JOURNAL OF MATHEMATICAL PHYSICS VOLUME 39, NUMBER 11 NOVEMBER 1998

Electromagnetic fields in air of traveling-wave currents
above the earth

Dionisios Margetis®
Gordon McKay Laboratory, Harvard University, Cambridge, Massachusetts 02138-2901

(Received 12 November 1996; accepted for publication 10 July)1998

The problem of the electromagnetic field created by a thin, straight conductor of
infinite length carrying a forward traveling-wave current with a complex propaga-
tion constanty above a homogeneous and isotropic planar earth of wave number

is formulated in terms of contour integrals. In the limit wherbecomes equal to

the free-space wave numbey, the component of the magnetic field in air normal

to both conductor and interface is evaluated in closed form in terms of known
special functions while the remaining components of the field in air are expressed
as series expansions & k3(kj—kg) ~ Y2 via the application of a contour integra-
tion technique. The new analytical formulas involve familiar transcendental func-
tions and are valid at any distance from the source. The analysis sheds light on the
intricate nature of low-frequency electromagnetic fields generated by transmission
lines in the presence of a conducting or a dielectric half-spacel9@8 American
Institute of Physics.S0022-248808)02811-4

I. INTRODUCTION

The determination of the propagation modes for the current and evaluation of the ensuing
electromagnetic field of a thin, infinitely long straight wire immersed in a stratified medium is a
fundamental and fairly old problem in electromagnetic theory. Of particular interest is the case in
which the conductor is placed parallel to an isotropic, homogeneous half-space. In the thin-wire
approximation, the field is computed with the assumption that the current is axial and concentrated
in a line at the center of the cross section of the wire. Early investigatfoersployed approxi-
mate transmission-line theory and were essentially limited to a relatively dense neighboring me-
dium and to distances from the source that are short compared to the medium’s wavelength. In
later analyses® the field components of a conductor carrying an exponential current were ex-
pressed in terms of Fourier integrals in the direction normal to the conductor and parallel to the
interface, with the tacit or explicit assumption that the field tends to zero when the distance
perpendicular to the wire approaches infinity. In these studies, it has not been possible to evaluate
all requisite integrals of the so-called Sommerfeld type, even for special values of the propagation
constanty for the current.

Colemari was probably the first to point out that in the liraitd— 0, wherea is the radius of
the wire andd is the distance from the interface, the modal equation yields a solutiopvidrich
approaches the wave numbleg of the ambient medium. Approximate analytical derivations
through disparate mathematical methods by Chang and"\afatk by Kinget al® with the condi-
tion 0<kyd<<1l and for a relatively dense neighboring medium have corroborated and refined
Coleman’$ findings whena<d. For the air-earth configuration, deviations from the vajue
=k, result then in negligible deviations of the fields in air for all distances of interest at extremely
low frequencies. In the case of two or more thin, parallel conductors the condition of a vanishing
total current reinforces the reasoning for the assumptistk, because of the confinement of the
field closer to the source!® Notably, y changes drastically when the wire approaches the vicinity
of the boundary d~a) because of the proximity effect of the earth’s surfaé8linvestigation of
the modal equation for a wide range of frequencies is a formidable'ta8k.

In a recent paper by King and Wisimple approximate formulas for the field were derived
under the conditioik3<|k?| via integration of the approximate lateral-wave formulas for the field
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of a horizontal electric dipol&® wherek, is the wave number of the earth. However, as pointed
out in Ref. 10, the violation of the requisite conditibkyr’|>1 at extremely low frequencies,
wherer’ is the distance from the dipole, introduced an inaccuracy for the axial component of the
electric field.

This paper has a twofold purpose. The first is to outline a procedure for obtaining integral
representations for all components of the electromagnetic field under the thin-wire approximation
in the general case when the current in ¥hdirected conductor at a fixed frequeneyis of the
form e "1t where Rey>0, Im =0, by invoking the condition that the field be described as a
superposition of outgoing waves in the direction normal to both conductor and interface. This in
turn leads to a radiation field which is exponentially increasing in the direction normal to the wire
when Imy>0 and the surrounding medium is a perfect dielectric, such as air, in agreement with
the studies on the theory of the microstffp?’ This point is discussed further in Sec. IV.

The second purpose is to evaluate exactly the requisite integrals for the field in air at any
distance from the source in the limjt—k, by relaxing the conditiork3< k2|, wherek; is the
wave number of the adjacent medium. This is achieved by applying a contour integration tech-
nique. The new integrated formulas involve series expansion® ifor |5|<1, whered is ex-
pressed a$= ns/k, ng being the limit asy— kg of the Sommerfeld pole anki= \/kzl—koz, with
series coefficients that depend on known special functions. These series are shown to converge
uniformly in distance. In certain limiting cases the formulas in question reduce to simplified
expressions, such as the well known Carson’s séribst have been previously derived by
different approximate means. It is emphasized that the proposed treatment is not intended to serve
as a substitute for previous simple approximate results; it rather aims at demonstrating rigorously
exact solubility of the model in question with the removal of certain restrictions on the physical
parameters. Consequently, stringent conditions for the validity of practically appealing simplifi-
cations can follow.

Compared with actual current-carrying wires the main idealizations involved he(é)ate
current-carrying conductor in air is infinitely long and thia<d); (2) the air-earth interface is
planar;(3) the source current has the dependegi#ewith the distances along the wire. The limit
v—Kkq corresponds to the transverse electromagn@ieM) mode in air in the absence of the
earth. This propagation constant reasonably describes the slow-wave currents in actual multiphase
transmission lines above the eatt!. The e '*! time dependence is suppressed throughout the
analysis.

