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The propagation in sea water of a low-frequency electromagnetic pulse generated by an electric 
dipole is investigated analytically. The dipole is excited by a rectangular current pulse with a finite, 
nonzero rise and decay time. In order to obtain an explicit formula for the field in the equatorial 
plane of the dipole source that is uniformly valid in distance and time, Fourier-transform methods 
are applied. Certain limiting forms of the current pulse are studied separately. Simple analytic 
expressions of the field are obtained, compared to previous results, and examined thoroughly. The 
effect of the finite rise and decay time is discussed. It is noted that the present analysis may be used 
for studying pulse propagation in any highly conducting medium besides sea water. 0 1995 
American Institute of Physics. 

I. INTRODUCTION 

When a pulse generated by the current in an electric 
dipole travels in a dissipative medium, its shape along with 
its characteristics (amplitude, duration, rise and decay time) 
are modified. This is mainly due to the fact that the wave 
number is no longer linear in frequency and that the dipole 
source creates a field of interest which involves the complete 
near, intermediate, and far fields. As a consequence, the form 
of the propagating pulse shifts successively from that of the 
excitation current and near field to its spatial and its time 
derivatives.tW3 

In this paper, the propagation of a pulse with a nonzero 
rise and decay time is investigated; its bandwidth in the fre- 
quency domain is assumed to be narrow and centered at the 
origin, i.e., the signal is not modulated. Despite this restric- 
tion, the results may be used to obtain physical insight into 
the case of a sinusoidally modulated electric-current pulse 
with a similar envelope. In this case, the transients of the 
propagating pulse depend on the form of the envelope of the 
excitation current and ultimately dominate the advancing 
wavepacket.“’ Furthermore, realistic pulses do not extend 
from --to to +m in time’ nor do they exhibit step disconti- 
nuities as does the ideal rectangular pulse. Therefore, it is 
necessary to study the effect of a nonzero rise and decay time 
on the transient response. Such a consideration results in the 
elimination of the delta function as a useful pulse.4 It will be 
shown that the step discontinuities in their first derivative 
add a correction term to the response of the corresponding 
step-discontinuous pulse which is significant in times of the 
order of the rise or decay time. This term is evaluated exactly 
and agrees with previous results in the limit of a very short 
rise or decay time. 

The low-frequency approximation is mainly based on 
the condition a/we% 1, valid for all frequencies of interest in 
sea water. A similar approach may be employed for other 
conducting media besides sea water, provided the afore- 
mentioned condition is satisfied. 

II. DEFINITION OF THE CURRENT PULSE AND ITS 
FOURIER TRANSFORM 

A normalized rectangular pulse with a nonzero rise and 
decay time can be expressed in terms of the Heaviside step 
function u(t) as follows: 

f(t)= & (( 1 -edopt)U(t) 

--[l-e- %(f-2rQ(t-2t,j}, (1) 

where 2t, is the width of the original rectangle and 
rP= l/o, is the rise time, which is taken to be equal to the 
decay time. 

The electric dipole is excited by a current 

ZJt) =Iaf(t>. 

The Fourier transform of this pulse is 

(2) 

iz(O j= m I Z,(t)e’w’dt= 
IO W P  - -(e2iq- 1). 

--03 26X1 w+io, 

(3) 

It is worth noting that in the limit wP-+ +m, fZ(o) reduces 
to 

iz(tij =Ioeiotl 
sin (otl) 

tot1 ’ (4j 

which is the Fourier transform of the normalized ideal rect- 
angular envelope 

zz(t)=&t)-u(t-2t,)l. (5) 
1 

In the limit tI -+O+, Eq. (3) reduces to 

W P  ?,(o)=Io- 
W P  -io ’ (6) 

which is the Fourier transform of the normalized exponential 
pulse 

~z(tj=zo~,e-~~f2d(tj. (7) 
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In the above, limit means “limit in the mean” (1.i.m.) in the 
metric space L2( - 00, l-w) of the square integrable func- 
tions. Both of these pulses reduce to the Dirac delta function 
in the limit tl -+O + or up---+ + ~0, respectively, according to 
the Dirac measure definition in distribution theory. 

