bounded on U, if
Di(x) € C'(Up). In (17), the parameters k,; are positive kinetic
attachment-detachment rates for an up- (¢ = u)and adown- (£ =
d) step edge, accounting for the Ehrlich-Schwoebel barrier [35,36].

Next, we describe pfq, which incorporates step energies, in

terms of {x;}1' [2]:

pit = el ~ p (14 /), il < 0, (18)

where u; is the step chemical potential (a thermodynamic force),
and p, is a given positive constant. In principle, we could have
considered p, as varying with i, replacing p, by p.; = p.R;. Then,
define p; := pi/Riand p;* := p{!/R;. Because of linearity, the form
of step equations (15), (17) and (22) remains intact; hence, drop
the tildes and set p, ; = p, = const.

The quantity u; expresses step-step repulsions. If steps interact
entropically and as elastic dipoles, we have [2,31,37]

SEwIRl [ ( ¢ )3 3 (eﬂ
MHi = =€ 8i+1 —g|— ,
8x; Wiy1 wj

& =0(1) >0, (19)

where X := (x, . .

1 € 2
En[X] = = G| — | , 20
NIX] Z;gl (x,-—xm) (20)

., Xn—1), En[X] is the total step free energy,
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and the parameters g; are strengths of the dipolar step-step inter-
actions. Alternatively, u; can be defined through the formula [5]

N—-1
> v =Ey (E:=dE/dp), (21)
i=0
where v; = ¥; is the ith-step velocity [5].
The last ingredient is the step velocity law, or mass conservation
for adatoms:

Xi=vi=—(R/F T =g —vi- (0T =0 kx> (22)

where §2 is the atomic area and Q* := Q (x*); we henceforth set
2 =€

2.2. Mesoscale

The microscale material parameters introduced already are
{Di}, {ka.i, ku i}, and {g;}. In this section, we define an intermediate
scale, which facilitates the interpretation of averages emerging
from homogenization (Section 3) and is consistent with the
existence of the macroscopic limit. Averages of interest are invoked
in general terms but left unspecified in this section.

The main physical idea is that material parameters can
vary appreciably within numerous certain regions consisting of
consecutive terraces. However, (appropriately defined) material
averages over every such region vary slowly across many of these
regions. The notion of the mesoscale helps express this idea. This
statement is mathematically vague at the moment but points
to a plausible, and appealing, view which we adopt: despite
inhomogeneities at the microscale, the surface should appear
homogeneous at a large enough scale.

2.2.1. Some definitions

Consider M sequences of (consecutive) steps in the step train,
where M > 1and M = o(N) as N — oc. Let the jth sequence
contain n; steps labeled by i € I; := {i.(j), ix+1, ..., i,(j)} where
i,() == Y4 M i () := Yk, m — 1 with nj > 1and n; = o(N)
forj=1,...,M;andi.(1) .= 0,i,(M) = N — 1. Each n; is kept
fixed, but the total length of corresponding terraces can vary by
o(n;e) during evolution. All sequences in j are viewed as functions
of x.

So far, we have not specified how the above sequences of steps
are chosen. For this purpose, we resort to material parameter
averages (to be determined in Section 3). For fixed ¢, let the desired
(i.e., harmonic, arithmetic or induced) average for every {g“f},e,J be

denoted {E cf. Definition 6. To describe changes of these averages
across Ij’s, we define notions of slow variation.

Definition 1. (Discrete Version of Difference Quotient) The differ-
ence quotient of size p € Z \ {0} for the sequence {;f} is

Fo— &

8Pgf = (23)

Define 804_‘]-6 := 0 for definiteness.

Definition 2. (Discrete Version of Slow Variation) The sequence
it }j"i] is slowly varying if, for fixed and sufficiently small €, there
exist large integers j, (M) = o(M) and j,(M) with M — j, = o(M)
such that, for every j, <j <j.,

P8P | = o(Zf) all —p, <p <p:
M>10<j—ps j+p. <M),

where p.(j), p.(j) = o(M) and njp,, njp, = 0(N); ji, jo, Px, Po —
ocoase | 0.

(24)

The integers j,, j,, ps« and p,, in principle depend on ¢; p, and p,
signify by how much one must shift j so that appreciable changes
of the average {f occur. For any large (yet finite) M, these p, and
Do are small compared to M.