IIl. FORMULATION

The geometry of the problem is shown in Fig. 1. It consists of an infinitely bowdrected
conductor lying in the vertical plang=0 in the air(region 0,z>0) at heightd above the surface
(z=0) of an isotropic, homogeneous and nonmagnetic e@ethion 1,z<<0). The associated
current density is assumed to be

Jr)=e'™s8(y)8(z—d)x, Rey>0, Imy>0, 1)

wherer =(x,y,z). At this point, it is not advisable to employ the usual spatial Fourier transform
in y of the field since the requisite integrability condition fgi — o is not necessarily met. A
remedy to this problem is to seek a meaningful integral representation of the form

1 — .
Fj(xiyiz): E frdﬂFj(X,n,Z)elny, (2)

whereF;=E;, B; (j=0,1) denote the electric and magnetic field, respectively, in each region 0,
1 andTI is a properly chosen infinite integration path with horizontal asymptotes implane.
Specifically, when a scalar integral coefficient becomes 1, the respective integral yields the Dirac
delta functions(y). Conventional inversion of the integral formula of E®) is not generally
possible.

Formally, with a dependence of the form

Fi(n)=€"(y,2), 3)
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FIG. 1. Cross section of an infinitely thin, infinitely long conductor above the earth.

E; andB; satisfy Maxwell's equations if the coefficients=¢;, b; (j=0,1) obey the following

equations:
— i —  dby
ejy kJZ 2 'W?’ejx""w 9z | (4)
_ | deix _
€j; ka 2|7, i nwbjy |, (5)
_ 1 —ik? dey
bjy=— ka 5 | 7YDjx 77 | (6)
_ 1 aby, kP — }
b=t |1V = — — € (7)
jz 2_ 2 x|
ki— 0z 1)
‘92ij o lopo  H
?Jr?’jejx:—k—jz(kj—)’)cs(z—d), (8)
P
2 Y b;x=0, 9
where
Y=k == 7% (10

The 7»-Riemann surface fogl, HJ consists of four sheets. For definiteness, the first Riemann sheet
72, 1s defined as

Vne 2y, —ml2<argyjsml2. (17

The corresponding branch cuts are parts of hyperbolas, as depicted in Fig. 2. Final expressions for
g, b; are uniquely determined by imposition of: _ _

(1) Outgoing waves irg; this excludes solutions of the fore ' 70 for z>d ande'”1* for
z<0 in Egs.(8) and(9).
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FIG. 2. Integration patli’ in the complex»-plane for the electric and magnetic field of an infinitely long wire in(aiave
numberkg) carrying ane'”*, Rey>0, Im >0, current over the earttwave numbek;).

(2) Continuity ofe;,, by, €, bj, atz=0.
Accordingly, forz>0 the axial components read

= _ ., (ke ¥+ vo(ki- ¥)
o R KLy

) iw ;
el7olzrd 4 %(ké— y*)€70% sin(yezo), (12
YoKo

ny(ki—kj)

j z+d)
MR & (13

HOX:

while for z<0

— y1(K3— ¥?) + yo(ki—7?)

= — i)/ d *i’y z
elX C”MO K(??)L( 77) e 0 e 1 ) (14)
_ (k2—k3) _
blx:ﬂo%E' Yodg~ 1712, (19
where
K(7)=v0+ 71, (16a
L(m)=kiyo+K3ys. (16b)

In the abovez. is the larger one of andd andz. is the smaller one. Similar formulas for the
remaining components are obtained directly from Edps-(7). If yis considered to be rea?} and

Hj designate the two-dimensional spatial Fourier transforms ynof the projections irx of the
tensor Green’s functions for the electric and magnetic field. Fron{Z&dp it is inferred that when
0% kokllx/k02+ kzl, L(#n) has four simple zeros in the-Riemann surface which are the Sommer-
feld poles:

@ 1
=+ po=+ _
7==ns== g2 (17

In contrastK(#) is free of zeros in any finite region of this surface. It is noteworthy thabthe
are free of the.(#) denominator.

An integration pati” which is symmetric under inversion through the origin is subsequently
chosen so that{l) It lies entirely in.72;. (2) All integrals are absolutely convergeri8) The
positive and negative real axes are asymptotes of the path. Among these requir€thamnis(2)
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suffice to determine the field. The chosen contour is shown in Fig. 2. Integral representations for
the field follow from Eq.(2). These satisfy Maxwell's equations in each region 0, 1 along with the
prescribed boundary conditionszt 0 and are expressed as a Fourier superposition of outgoing
waves inz.

In the limit z—<c, the principal contribution to integration arises from the vicinityzp£ 0,
yielding a leading term that is exponentially growingan Similar asymptotic behavior can be
found via the method of steepest descEhighen y?+ 72— for z>0, as outlined in Appendix
A.