Ill. THE ELECTRIC FIELD AND ITS TRANSFORM 

The i-directed, frequency-dependent electric field gener- 
ated by an electrically short dipole with its axis along the z 
axis and an electric moment 2hJo is given by Eq. (15) of 
Ref. 3, viz., 

=&(P, wj = 
x e-apJ?3c?iapG (8) 

on the plane z=O perpendicular to the dipole, where 
p’(x”+y”)l”~ is the distance from the center of the dipole, 
and 

has 

n=(L&0cr12)1’z. (9) 

In Eq. (8), the complex wave number 

k(~)=~[p~(~+id/~j]~~ (10) 

been approximated by 

k(w)=(imp,oc)1’2= (l+i)(o~ua/2)“*=(l+i)a&. 
(119 

Since only low frequencies are useful in sea water, the con- 
dition 

cr+coe (12) 

has been imposed as a simplifying approximation. With 
ir%4 S/m and ~~~80, condition (12) on the frequency is 
J“*o/2lrre,~~=9.OX 10s Hz. Since frequencies of the order 
of O-100 Hz are of interest for the carrier frequency, this 
condition is no practical restriction. 

The time-dependent electric field is 

JqPJ9= & I ;. E,(p,o)ewiofdw 
,a 

,w’hJo 
= sTty Ab’i9, 

where 

(139 

&Q +f. \It,T tl 9 w’=@tl, O;=Wpt,, p,=“p, (14) 
fi 

and 

4p’,t’)= p, 
A,(P'J') + Az(P’J’) + A&‘$) 

PI2 P 
I3 1 (159 

Aj(p’,t’)=Zj(p’,t’-2)-~j(p’,t’), j=1,2,3, 06) 

&(p’,t’j2 - I 4 e-P’G 
-iT --m w’+iwJ, 

X,-i(o’t’-p’J;;;)dwr 
, (179 

Im w’ 

(a9 

Im 0’ 
w’-plane 

Re w’ 

FIG. 1. The contour of integration for the integral Is(p’,t’) when (a) 
t’ CO, and (b) t ’ > 0. In (b), part C of the contour encloses both sides of the 
branch cut in the lower half-plane. 

i-l 
I,(p’,t’)=- - 2?r I 

= 1 , 
@P 

-co Jo7 o’+iwj, 

xe-p’~e-i(o’t’-P’~)dw, > 

13(pr,t’)=- & I m 4 4 
--m W  w’+ioJ, 

(18) 

(19) 

In Eqs. (17)-(199, each integrand has a branch point at 
w’ = 0 and a simple pole at w’ = - iwi in the lower half- 
plane. The branch cut is chosen to be along the negative 
imaginary axis and the path of integration is along the real 
axis with an indentation about w ’ = 0 in the upper half-plane, 
as shown in Fig. 1. Note that 
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z2(pl,t))= _ dz3i$d’,t’) ; Il(p’.r’)=2dz3~t~yt’j , 
cm 

by interchanging the order of integration and differentiation, 
since Z,(p’,t’), Ia(p’,t’), and Is(p’,t’) each exists and 
converges uniformly with respect to t’ and p’>O. Therefore, 
it is sufficient to evaluate only Z,(p’,t’j. 

IV. EVALUATION OF I,(p’,t’) 

In the following analysis, w; is replaced by a complex 
quantity GP such that 

8,=w;+iw~=[Opleie, W) 

where wi>O and OC 8<~r/2. Then, 
+j3,+jf~e-‘b-r/z-e) or Jxze-im14&-, (22) 

where 

Jq= Jz-Je”? (23) 

For t’ <O, the path of integration may be closed by a 
large semicircle in the upper half-plane, as shown in Fig. 
l(a). It follows that 

Z,(p’,t’)=O, t’<O, (24) 

since the function is holomorphic in the upper half-plane. 
For t’>O, the path of integration may be closed in the lower 
half-plane, as shown in Fig. lb, and 1s(p’,t’) can be written 
as 

Il(p’,f’)=Zp(p’,f’)+Zb(p’,t’), (25) 
where Z,(p’,f’) is the contribution of the simple pole, 
namely, 

~~(~‘,~‘)=-~ip~~~-~,t’ 9 (26) 
and Zb(p’,tr) is the contribution of both the branch cut and 
the branch point: 

I,(Pt,f’)= - ; 
i 

1 Gi, -~ 
c 6~’ w’+iG, 

(27) 

where the contour C encloses the branch cut, upward on the 
left-hand side and downward on the right-hand side, and en- 
circles the branch point with a small circle of radius S. 