Remark 1. We henceforth assume that the sequence {I;} 21, where

[I;| = nj = o(N) > 1, is such that {g“ } is slowly varying.
Definitions 1 and 2 allude to transferrmg averages to a contin-
uum setting. Consider € as small but finite; and replace the index
Jj by the height variable h = h,;,. For a monotone step train, the
variable h naturally corresponds to the step number, i, since the
step height is constant; h; ~ hg — ie. Accordingly, we introduce a
(piecewise constant) function ¢€(h) such that ¢€(hi;) = g“f. We

call such a £€(h) a ‘continuous version’ of Ef. assuming that, in the
limit nje — 0, £ (h) approaches a continuous function ¢°(h).

Definition 3. (Continuous Version of Difference Quotient) The
difference quotient of size v € R\ {0} for a continuous version ¢ ¢ (h)

of {gf} is

- h —¢¢(h
5vge(y = SV — L) (25)

v

By direct analogy with Definition 2, we propose the following
notion.

Definition 4. (Continuous Version of Slow Variation) The contin-

uous version ¢€(h) is slowly varying if, for any p = o(M) and
v =v(e) = O(pnje) = o(1),
V8" ()| = o(t“(h) ase | 0. (26)

Eq. (24) or (26) implies |v(€)d,c€(h)| < |£€(h)|; v(e) expresses
the height change across a few mesoscale regions. By assuming that
the slow variation persists as € | 0 (or, N — 00), we pass to the
full continuum limit, ¢ — ¢° =: ¢°. In the following, we use the
x coordinate (as an independent variable) in place of h. By abusing
notation, we write °(x) in place of £°(h(x)).

Remark 2. The slow variation is assumed to hold for averages
of thermodynamic, kinetic and geometric variables, e.g., the step
chemical potential, adatom flux, step velocity, and discrete slopes
€/wj.

In light of the above discussion, we now define the concept of
mesoscale.

Definition 5 (Mesoscale). Recall Remark 1. Consider a given
monotone step train, with [ = n; > 1,n; = o(N),1 <j <M
and M,N — oo. Assume n;/ny = O(1) foranyjand k (j # k),
and n := max;{n;}. Any one of the M regions Uie; Tii+1)t is called
the mesoscale. Accordingly, a mesoscale length is any length L of the
order ofd = ne withe K L=0{) € 1= A

2.2.2. Induced average

At this point, it is advisable to introduce the induced average,
a notion that helps link microscopic parameters to the continuum
limit of the surface.

Definition 6. (Induced Average) Consider the functionf : R —
R \ {0} and averages {{f}j"i]. The mesoscale average éj‘ of {&f}
induced by {¢} viaf is

FEOE =n"" > feHE:

i€l

j=1,...,M.

We use a bar on top of a symbol for both the starting (Zf) and the

induced (&7 ) averages. These averages should be distinguished via
the different symbols, ¢ and &, for their variables. For our purposes,
f can be thought of as Lipschitz continuous (see Appendix A).
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2.3. Elements of homogenization

Next, we review formally some basics of classical homogeniza-
tion theory, setting the technical framework for Section 3. We do
not discuss aspects of two-scale convergence, keeping our exposi-
tion heuristic.

The fast spatial variable is y := (x — X)/e for some reference
point X (to be specified later). In view of diffusion equation (15), it is
tempting to define fast and slow time variables as well, restricting
attention to macroscopic times consistent with the quasi-steady
approximation [2,5].

Definition 7. (Quasi-Steady Regime) For our purposes, the quasi-
steady regime is characterized by times t such that T = €’t =
o).

In Section 3, we show that Definition 7 yields evolution
laws consistent with previous continuum limits. Recall the full-
continuum conservation law for adatoms, 9;h + £29,4° = 0 where
h and g° are the large-scale height and flux. By 2 = €2 and
3:9° = ©(1), we have 3;h = ©(1) for t = €t. Accordingly,
we replace 9; — 9; + €2 d,, treating t and T as independent. In
the same vein, consider T = T¢ = 9(e~?) so that t lies in a fixed
interval. Ase | 0, we claim that the dependent variables of interest
settle to a steady state.