Evidently, the integral representations may be continueg-=td,. The respective field tends
to zero whenyy“+z°—oo.

lll. THE CASE y=k,

A. Integral representations for the field in air

In the limit y—kgy, the integration pathh’ in Eqg. (2) can be deformed to coincide with the
entire real axis. By use of Eq&)—(7), (12) and(13), and evaluation of the elementary integrals,
it is straightforward to arrive at the following expressions for the fidtgs By:

[OF I 7 *° . _ 1 kg
E =——e'koxf d e"?)’e [7l(z+d) _ 18
oo 00 T+ R ik 22
iowy -
=—— (D (y,z:1) — (kKD P (v, Z: k3K ], (18
% —i si —[nlz
_opokg Xf e | 7ld i sinh(%z) e
o= o e'ko 7xd7ye e 7 ﬂkg +ik%|n|+kgm’ 0<z<d
(193
2
MoC ik X[(y y I(O 2 2}
=—— " | 35— 5|tk =5 V_(y,z;ky/K]) |, (19b
2 O\ g ik
:a),u—oko ikgx - dne' ™ —|7ld _COSHTIZ)+ K —7 —|nlz 0<z<d
0z e ne' e 5 — > — © , z
27 o ks ik2| ]+ k2 k= 77 203
2
oC ikX(z—d z+d\ kg ) 2}
=—— e | —— —| =ik 5 U(y,z;kg/k?) |, (20b
AN TR
Box= —Ii 'U’O_koeikoxjw dype' e I+ d) sgr( ) ! - ks
o 2m — =2 +il ] ikl + k5K =7
(213
w .
= S D _(y,71)— (XKD _(y,Z;KkE/KD)], (21b
Boy= 5—; e”‘Oxf_ dne' Ve 79| cosh 7z)
L il il Nl enIZ] 0<z<d (229
(il + VK= ) (ik | 7] + k5 VK= ) ’
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__ Fo i x{(z d_z+d 2 }
—_ 20 giko - —ikW(y,z;k3/k?) (22b
2m Pc2> P1 4
wo oo (= . —i sinh 72) e |72
B =—e'k0xf dne Me~Inld 4 , O<z<d 23
027 27 o g 7 i| 9+ Vk?— 7 (233
_ Mo ,kox[( A
- y,z;1) |, (23b
S 2w Po P%

where

k=VkZ—KZ, Im k=0, (24)

c=(€omo) Y2 is the velocity of light, sgng) is the sign function

1, 7n>0
sgrin)=10, #=0
-1, <0,

and, with the introduction of a new variabe=ik 1| 7,

O.(y,z,B)=¢(a.;B)xe(a_;B), Y. (y.z,8)=¢(a,;B)*la_;B), (29

1 1 1
U(y,z;ﬁ)=U(a+;B)+U(a7;B)—E —+—_ —E\If +(¥y,Z,B8), (26)
1 1

W(y,z;8)=W(a,;B)+W(a_;8)=Y,(y,z;,1)-(1+B)¥ . (y,z,8) + a_++I , (27)
B)= f S — (28
, _f“e”d —os S __ 9 29
1//(&,,8)— o se S+ﬁ\/m aa, go( :8)1 ( )

N L Js?+1 11 }
U(a,ﬁ)—fo dse m 5 |a ——(a;B) (30

(et S+ B(1tsyl+s?) !
!B)_f dse (S+\/m) S+ﬁ\/m) l//(a 1) (1+B)l//(asﬁ)+a1 (31)

a.=—ik(z+d=xiy)=—ikp,e™'0, —72<6,<w/2,

po=V(z—d)?+y%  py=\(z+d)’+y? sinby1=ylpo1, z>0, (32
a
T= E—aqu). (33

The integral formulas in the first expressions, E48a—(23a, are invertiblet® The restriction
0<z<d has been removed in the second expressions, (E§B—(23b), since the singular term
1/p(2) is extracted by direct integration and the ensuing representations may be continmed to
=d. In Eg. (29), the interchange of the order of differentiation and integration is legitimate
because the integrals are absolutely and uniformly convergent.
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FIG. 3. Branch-cut configuration in the-plane for the integral of Eq(34). The modified path serves the analytic
continuation ofg(«;B) along the respective contour enclosing the origin in Sglane.

The quantitiesb.., V., U, W introduced above designate solely the corrections to the
solution for a perfectly conducting eartk,(— ). The form of the solution above verifies that for
a current supporting a TEM mode in air tkecomponents of the field satisfy Laplace’s equation
in y,z in the simply connected regidity,z):z>0} whereas the rest of the components satisfy the
Poisson equation in the same region.

An examination of Egs(25)—(31) indicates that only the integrations fgf«;3), where 8
=1 andk3/k3, need to be carried out.

B. Evaluation of ¢, ¢, u,w

For mathematical convenience it is assumed #at0. The extension over the range of
complex values ofe for which |arga|< is attained via analytic continuation. The principal
integral reads

e — aS 1
“’(“'ﬂ):fo dse T pVF T (34

where the integration path coincides with the entire positive real axis. The integrand (84Eq.
has two branch points a= *+i. A branch of the square root is chosen such titat-s?>0 for
s>0. The first Riemann sheet is subsequently defined by taking the branch cuts along the positive
and negative imaginary axis, as shown in Fig. 3. A study of the c@ise¢ and B=k2/k?
essentially evinces the differences introduced by the denominié{ess andL(7) of Egs.(163
and (16b), respectively. These two possibilities need to be considered separately.

(i) B=1. In this caseg(a;B) is cast in the form

+oo 1 1
(p(a’;l)ZJ dSEﬁas(\ll-FS —S)=;Sl’1(a)—?. (35)
0
In the aboveS, ,(«) (v=1) denotes Lommel’s function
1
v+ E

S, (a)=2""ta"T [H(a) =Y, (a)], (36)
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whereH («) andY ,(«a) are Struve’s function and Neumann’s function, respectively, from p. 18
of Ref. 20.