In order to simplify the expression for Z,(p’,f’) in Eq. 
(27), let w’ =y .z 3iVDc on the left-hand side of the branch cut 
and w’=eezwi25 on the right-hand side of the branch cut. 
Then, it follows that 

Z,(p’,f’)= - & lim 
i J 

1 6, 
ca w’w’+i~p 

,&J;; 
ho+ 

XC-i(o’t’-p’G)dwr- m fj ‘3, 

I 0 E -i~+iGjp e-5t’ 

XefdE(l-iY~) = I+ i I,(pr,fr), 1 (2% 

where 

sin(p’ &)e-@‘. (29) 

Consequently, 

-$ e$f’~b(pr,f’)]= -e%t’f3pZ(p’,f’), (30) 

where 

Z(p’,t’)= 

This integral can be evaluated exactly as follows: 

dZ(P’J’) 

dP’ 
= Jz jam cos(p’~)d~. (32) 

With 

r;=p &X 
i 1 &tr ’ 

Eq. (32) becomes 

dZ(p’,t’) 2fi 

rirp’ 
= -e-P’2’2t’ Re[i(p’,t’)], 

fl 
(33) 

where 

m 

I(p’,t’)= 
-ip’l 2t F 

(34) 

But, 

erfc( --jL) =l- erf( --+), (35) 

and 

erf(w)= ?- e-“‘ds, 
f 

w 

P VO 
(36) 

from Eqs. (7.1.2) and (7.1.1) on p. 297 of Abramowitz and 
Stegun.’ For w = - ipI/&?, i.e., pure imaginary, and a 
change of variable s= - (ip’l@)c in the last integral, it 
becomes obvious that erf(w) is also pure imaginary, i.e., 
Re[ erf( w )] = 0. Consequently, 

dZ(p’,t’) 2%- 
J- dp’ = t’ 

e -p’?i2t’ 
(37) 

From Eq. (31), Z(p’=O,f’)=O. Hence, 

e --L&t’& = ~ erf 

(38) 
With Eq. (30), it follows directly that 

-$L e;pt’lh(pl,tr)]=-ewpt’~~~ erf P’ 

i 1 
- 
&F’ 

(39) 
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By the use of Eq. (29), the initial value of I,(p’,t’) reads 

fb(p’,t”())’ =ze!E- I sin (p’&&. (401 
0 E k--q3 

Let &=x. Then, 

7b(p’,J’4))=2 m I (% sin (p’ Jzxjdx 0 x(x”- q 

&3’Jzx 

7 x(.P - Gp) 
dx 

I 

m ,-ip’h& 
- 9 

x(x-- ap) dx , 
1 

(41) -ED 

and the path of integration is properly indented about x = 0. 
These integrals are elementary and can be evaluated by con- 
tour integration in the complex plane, where each integrand 
has 3.simple poles at 0, t &: 

fb(pl,tt=O)=--+rreip'~. (42) 

With Eq. (39), I,(p’,f’) is readily evaluated in terms of a 
new integral: 

I 
t’ - Q-n%, P de. (43) 

0 

If Sj,-+o~, from Eqs. (25), (26), (28), (42), and (43), it 
follows that 

Z&J’,t’)= 0; 
J 

‘f’ 
emUi7 erfc dc (44) 

0 

since the result is independent of the position of the branch 
cut in the lower half-plane. 

Next, let 7= t'[. Then, Eq. (44) yields 

Z.j(p’,t’)=C4$t’ 
I 

l r- cwr!f’)r 
0 

erfc( $ &) d[, 

(45) 

where u$‘=aPf and p’/m=aplfi from Eq. (14). 
Now let 

fi=w and R=L 
j/w 

After integration by parts, Eq. (45) gives 

Z,(p’,f’)= e&(R)- R & 
I 

’ o u-bP2 

R2 
X exp -f12c-- 1-5 d5. 

(46) 

(47) 

With the change of variable e= ( 1 - t) -1/2, 

Z3(p’,t’)=erfc (R)- 2Re-R2j3(fi,R), 
J;; 

(48) 

where 

After some straightforward algebra, 

(49) 

+ e2i.R 
I 
Rt+ia15 

0 

resulting in 

J;; 
Z3ifi,R) = 2~ Re[e 2inR erfc(R-l- Xl)]. 

With Eqs. (48) and (50), 

Z3(p’,tr)=erfc(R)-ewR2 Re[ez2 e&(Z)], 

where 

(50) 

(51) 

Z=R+ibl=)+i@. 
l/s 

(52) 

The locus of Z= Z( t ‘) in the complex plane is the hyperbola 
defined by the equation 

, 
Re( Z) . Im( 2) = d- FPt, (53) 

where Re(Z), Im(Z)>O. The minimum distance of this hy- 
perbola from the origin equals 

IZImin=[(2wb)1np’]1/2. (54) 

If ]Z],i*% I, i.e., 

apJiop* i, (55) 

then, by the use of Eq. (7.1.23) of Ref. 5, Z,(p’,t’) can be 
approximated by the leading term 

Z,(p’,f’)-erfc - 

i i & 

2t’ I12,Q P’ 
- -e-P (56) 

37 p’2+ 2W;P ’ 

which is valid uniformly in times 0 G t < *. 