Remark 3. We take nje | Oandn; — ooforj = 1,2....
Consistent with other continuum treatments, e.g., [5], the follow-
ing hypotheses are made.
(i) The step density (discrete slope) at the mesoscale is well
defined, i.e.,

nje

=0(1) asnje |0, nj— oo; (27)
Xi, — X

o I
see Section 2.2 for definitions of i, (j) and i, (j). The left-hand side
of (27) approaches the positive surface slope, m(x) := |0yh|.

(ii) The height, h, chemical potential, u;, and flux, g, are ©(1) as
€l 0.
(iii) The material parameters obey
ke i€, Dy, &, ps, © = 0O(1) foralli(¢ =u,d)ase | 0.
In particular, steps move by “mixed kinetics”, in which
D;
k(,if

=0(). (28)

The next element to be discussed is the multiscale expansion. With
regard to the concentration o€ (x, t) of Section 2.1, we write

(% t) = "%y, T, ) +€0' (X, Y, T, 1)
+é? Qz(x,y, T,t) +0(e?) xe€ U. (29)

To determine @', it is necessary to apply dominant balance to
(15) and enforce conditions (17). The multiscale expansion for the
adatom flux g€ has the form

g =€e'9xy. .00+ 3y, 7. )
—|—eg](x,y,r,t)+o(e). (30)

The solvability condition (to be invoked below) dictates that the
coefficients o' in (29) be bounded in x and y, and do not grow as
n; — oo. Also, the coefficients 4" in expansion (30) for the flux
should not grow with n;.

Remark 4. In view of motion law (22) and Definition 7, we set
dx;/dtr = ©(1), and thereby infer that

vi(t) = €% (dx;/dt) = O(e?). (31)

This scaling with € is consistent with the level set motion law
d:h — u%d:h = 0 for surfaces with the same parameters in all
terraces, where u%(x, 7) = (1) is the continuum limit of an
appropriate average of e 2v;and m = 9(1).

3. Derivation of evolution laws

We proceed to derive the results presented in Section 1.5.
We assert that boundary conditions (17), which suffice for the
usual Fick’s law, are decoupled from step velocity law (22) to the
desired order of perturbation (at the chosen time scale). Further,
we construct the continuum-scale chemical potential on the basis
of (21) in terms of the step train free energy.

By recourse to (29) for t = ©(1), we assume that each o' is
stationary in the (fast) t and set 3;0' = 0. By dominant balance, we
find the following cascade:

0% : 970° =0, (32a)
0" : 320" + 0”4+ Di(x) ' 9,[Di(x)3,0°] = 0, (32b)
O(€?) : 070° + 00" + Di(®) ' 0[Di(x) (00" + 0x0")]

=0.... (32¢)

These three equations suffice for identifying the macroscopic limit.
Our computations will involve steps and terraces that corre-
spond to fixed; j = 1, ..., M).Sety = (x — X)/e withX = x; ;
thus, y;, = 0.
The possible dependence of o!(x, y) on y may stem from kinetic
conditions (17), imposed at the microscale boundaries y;. By
eliminating p;, we have

- + - +
LS (I A DY R
@ @ I(d,,'E ku’ié ! kd,ié kuy,'G (33)

Yy =JYi.

3.1. Fick’s law

In this subsection, we derive (1)-(5).

Since x;(t) = x{(t) are moving boundaries, or Lagrangian
coordinates, we expand
X =x) +ex! +o(e). (34)

By Remark 4 and expansion (30) for the flux, the step velocity law
(22) reads

vE (D) = [ui(r) +o(D] = (" — g ) 4+ 0(1),
Y=Y

(35)

where u;(t) = ©(1) and g~V'* is the restriction of the leading-
order flux term ¢V (x, y) aty = y? from left (—) or right (+). In
(35), we leave the step number dependence (via i) in the leading-
order term for v{. To the lowest order in perturbation, the adatom
flux is continuous across step edges, 4+ = g1~ In fact, this
property can be extended to the next higher order, as shown below.