(i) ﬁ:kglkf. In this case, it has not been possible to obtain similar expressions in closed
form. In particular, in the limit3—0 the integral of Eq(34) becomes divergent. F@+0, the
denominator of the integrand vanishes to first order at

s=x4, 5=pI(1- B =kg/(Ki—ko)'?, (37)

which implies the existence of two simple poles in ti®iemann surface. For definiteness, it is
assumed that>0 for 0<B<1. Accordingly, the poles=— & alone is present in the selected
Riemann sheet.

The analytic continuation of(«;8), qua function of3, along any simple closed cury@
= B(t) enclosing the origin in thg-plane is carried out through deformation of the integration
path in thes-plane in order that the pole=— §(3(t)) does not cross the modified path. In
particular, when the initial point i8= 8, and the contour is described once in the counterclock-
wise sense in th@-plane, thes-integration picks up the residue s — §(8p)=— 8y, as shown

in Fig. 3:
e—aS
@, B2 — o(a;Bg)= —2miReS_ 5| ————|=—2mi(1+ 82)e*?, 38
QD( BO ) (P( ﬂO) % 50 S+,80\/m ( 0) ( )

This calculation indicates the existence of a logarithmic singularifg=a0. Accordingly, the task
is assigned of expanding the regular partgdt;3(5)) in powers of§ in the unit discZ={6
e C|o|<1}.

In order to extract the singular contribution, it is desirable to write

1 1+ 62 1
spi s M E @
which in turn leads to
¢o(@;B)=—(1+5%)e™Ei(— 6a)— 81+ &°¢y(a; ), (40
where
o1(a;8)= fmdse‘“S ; (41)
0 \/er 1+ 6
and Ei(—2) is the exponential integral defined on p. 267 of Ref. 21 as
Ei(—z)=— fdte—tt—l. (42

The integrand in Eq(41) no longer admits any pole in the first Riemann sheet. By inspection,
¢1(a; ) is holomorphic inZ. It is noted in passing that

N-1 (_1)n+l
eZEi(—z):Z0 Tz‘l‘”+0(|z|"\"1) for z—o», N=1,2,.|argz)|<3w/2,
43
. o (=y" _ _
Ei(—z)=vy+In z+21 — Ei(—z€?™)=Ei(—2)+2i, (44)

wherey=0.5772... is Euler's constant.
For the purpose of obtaining a series expansiop dfx; 8) in 5%, ¢,(a; ) is expressed as a
contour integral, namely,
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FIG. 4. Branch-cut configuration and contour of integrat®iin the s-plane for the integral of Eq45).

1 o NP1 1482
o1(a;8)=— -— | dse “*Ei(—as€'") —————, (45)
2w Jc s°— 6

in view of Eq.(44). A branch of Ei(- ase'™) is chosen such that9arg)<2. ContourC is
traversed in the clockwise sense and its interior contains the mointss, as depicted in Fig. 4.

By virtue of
1 L-1 -2L
_ 20a—21-2, 2L
> |=§:o FlsH 24 5, (46)
whereL is any fixed positive integer, E@45) is rearranged to give
L-1 1 | 1
e1(a;0)= > 5”(——.” dse “Ei(—ase'M)s 27 (1+s2- X ( 2)52”‘
i= 2w Jc m=0 \ M
L-1 | 1 1
+ ( 2)5”(——.)[ dse *SEi(— ase ' m)g2m-21~2
=0 m=0 \M 2] Je
+mifdse‘“sEi(—ase‘i”) !
27 Je s°— &
1 . VsP+1
2L T — aSEi( —im\o—2L
1) o Ldse Ei(—ase '")s P (47)

In regard to the first sum of the preceding expression, the integration may be performed using the
positive real axis since the integrands are all integrable=d,>>. The double sum and the third

term are zero because the respective integrals can be indented at infinity and no singularity lies
within the resulting contour. The fourth term represents the remainder of the summation and is
evaluated by folding the contour around the branch cuts in the imaginary axis, as shown in Fig. 4.

Accordingly, ¢1(«a; 8) reads

L-1
ma;(s):;o 820, (@) +R (a3 ), (48)
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where
I 1
Q2|+2(C¥):f dse *%s 77 J1+8°- X (E)SZ”‘} (493
0 m=0 \M
=(—-1) % fwdg[eiafEi(—iaf)—e’i“fEi(iaf)]g’z"zx/fz—1, (49b)
1
and
1 (= . . JE-1
R(a;8)=(—1)ts%" — L dé[e*Ei(—iaé)—e '“Ei(iag)]E 2t Ei—ag. (50a
When 2.>1,
Do L s2L m fapi B P —3p2 —5/2
Ri(a;8)=(~1)'6*" —— | 1z [€Ei(—ia)—e “Ei(ia) L *?+O(L %) (50b)

for any @, 8 (]8|<1). In the limitL—c, R (a;8)—0 uniformly in a, é. Furthermore,

Qaicala)  [1dé[“Ei(—iag)—e "Eiliag)]E ? *VE-1

=— ‘ . =0
Qar+2(a) JTdE e “Ei(—iaé)—e "“Ei(iag)]e 2 22— 1 (1 (513
to all orders ina. Specifically,
deg 24221
QZ|+4(Q)~_ J1déé Vé _ 2| (21> 1) (51b)