V. EVALUATION OF E,(p,t) 

Once Z,(p’,t’) has been obtained, Zz(p’,t’) and 
Zl(p’,fc) may readily be evaluated with Eqs. (20). Finally, 
by the use of Eqs. (13), (15), and (16), the following formula 
has been derived: 

0, so, 
Po4Zo 

E,(PJ)= r 

i 

aAt), O<t<2t,, (57) 
1 

z(p,t)-qp,t-2t*), t>2t,, 

where 
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F(Z)=Re[ez2 e&(Z)]; G(Z)=Im[ez2 e&(Z)], (59) 

Z=R+ifi, R= ff- 
J;I;’ 

fl=Jo,t. (60) 

It is worth noting that the complete field includes terms pro- 
portional to 11R3, G(Z). 1/R2, and F(Z)- l/R corresponding 
to the near, intermediate, and far fields, respectively. This is a 
consequence of the use of the parameter R = R(t). For fixed 
time, 0 <t-C 2 t r , the spatial dependence of the field changes 
from l/p3 to e -R2/p2 as the p ulse moves from the near 
(R41) to the far field (R+l). 

g( p, t) may be written as the sum of two terms: 

E(p,t)=%-J(p,t)+~~(p,t), (61) 
where 

e-R2 

i 

J;; 
~o:o(P.t>=- Y 2f -$+ --$ F(R) 

J 
(62) 

t 2rrt 

~l(iJJ) = g[ &F(Z)+ ;( fWZ)+ &) 

(631 

and 1.i.m .,P,+25’l(p,t) =O, while go(p,t) is independent of 
wp . Therefore,, %“(p,t) represents the response to the ideal 
rectangular-excitation pulse. 

In the limit 2t,+O+, the response to the discontinuous 
exponential-excitation pulse [Eq. (7)] can be evaluated by 
expansion of flp, t - 2 t 1 j in Taylor series about t r = 0. Then, 

PO&JO W/At) 
E:(w) = F 7 7 t=4 (64) 

i.e., it is the time derivative of the response to the continuous 
exponential pulse. 

An interesting case involves the limits up--+ +m and 
2t, --+O+ when these are taken consecutively. With Eqs. 
(61)-(63), E&t) reduces to 

E,(w) = 

in accord with Fq. (3 1) of Ref. 4, which is concerned with 
the so-called “late-time” approximation of the ‘Lexact” im- 
pulse response of a short electric dipole. Emphasis should be 
placed on the derivation of Eq. (65) by the use of the low- 
frequency approximation. This result clearly proves that the 
“late-time” response to the nonrealistic delta-function exci- 
tation corresponds to its low-frequency part of the spectrum 
and, therefore, can be attributed to a realistic low-frequency 
pulse as well. 

Finally, when lZl@ 1, Eq. (63) can be simplified by the 
use of the asymptotic expansion [Ref. 5, Eq. (7.1.23)]: 

ez2 en%(Z) = & [l-&+0(;)]> 66) 

valid uniformly in time if condition (55) is satisfied. In par- 
ticular, when w,t=~2~R2=a’p2/2t. Eq. (63) reduces to 

~~(p.t)-- 2 --$( I- ~)c?+-‘~‘~~, (67) 

which represents the first-order correction due to the nonzero 
rise time and agrees with previous results.3,6 This agreement 
is consistent with the fact that the major contribution to in- 
tegration in the integrals involved in the transient response 
comes from the vicinity of the fixed point o’ = 0 in the fre 
quency domain and is, therefore, determined by the local 
analytic behavior of the respective Fourier transform. 

VI. CONCLUSIONS 

The analytically evaluated electric field generated by an 
electrically short dipole in sea water excited by a pulse with 
a finite, nonzero rise and decay time reveals a complicated 
behavior. This field consists of two transients, each one of 
them being the sum of two terms. The first term represents 
the response to the rectangular pulse with zero rise and decay 
time, while the second term is the correction accounting for 
the step discontinuity in the first derivative of the excitation 
pulse. Each transient contains the complete field, and shifts 
successively from the form of the original pulse to the spatial 
and time derivatives. 

The results obtained may be applied to remote sensing in 
sea water, when low-frequency pulses are used. Since a simi- 
lar analysis can be followed for any highly dissipative me- 
dium, the conclusions derived are expected to describe pulse 
propagation in the human body as well, provided that a 
proper carrier frequency is chosen for modulation of the low- 
frequency signal. 
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