3.1.1. Lowest (zeroth) order
First, consider (32a). The solution reads
°(y) =AY +Bi(x) ¥y, <y<y (el (36)

where A; and B; are viewed as ¢ (1) integration constants, to be
found via boundary conditions at step edges. By virtue of (35), we
obtain

€d(x) — 37V (x,y) = —Di®)3,0°(x, y) = —Di(0AX),  (37)
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where y? , < y < y?. Thus, the continuity of flux to this order
yields
DiA; = Di_1Ai_1 = --- = Dj,A;, = Ai(%)
D;, (x
= Dul )Ai*(x). (38)
Di(x)

The dominant balance of conditions (33) and (36) entail

0 D; D;
(Ait1 — ADY; + By — Bi = + A
ku’iG kd’ié

To obtain B;, we add up the last equations backwards in i in terms
of a telescopic sum. The result reads

B; = B, + A D;,

0 i—1
Yi Yp+1 —Yp 2
X | ——= + E e E s (39)
[ Di ( Dp+1 —u,d kl,pé)}

p=ix 12

wherei € Jjand i > i,. By (36), (38) and (39), we find
Di, (A, (x)
Di(x)
i-1 /,0 0
Ypp1 =Y 2
+mmmwz<w 2+ > ) (40)

Peis Dypt1 (%) f—ud kLpE

°(x,y) = @ —y)) + Bi, (x)

By (16), which exacts the bounds for D;(x), we assert that

0_ .0 i1 ,0 0 0_ .0
0<yi_yi* <,X:yp+1_yp§yi_yi*
Dy Dyy1(x) Dy,

, (41)
p=ix

where y? — y?* = O(m;) for large enough i in J;. Hence, the sums in
(40) diverge as nj — oo with i = i, and the solvability condition
is not satisfied unless A;, (x) = 0. Thus, we reach the following,
anticipated result [11].

Proposition 1. The zeroth-order adatom concentration is

0" (x.y) = Bi, (x) = B(x), (42)
independent of the fast variable. The corresponding flux is §V (x, y)

3.1.2. First order

In order to obtain a relation between ¢° and B(x), we proceed
to computing the next-order adatom coefficient, o' (x, y). By (32b)
and Proposition 1, we readily obtain

o' y) =GRy +F® yl,+ey,<y<y +ey, (43)

suppressing the time variable, . Thus, the adatom concentration
up to O(¢€) is B(x) + €[Ci(x)y + Fi(x)]. The corresponding terrace
adatom flux reads

7°(x,y) = —Di®)[G(x) + dBX®] Y, +ey,
<y<yW+eyh. (44)

By dominant balance applied to velocity law (22) under expansion
(35), we readily verify the following remark.

Remark 5. The adatom flux g°(x,-) is continuous across step
edges.

Thus, by enforcing the continuity of g°(x, y) at each boundary
y =i we get
Di(x)[Ci(x) + 0xB(x)] = Dit1(X)[Cit1(x) + 0:xB(X)]
D;, (x)
Di(x)
— 0B (G, i+1€l. (45)

= G(x) = [Ci, (x) + 0xB]

We turn attention to boundary conditions (33). These are recast to
the form

[Cir1(®) — GIQY + €y)) + Fi1(x) — Fi(x) + O(e)

D; D;
= < + > [Gi(x) + 9:B)] + O(e)

kaie  kyi€

G i+1€l). (46)

Thus, by Remark 3, the correction terms eyi1 do not contribute to
this order. By using (45) and summing up (46) via a telescopic sum,
we obtain

Fi(x) = Fi, (%) + Di, ®)[Gi, (x) + 0xB]

i1
1 Yp+1 — Yp Yi
) e 0o ) ol (47)
[r;; (l;d ke p€ Dp+4 D;

The substitution of (45) and (47) into (43) yields

D;, (x)
D;(x)

o'y = ( (G, () + 0:B(x)] — 3xB> V=)

+F,(x) +y) : — 3B

+D;, ®)[Ci, (%) + 3BIY)) ™!

1 /40 0 5
b+ b
X - 4 — (48)
Z ( Dpy1(®) :Xu;d k/z,p6> }

p=ix 2

where)? | +ey! | <y <y’ +ey! andi > i.. By requiring that o'
be bounded as i increases, we impose the necessary condition that
the coefficient of y? vanish wheni — i, = @(nj) — oo in (48). By
i = i,(j), we thus find

1 2 Ype1 =V
D;, (WG, (x) + 0xB] lim A N )
i i X nj—00 Z Z:Zu.d ki,pf Dp+l

0
nje 0 Yio pery
= 9,B. (49)

By definitions (3) and (4), this relation is recast to the form

= D°(x):B,

0 . leE
Di, (®)[Gi,(x) + 0xB] | 14+ ¢q (%) lim
J

io = iy
njew

where the requisite limit is the surface slope (see Remark 3);
thus,

DO(x)
1+qGme)

Eq. (50) entails the desired Fick's law. By (44) and (45), the flux
is[11]

Di, @)[Gi, (%) + 0:B(X)] = (50)

9°(x,y) = —D;, ®[G;, (x) + 3:B(x)].