Qus2(@)  [7dge2-2Jg—1  21+3

uniformly in a. The preceding expressions are suggestive of the efficiency of the expansion in
question when 8| <1.
The final formula fore(a;B) is

go(a;,B(ﬁ))=—(1+52)e‘5aEi(—5a)—5\/1+EZIZO %' qy40(a), for |8]<1, (52

where theq, . »(a@) are given by Eqs(499 and (49b) and can be expressed in terms of known
special functions for any finite. An outline of the procedure along with the first six coefficients
are provided in Appendix B. A straightforward, yet tedious, alternative derivation of®y.is
carried out in Appendix C by invoking the Mellin transform technique. A strong indication of the
validity of Eq. (52) is provided in Tables | and Il which display values of the principal quantity
¢1(a; 8) obtained both numerically through the integral of E4l) and from the series of Eq.
(48), for selected positive values @ and « as well as for negative imaginary values @f As
verified analytically, the rate of convergence of the series is essentially independent of

Once ¢(a;P) is evaluated,{«;B) is obtained by direct differentiation. In particular, for
| 8] <1, term-by-term differentiation of the right-hand side of E5Q) is justified on grounds of
uniform convergence of the resulting series whef>0. Consequently,

2 11
Plal)=——3— 3+ 3= Sia), (53
2 o0
W, B(8))= ! —— o1+ 5%)e%°Ei(— da)— 61+ 52;0 62 qy . 1(a), for |8]<1,
(54)
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TABLE |. Values for ¢,(«; 8)obtained for positiver, § (6<1)by numerical integration according to Egl) and by
evaluation of series on right-hand side of E48). The coefficients),(a),n=2, 4, 6, 8, are evaluated both by numerical
integration from Eq(499 and by use of the results of Appendix B.

Series from Eq(48)

a From Eq.(41) L=1 L=2 L=3 L=4

Case A:¢,(a;6=0.8)

10715 33.481 87 33.654 71 33.441 37 33.495 99 33.476 015

1075 10.456 17 10.628 98 10.415 68 10.470 29 10.450 32

1072 3.61242 3.774 62 3.57372 3.625 98 3.606 79

1 0.373 44 0.419 04 0.360 50 0.378 28 0.37136

10 4.3665 1072 4.9763< 1072 4.1838< 1072 4.4368< 1072 4.3357x 1072

100 4.3846¢10°3 4.999 75¢10°2 4.1998x10°3 4.4558< 1073 4.3534x10°3

10 4.3848<107° 5.0000< 1075 4.2000<10°° 4.4560<107° 4.3536x10°°
Case B:¢,(«;6=0.1)

10715 33.651 39 33.654 71 33.651 37 33.651 39 33.651 39

1075 10.625 66 10.628 98 10.625 65 10.625 66 10.625 66

1072 3.77149 3.774 62 3.77148 3.77149 3.77149

1 0.418 13 0.419 04 0.41813 0.41813 0.41813

10 4.9640 1072 4.9763< 1072 4.9639< 10?2 4.9640< 1072 4.9640< 1072

100 4.987%10°3 4.999 75¢10°2 4.987 25¢10°2 498731073 498731073

10t 4.9876x107° 5.0000< 10°° 4.9875<107° 4.9876<107° 4.9876<107°

where

I 1
J1+s2— 2 ( 5)52”“} (559

m m

d e ase—21-1
Q2|+1(Q)Z—EQ2|+2(01)= 0dse S

:(—1)'“% fwdg[eio‘gEi(—iag)+e‘i“§Ei(iag)]g‘z"l\/ngl.
1
(55b)

The first six coefficients), , 1(«) of the above series are tabulated in Appendix B. The remainder
of this expansion wheh terms are summed equals

1% 1 (= .
Qu@; 9= = Ri(a;0)=(~ 1t 1o — Jl de[e“¢Ei(—iag)

_ JEi—-1
+e ' *Ei(iag)]E 2 %, (56)

which is O(Ina) as a—0 and O(1&%) as a—x, i.e., integrable atv=00c. In the limit L
—o0, Q(a;8)—0 uniformly in |8|<1, |a|>0. The preceding expansion preserves the same
interesting features as those implied by E@&.g and (51b).

Substitution fory{«;B) into Egs.(30) and (31) yields

S\1+ 82

U(a; B(0)= = (1+ )% Bi( — da) = ———+(1+69) 2 0qa (@), (57)
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TABLE Il. Complex values ofp,(«; ) obtained for positived and pure imaginary: by numerical integration according
to Eq.(41) and by evaluation of series on right-hand side of @&). These integrals arise, for example, over a very dry

earth(conductivity c=0) aty=0.

Dionisios Margetis
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From Eq.(41)

Series from Eq(48)

L=1

L=3

Case A:¢,(a@;6=0.8)

10715 33.4818%i1.570 80 33.654 7£i1.570 80 33.495 99i1.570 80 33.476 0%i1.570 80
1075 10.456 035-11.570 64 10.628 8%i1.570 67 10.470 16i1.570 64 10.450 18i1.570 64
102 3.568 05+i1.506 88 3.736 64i1.517 41 3.581 98i1.507 44 3.562 2¥i1.506 66
1 0.118 17i0.441 83 0.147 4810.496 82 0.122 12i0.447 35 0.116 4210.439 50
10 9.581% 10’ 14.4412% 1077 10.9325¢10° 7 8.8476x10° 7

+i4.4054x 1072 +i5.0269< 102 +i4.4777x1072 +i4.3737x 1072
100 i4.3850< 102 i5.000 25¢ 1073 14.4562< 1072 i4.3538< 103
10t 14.3848<10°° i5.0000<107° i4.4560< 1075 14.3536<107°

Case B:¢4(a;6=0.1)

10715 33.65139%i1.57080 33.654 74i1.570 80 33.65139i1.570 80 33.651 39i1.570 80
1075 10.625 55+i1.570 67 10.628 8%i1.570 67 10.625 55i1.570 67 10.625 55i1.570 67
1072 3.73340ri1.517 22 3.736 64i1.517 41 3.73340i1.517 22 3.73340i1.517 22
1 0.146 86+-i0.495 73 0.147 48i0.496 82 0.146 80i0.495 73 0.146 80i0.495 73
10 1.432%10°© 1.4441x10°© 1.4327 1076 1.432710°©

+i5.0144x 102 +i5.0269 102 +i5.0144x 102 +i5.0144x 102
100 14.9878< 1072 i5.000 25¢ 102 14.9878< 1072 14.9878< 1072
10t 14.9876<10°° i5.0000< 10°° i4.9876x10°° 14.9876x10°°

5 2 1 1 S5+ (1+ 822
W(avﬁ( )) a,3 3+3a S2,2((1) o

—8(1+ &)Y 5+ (1+ 6%)Y?]e’Ei( - Sa)

+ O[5+ (1+ 52)1’2]; 8y 41(@), for |8|<1. (58
=0

The analytic continuation to complex values@ftan be carried out through the appropriate
rotation of both contouC and the enclosed branch cut in the right te&fflane. The condition
| 6| <1 holds when the surrounding medium is air and the adjacent medium is earth, being dictated
on mathematical grounds by the use of a power series representati@ang with the existence
of branch points atb=*i. A physical situation corresponding to these points arises when the
ambient medium becomes perfectly conducting and the field is identically zero.

C. The z-component of the magnetic field in air

The field is easily evaluated with Eq4.8b)—(27). Only thez-component of the magnetic field
By, is calculable in simple closed form:

( 1 1) 4y y2—3(z+d)2+ 1 ky—ik(z+ d))
— — - - — —IK(Z
27027 S 3i(z+d—iy) S —ky

Mo
BOZZE elkox

. (59

l .
T 3i(z+d+iy) S, Aky—ik(z+d))

This relatively simple structure is not surprising since it originates from the absence of any pole in
the integrand of Eq(29) when3=1.
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D. Approximate expressions for the field when  k3<<|k3|, |koki*(kop1)|<1

Clearly, the critical parameters of the problem are=—ik(z+d+iy) and k3/k?. When
k3<|k3|, at most only the first term of the associated series expansions needs to be retained
essentially regardless of the magnitude|ef.|, while the condition]| Sa..|~|koky *(kop1)|<1
enables approximation of the exponential integral-&i(.- §) according to Eq(44).

In particular, the exact integrated formulas may be greatly simplified under the condition
|k1p1|2<1 as, for instance, when the earth is highly conducting and the vertical distance from the
image is much shorter than the wavelength in earth. Indeed,|thgr<1 in Egs.(25—(27) and
small-argument approximations become effective. The resulting approximate expressions are

_depo o) o1 im 20 1. 2 Lol (1
Eox oy e Xy v 5 2+3k(z+d)+ 1+8k(z+d) 8ky In2kpl
—i(5—4y+27Ti)k2[(z+d)2—y2]—E k?(z+d)y tan | —
32 4 z+d
2k3 i | k2 ’ 60
e y— 5 *in 2 ke | (60)
oC 1 1-2k3/K
Eogy~ =— e*oy| 5 — ————|, (61
o2 C TR
uoC . Jz—d (1—2k3/k3)(z+d)
Eg,~ —— e'koX - , (62)
% 2m Ph pi
s Ho® x 1. A P a
Box |2ch0[1+8k(z+d) 8kytan er+3ky

1k l54 2i)k3(z+d s e
> p1 _E( —4y+2mi)ke(z+ )y—k—%tan

s izray | L) (63
4 (z+d)y In z+d) |’

Boy~ — 22 eikox Z_dJrlk2 +d)l lk +2ik—1 3—4y+2mi)k¥(z+d

2

2i k3| [2k3
3 2__\27_9;
+ 15k [(z+d) —y~] ZIKE In(?%—

! -1

z+d

1
-2 k?y tan ] , (64)

]--i-l34+2'k2 1k2| 1k 4'k?’ +d
p_gl_G(_y mi)k"= 7 K In| 5 kpy | — 7 1k*(z+d)

y

! k?(z+d)tan t
4 z+d

(65)

Equation(60) gives the first few terms of Carson’s sefiéSif k is approximated bk, with the
exception of the correction term proportionalk§/k?. This discrepancy is due to the neglect of
the Sommerfeld-pole contribution in Carson’s formulation. Equati@®—(65) agree with the
findings of image theory in the static limié—0*. In this limit, the exact integrated formulas
(18)—(23) reduce to the results of image theory without any restrictiokpandk, . In particular,
when the earth has zero conductivity and-0", only the first term in the series expansion of Eq.
(54) is nonzero. Only the approximate formula in E§1) and the zeroth-order terms in E§2)
for the y- andz-components of the electric field are in accord with the application of the lateral-
wave formulas of Ref. 10. No ,11 term of the reflected field is involved in thg- and
z-components of the magnetic field because the earth was assumed to be nonmagnetic.
Another limiting case involvefk;p,|~|a|>1. Then large-argument approximations apply
and the integrated formulas simplify to
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By — o ek Zkzg - (Z+If2):1,_y2 —ig vt é kpl) J (66
Eowa‘;_qu aikox [pig_ %Igé/kf] (67)