Proposition 2. The macroscopic limit of the adatom flux reads

D°(x)

1+ Poome G

7 =~

where D° and q° are defined in (3) and (4); see Section 3.1.3 for B(x).
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3.1.3. Equilibrium concentration

Next, we show that the B(x) in (51) can be identified with the
continuum-scale version, 0®?, of p;, which is affine in the large-
scale chemical potential, w. For this purpose, we revisit kinetic
conditions (17). By adding up these equations, we obtain the
relation

g~ g ot o\ _ ., _
6<kd,i€ ku’ié +€U1 ku’ié kd’ié _(Q +Q )|Yi

—2p{%. (52)
By k¢ i€ = (1) (Remark 3), the first term is O (¢); and, in view
of Remark 4, the second term is @ (e3). Thus, by formally writing
ot = 0%%x,y) + o(1), we apply the usual dominant-balance
argument to order O (€°) and (42) to infer

20° = " + 0" = 20" (53)

Proposition 2 and (53) yield formulas (1)-(5). By u; = u(x) 4+ o(1)
and (18), we express 0°*° in terms of 1, winding up with (6).

3.2. Mass conservation and level set motion laws

In this subsection, we derive Egs. (7) and (8) with recourse to
step velocity law (22). This law involves a jump of the flux, #(x, -),
at each step edge (y = y;). Recall that the flux is continuous to
the first two orders in €. The jump is revealed to the next higher
order. We follow two alternate routes. One method is to apply
the solvability condition (in the context of homogenization) in
the spirit of Section 3.1. Another route is a weak formulation [5].
Further, we derive level set motion law (9), which introduces the
time derivative 0, h.

3.2.1. Perturbation expansion
We continue the argument of Section 3.1. In summary, we
resort to (32c), solve for o?(x,y) and ¢', and determine the
discontinuity of § at each step edge up to order ¢ (e¢). The
solvability condition for ¢! yields the desired formula.
Eq. (32c) along with Proposition 2 and (2) yield
3y[Di(x)3y0% (x, ¥)] = —0{D, ®)[C, (x) + 0xBI}
~Di(®)KG = 0*(X.Y)
= ¥Gi(x) + Hi(x) — {8:G;
y2
+Di(x)7lax[°®e(x)ax3]}5~ (54)

The adatom concentration on the ith terrace up to 9 (e?) reads
0(x,y) = 0°(x.y) + €0'(x,y) + €°0°(x,y) + 0(¢”)
= B(x) + €[Gi(®)y + Fi(®)] + €*{yGi(x) + H;(x)
— [0:Ci + Di(x) "' 0k (De () 3:B)1y* /2} + 0(e?).  (55)
The respective surface flux on the ith terrace is
F(x,y) = —DiX)[(Byo" + %0°) + €(3y0” + "] + 0(€)
= —Di(X)[Ci(x) + 9xB] — €{Di(X)[G;(x) + 9:Fi]
— Y03 (De(x)0xB)} + 0(e). (56)

The O (€°) term is of course continuous at each y?. Aty = y? this
flux obeys

(@'t — 9"7) = —€[Dit1 (X (Gip1 (X) + xFiy1)
— Di(X)(Gi(x) + 0xF))].

The next task is to determine the coefficient G;(x). By virtue of (35),
step velocity law (22) with £2 = €? is recast to the form

ui+o(l)=—[g"" —g" +o(M]+ulo"" — 0" +o(1)]
Yy =Y.

The convective term on the right-hand side of this equation
does not contribute to the lowest order. Thus, we obtain the
distinguished limit

u = —(g"t — 31’_)|y? = U = Diy1(Gip1 + 0xFiy1)
— Di(G; + 0xFy). (57)

This result amounts to mass conservation: the jump in the flux
is balanced by the step velocity. The convective terms do not
contribute because of the slow time scale. (57) leads to a telescopic
sum for G;, which yields

_ Di,x)
- Di®

Gi(x) [Gi, (%) + OxFi, (%)]

i—1
— OFi, + D)"Y up. (58)

p=ix
By (56) and (58), the coefficient of the @ (¢) term for the flux reads
g'(x,y) = —Di, (0[Gi, (¥) + 3Fi, (x)]
+ (7 — ¥7)0(De (X)9,B)

i1
+y7 |:ax(°©eaxB) - Z upj| ) (59)

p=ix

Now let i = i,(j) = i.(j) + nj — 1. By requiring that ¢' does not
grow as nj — oo (imposing the solvability condition), we assert
that

. n; e
O(De(x)3,B) = lim K(j) (njﬁzup)}
n§e~>0 yio(i) D=l

= —3,9°(x) = m(x) u(x).

Proposition 3. The macroscopic limit, g°, of the surface flux
obeys (7), where the continuum-scale step velocity is the arithmetic
mean (8).

3.2.2. Weak formulation for mass conservation
Following [5], we write step velocity law (22) in the form

[Qli = QW) — QU;). (60)

Now multiply both sides of (60) by a test function, ¢;, that is
constant on each mesoscale region and sum over i to obtain

ey = —€ 9+ 0D

N-—1

N—1
€Y = — Y [Flidi+ Oe)
i=0

i=0
nj_ 1 E U;
iEIj

= =D o ) 13 +o(D)
J

i€l

= Y OdLol =~ Y g Y [Fli+o(D)
i j

i€l

= Z(nj€)¢i*0)
J

- f (0 1 (Om(x) dx

= —/qs(x)dg"(x) ase | 0, me | 0. (61)

This implies (7) in the weak sense.
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3.2.3. Level set motion law

Next, we derive geometric law (9) with recourse to a weak
formulation. For this purpose, define

To
In :=e/ D uwgidr; = dxi/dr, (62)
0

where the sequence {¢;} consists of smooth, compactly supported
functions ¢; : (0, Tp] — R. We will show that, in the continuum
limit,

To To
/ /qﬁh, dxdt :/ /¢u°mdxdr, (63)
0 0

for any smooth test function ¢ : U x (0, Tp] — R where ¢ is
compactly supported; we can choose ¢;(7) = ¢(x;, 7). Note that u°
denotes the macroscopic limit of 1 = nj’1 Ziaj u;, and h; := d;h.

First, consider the case with homogeneous steps and terraces,
i.e., when the material parameters remain unchanged across
terraces. By (62), we have

To To
N—>/ /u qﬁdhdt—f /u m¢ dxdr

asN — oo, Ne = 09(1), (64)

where u? is the continuum limit of {u;}.
On the other hand, by integration by parts, we assert that

T
— —/ O/x(¢f|h)mdxdt, (65)
0

where ¢, |, is the partial derivative of ¢ with respect to t with
fixed h. By passing from Lagrangian to Eulerian coordinates, write
¢ lh = dclx — dx (he/hy) where hy, = —m < 0. By integration by
parts in T and in x, (65) yields

To To
IN — —f /xhqub dxdt —/ /x¢xh, dxdr
0 0

T
_ / ' / [(x¢)x — xbalhe dxde. (66)
0

The comparison of (64) and (66) implies (63).

Alternatively, for the above case of a non-composite stepped
surface, write h(x;(t), t) = const. for each terrace (level set of
h). The differentiation of this equation with respect to t yields the
desired law in the continuum limit [5].

In the case of a composite stepped surface, we need to slightly
modify the manipulation of sum Jy in (64) and (65). In particular,
for appropriate test sequences, we use the notion of induced
average (Definition 6) and hence write

To M
Iy = / E (nje) i, gy nf]E u;
0 j=1

i€l

To
—>/ /¢u0dhdt, (67)
0

where ¢; is constant on each mesoscale region. On the other hand,
Jy equals

To M Xl
3N:/ > (o) n*lz
0 j=1

i€l

/TO Z(n]e) nj_1 in dr
i€l

To
— —/ /(¢r|h)xdhdt. (68)
0

The remainder of the derivation leading to (63) follows directly
from (66).