Eo.~ ’;—g’f eikoX| Z;Sd - z:id it—g S s;—yz +2ik E—g y= 5 +In t—? kpl) ] (68)
Box~ % g'kox %f_ —Ziy;:p;d) +i % tan ! 7+d } (69

Boy~ — 5—7‘: eikoX{ Z;gd - (1+2kg/pl?(z+d) +2i t—? y— %Tﬂn E—‘% kpl) ] , (70
Bo,~ g—; e‘koXy‘pié - p%+ m(kz—pgd)} . (70)

Only they-component of the electric field preserves its static character to first ordélrkiﬁ The
correction terms O(S/kf) become significant over a very dry earth. These either stem from the
vicinity of the Sommerfeld polélogarithm and inverse-tangent terht are due to secondary
imperfect reflections from the image inside the edtétms proportional to p?, 1/p‘1‘).

IV. CONCLUSIONS AND DISCUSSION

The problem of the field created by an infinitely long and infinitely thin conductor carrying a
traveling-wave current above a planar earth is revisited, but with a perspective different from
previous analyses. Integral representations for the field in terms of contour integrals are derived in
a physically meaningful way. It is shown that, as a direct consequence of this formulation, an
exponentially decreasing outgoing current along the conduictdhe positivex direction causes
exponential increase of the radiation field in any direction perpendicular to the line source. This
result is in accord with preliminary studies on the theory of the micrdétthat seem to have
escaped attention in a considerable part of the recent literature.

In the limit where the propagation constanfor the current becomes equal to the free-space
wave number, all integrals for the field in air are, for the first time, evaluakedtlyin terms of
series expansions in the Sommerfeld pole. A prominent feature of the new series representations
is the essential independence of their rates of convergence from distance. These series describe
corrective contributions for the reflectésecondaryfield to take account of the fact that it is not
actually the field of an ideal image, and involve coefficients of nontrivial, yet calculable, form in
terms of incomplete integrals of cylindrical functions. Finally, the component of the magnetic field
normal to both conductor and interface is evaluated in simple closed form in terms of Lommel
functions.

It should be borne in mind that the method of solution here crucially depends on the fact that
the radiative structure is planar, and therefore is restricted in its applicability. Nevertheless, the
present exposition foy=k, reveals the nature of the field produced by multiphase transmission
lines operating at sufficiently low frequencies above the earth, where the total field, trivially
obtained via superposition, is spatially confined near the wires.

In the case of a complex propagation constamtith Im y>0, the usual radiation condition in
three dimensiorfé?®is not explicitly invoked because the line has infinite length. This point is
also discussed in Ref. 14. Heuristically speaking, the field growth in the radial distareez?
characterizes an asymptotic region in space where the assumed exponential increase along the
negative xdirection dominates over the free-space radiation decrease inversely proportional with
distance. This region extends to infinity, in some sense, when the line becomes infinitely long.
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Application of a limiting procedure that, starting with a localized source and the usual boundary
condition at infinity, may lead to Eq2) and the accompanying assumptions in full mathematical
rigor remains an open question for future work.
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APPENDIX A: ON THE ASYMPTOTIC BEHAVIOR OF THE RADIATION FIELD IN AIR

For definiteness, considge=0. The phase associated with E¢B2) and (13) reads

O () =\IKG— Y2~ 7A(z=d)+ ny, z>d. (A1)
The corresponding saddle point= 7P, is
7P = kI 92 sin Op,, 0<6,,<m/2, (A2)
where — w/2<argy/k3— y?<0, yielding
O (7) = Jkg=¥’pos, Im @ (7*)<0, (A3)
2 3

po1and 6y, are defined by Eqg32). For | \/koz— ’y2|p011>1 and fixedd, ;, the steepest descents
path is determined by the conditions

REP ()~ P=(7')]=0, (A5)
Im[® = (7)—P=(7'%)]>0. (AB)

Once the integration path is properly deformed to pick up the saddle-point contribution, the
exponential growth in/y?+ z? of the field follows easily fromA3).
Under the usual substitution

7=n(x)=ky— 7 sin x, (A7)
each® _(#) is recast in the form
®=(7(x))= VKo~ ¥*po,1 0% Bg 1= X)- (A8)

A branch of y=x(#) can be chosen so thg{(0)=0. In the y-plane, the saddle point ig&sp)
= 69,1, While the steepest descents path is now described by the relations

A cog x,— 6p ) coshy;—D sinh x; sin(x;— 6p 1) =A, (A9)
A sinh x; sin(x,— 6.1) + D cog x, — 6y 1) coshy; <D, (A10)

whereA=Re/k3— >0, D= —Im\k3— y*>0, andy,=Reyx, xi=Im x. The path configuration
in the y-plane is depicted in Fig. 5. Note that

tan 6=A/D. (A11)
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FIG. 5. A sketch of the integration-path configuration in faplane undefA7). I’ is the image ofl" of Fig. 2 and(:;p
is the steepest descents path. For simplicity, the branch points correspond)ngitq/kzl— yi are not shown here. The
dashed lines are vertical asymptotes=(m/2— argyk3— 7).

Possible contribution from a Sommerfeld pole is recognized as exponentially recessive.