3.3. Step chemical potential and free energy

Next, we focus on the derivation of (10)-(13). To obtain
the continuum-scale chemical potential, w, in terms of & =
lim._o(¢Ey), we use (21). By T = €%t and y; = € 2v; + 0(1), we
have

cif: € Z Uil = Z(nje) nj_l Zuiﬂi

j=1 i€l

M .
> ()i = E(r)

=
= /uo(x, T)pu(x, r)dh asnj — oo, nje | 0. (69)

The rightmost-hand side of the first line in (69) serves as the
definition of ;.

Recall the free energy Ey given by (20). To make a connection
to the continuum-scale free energy of a non-composite stepped
surface [38,2], we use an induced average of {g;}. By Definition 6,
we obtain

M
B0 = 53 Tant =S mes

N %/go(x, )ymx, 7)>dh =: &(tr) ase | 0, (70)

if the average g; varies slowly across mesoscale regions. Eq. (12)
ensues.

4. Discussion and conclusion

We formally studied the consistency of macroscopic laws for
crystal surface relaxation with the discrete step flow when terraces
and steps are characterized by sequences of distinct material
parameters. We assume that an intermediate scale, the mesoscale,
links the slow spatial variation of microscale averages to the
property that the crystal surface appears homogeneous at the
macroscale.

Our methodology relies on classical homogenization, by which
the adatom concentration and mass flux are globally expressed in
terms of multiscale expansions. Two features of these expansions
are: (i) step boundaries, included through boundary conditions at
the fast spatial variable [27]; and (ii) a macroscopic time scale
consistent with the quasi-steady approach.

The form of macroscopic laws is found to be the same as in the
case of a non-composite stepped surface [7,9]. These laws comprise
Fick’s law of surface diffusion (with an appropriate mobility),
the mass conservation statement for the surface height, and a
variational formula for the chemical potential; see Propositions 1-
3.The homogenization approach shows how the large-scale surface
mobility turns out to be a function of the slope, with the effective
diffusivity and kinetic rate given as appropriate harmonic averages.
The dependence of the mobility on the slope, emerging from the
solvability condition, is viewed as a result conceptually distinct
from the electric-circuit analog of a stepped surface [6].
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Regarding the large-scale chemical potential, p, we assumed
that the discrete step free energy has a continuum limit; and
expressed this limit in terms of the induced average of microscale
parameters for step-step interactions.

Our work leaves several unresolved questions. Next, we make
an attempt to single out and discuss two of such issues, namely,
the rigorous derivation of homogenized equations via a weak
formulation, even in 1 + 1 dimensions; and the nature and
derivation of effective laws in full 2 + 1 dimensions (in non-radial
geometries).

4.1. On the rigorous derivation of homogenized equations

We deem that a rigorous study of homogenization of step
dynamics is a challenging problem. To start with, finding the
appropriate Hilbert space for a weak formulation is nontrivial.
The difficulty stems from the simultaneous presence of (i) step
motion and (ii) discontinuity of adatom concentration at each step.
Suppose that we simplify the problem, considering the system in
equilibrium (time-independent case); then, issue (i) disappears.
We may use the Hilbert space H = []; H'([i_1, x;]) for a weak
formulation and prove the existence of a unique solution at the
microscale where H' is a well-known Sobolev space. The weak
formulation reads

Z / D{VpV dx
i Y xie1xil

+ Y Tki((piy = oM™ + (o = PP ke

=/ F ¢ dx, (71)
U

where U is time-independent, ¢ is a test function, and F denotes
a deposition flux (included for completeness). It is tempting to
claim that the homogenization procedure can be carried out via
this formulation. In the time-dependent case, however, the step
position x; depends on t and the domain division cannot be
made independent of time. Thus, a global weak solution in the
sense of [12,13,39] seems to provide a more appropriate working
framework. However, finding a Hilbert space for such a weak
formulation is difficult due to issue (ii) mentioned above. Work in
this direction is in progress.

4.2. Macroscopic limit in 2 + 1 dimensions

In 2 + 1 dimensions the classical homogenization of this paper
is not directly applicable because explicit solutions to the diffusion
equation are in principle intractable. A plausible way to circumvent
this difficulty is to invoke approximate solutions for slowly varying
step trains in the spirit of [5]. However, care should be exercised; a
naive application of such approximations may lead to an erroneous
calculation of the flux component that is parallel to step edges.

More generally, homogenization in a two-dimensional setting
is different from its one-dimensional counterpart. Because of the
existence of two flux components, parallel and perpendicular to
steps, the corresponding averages may be distinctly different. For
instance, if we consider a periodic (2 + 1)-dimensional setting, we
expect that the macroscopic Fick’s law has the (vector) form (cf.[5])

J= _ (Pw+am™ 0 A (0
0 D,,) \dw )’

in a local coordinate system relative to step edges, where i)i/ and
i);“‘v possibly involve harmonic and arithmetic averages of terrace
diffusivities, ¢° o< 2D, /k°, and k° stems from a direct extension
of (4). The above formula for the vector-valued, large-scale flux

J forms a conjecture. We are less familiar with the homogenized
limit of Fick’s law in a non-periodic setting; this limit should of
course depend on assumptions about the microscopic parameters.
We anticipate that the remaining evolution laws (other than Fick’s
law) in 2 4+ 1 dimensions should be similar in form to their (14 1)-
dimensional versions.
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Appendix. On slowly varying averages

In this appendix, we discuss the notion of slow variation of
Section 2.2. First, we formulate an example of a condition on
{¢} such that respective averages, g“f, are slowly varying. Further,
we study implications for a class of induced averages §j€. The
dependence on € will be suppressed.

Takenj = n = o(N) >» 1forj=1,..., M, ie, equal number
of steps in each I;. (Recall: N = Mn, M,N — 00). Prescribe
a bounded sequence {g“,-}f':_ol such that its subsequences within
numerous adjacent Ij's are close in the ['-sense. Specifically, for any
0 < 0 < 1 there exist positive integers j,(M) = o(M) and j,(M)
with M — j, = o(M) such that, for eachj, <j < j,,

Dl — Gl <o Y1l forall [k| < ko(o)
i€l i€l

ifM > M, (o), (A.1)
where k, = p,n = o(N) and p, = o(M); in particular, o |
0 as M,, np, — oo. We will refer to such a sequence {¢;} as
‘admissible’. This construction trivially includes bi-phasic surface

reconstructions of Si(001), where {¢;} may contain, e.g., alternating
diffusivities. We restrict attention to admissible {¢;}.

Proposition A.1. Suppose f : R — R is Lipschitz continuous with
f&) > 0for ¢ # 0;and {gi}f’:_ol is bounded and admissible as
N — oo. In particular, assume that 0 < o < |&| < B for each i.

Deﬁnefj =n"" Z,.E,jf(qi). Then, g:] are slowly varying.

Proof. The proof follows directly from Definition 2. First, we note
that ¢ have a fixed, positive greatest lower bound. Let & =

minj{g:j}. Accordingly, we obtain an estimate for the quotient §° Ej:
18751 < (P Y 1f k) — F (20
i€l

Liplf1(pm ™" Y iy — &l

i€l

IA

IA

IA

Co [n' Y 16l | <Co. k=np, (A.2)

i€l

by virtue of the boundedness of |;|, provided j, < j < j, and
—Do < P < Do, by the prescription of {¢;}. Thus, for sufficiently
large M, the o can be made small enough so that |psP¢j| <« & for
appropriatejandp. O

Proposition A.2. Suppose f : R — R is Lipschitz continuous with
f@&) > 0for ¢ # 0; and {;i}f\’:_(J] and {gi}IN;(f are bounded and

admissible. In particular, assume that 0 < o < || < B for each
i. Then, the averages &; of {&;} induced by {¢;} viaf are slowly varying.

Proof. Consider Definition 6 for induced averages. Without further
ado, we estimate 6”[f (¢;)§;] for p # 0:
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A

I8PLF @& < )™ D (U Gignp) 6l

i€lj

+ f Ginp) = F(EDIIED

<Y (i — &l 4 (G — i)
i€lj
< Con™' Y (&l + 14D < Co, (A3)
i€lj

where we used the Lipschitz continuity of f; 0 = max(o¢, o;) and
oy is the constant entering the admissibility definition of {¢;} for
£ =&, ¢.By Proposition A.1, the f (¢;) is also slowly varying. O
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