APPENDIX B: EVALUATION OF g,(a)
From Egs.(49a and (553, theq,(«) read

o (=12 /4
qn(a)=f dse @5 (1+s2— >, ( 2)32”‘ , (B1)
0 m=0 m
wherea>0,n=0,1,. .., and[ x] denotes the integral part of the real numkei hese satisfy the
following equations:
d
da Qar+2(@) = — 0z +1(@), (B2
d 2
da q2|+1(a)—< | )ln a}=—q2|(a). (B3)
wherel=0 and
+oo 1
qo(a):f dse *5\1+s°= ~ Si(a). (B4)
0

S,,.(a) is given by Eq.(36).
The application of Lebesgue’s dominated convergence theorem t¢48. when a—0, |
=1 entails:

. B S (=)' T(@E/2()
cy= Im Qo) =(-1) [ Cage 2T e P @

For =1, the integral of Eq(55b) is recast in the form

1 _ -1 r5
qz,ﬂ(a)—(lz)m a=%j de[e“Ei(—iaf)+e *Ei(iaé)—2In a]e¢ 2 12— 1.
1
(B6)
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For 0<a<1, the preceding integral may be rewritten as

=)y
= + ,
1 1 O(a™™)

where 0<\<1. In the limit «— 0, the second term tends to zero because absolute convergence
obtains. In regard to the first term, the integrand in brackets is properly expanded according to Eq.
(44). This in turn leads to

1 TV
d|EIim[q2|+1(a)—(|§)ln a]=2( D J d&(y+In )¢ 2 1e8-1

a—0 ™ 1
:2—1(

d
W)= InT(@), $(D=-y, HH=-y-2In2

: (B7)

- NI~

2y+¢(1+|)—¢(—%+|

wherel=1 and

1 1
¢(Z+|):E+"'+m+lﬂ(2).

Note thatg,(a) andq;(«)—In « exhibit different behavior from that described in EB5) and
(B7), respectively. By use of EqB1),

1
gi(a)=In a-l—;-l—y—l—ln 2-1+0(a In a) for a—0. (B8)

Likewise,
go(a)=—In a—y+In2—=1+0O(a In a). (B9)

Equations(B2)—(B5) and (B7)—(B9) suffice to determing,(«) for anyn=1.
In consideration of the following formula$:

d d
gt [1S1a0]=1Spd1), Spa(t)=1= 72 Sodb), (B10)

along with Eqs(B8) and(B9), Eqgs.(B3) and(B2) are properly integrated fdr=0 to give
1 _ a (1 1
gi(a)=—+In a+(y+In2—1)+ lim f dti 5 — — Sy 4(t)
@ 50" 701 vt

=—1+y+In(2a)~D(a)+S, (@), (B11)

Jo(@)=—In a—y+In2-1— lim fdt
80t 7

=—a[—1+y+In(2a)—D(a)]+ Sy @) — aS; (a). (B12)

1
Int+y+In2-1+S; ()~ D(t)— ?]

In the above, use is made of the small-argument approximationsl fefa) and Yy ,(«), and
D(«a) is defined as

D(a)= f:dtso,o(t). (B13)
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This function was initially studied in connection with a problem in acoustic radiafi@espite
the fact that®

w

@ 2
jo dtYy(t)= 2a [Yo(a)H_1(a)+Ho(a)Yi(a)], H—1(a):;_H1(CY), (B14)

a az
f dtHo(t)=— oFa(1,1;3, 3.2,—a®/4), (B15)
0

the form of Eq.(B13) is more advantageous to employ hebPd.«) cannot be expressed in terms
of simpler transcendental functions. It is noted in passing that the integral ({BES). is a special
case of the incomplete Lipschitz-Hankel integral of the Struve &pe.

For 1=1, it is permissible to integrate Eq&B2) and (B3) explicitly over the rangd0,a]
subject to the conditions of Eq&B5) and (B7):

o l o
(12|+2(C¥):C|—fO dtgy +1(1), q2|+1(a)=(|2)ln a’"'dl_jo dtay(t). (B16)

Successive integrations by parts according to the recursive scheme

t v+1 1 t

J dtt’D(t)= e D(t)— — f dtt” 1Sy (1), (B17)
t t

fdtt”Sovo(t)=t”Slyl(t)—(v—1)f dtt’ 1S, 4(1), (B18)
t v+1 t

fdttVsl,l(t)= 7 USedD) + vj dtt” 1Sy (1) (B19)

provide a routine procedure for the evaluationggf«) for any finite n=3. For all reasonable
purposes, the first 13 integrais(a) (n=0,1,...,12) are sufficient. It is readily found thg(«)
(n=3) can be expressed as

(-1t
(n=1)!
72 U(@)=AD (@) Sod @) + A [ (a)Sy (@)}, (B20)

On(a@)= {7 (@) y+In(2a)—D(a)]

where the”)(a) (j=1,2,3,4) denote even or oddth-degree polynomials im, 7”{)(— a)
=(—1)"2V(a). Forn=3,...,12, theAl=1?*)a) and A=} (a) read

PP(@)=a?+1, 7P (a)=a*+3a, 7P (a)=a*+6a?-3,
7P (a)=a®+10a°— 150, 7§(@)=a’+ 15a*— 4522+ 45,
7M(a@)=a’+21a°—1052°+ 3150,
P (@)= a®+28a°—2100*+ 126> — 1575, (B21)
7 (@)= a®+36a”— 3785+ 3780 — 14 175,
7 (@)= a**+ 4508 — 6300° + 9450 * — 70 875x%+ 99 225,

PP (@)= a**+55a°— 9900 + 20 790> — 259 875>+ 1 091 47%;
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PP (a)=a?~ % PP (a)=a+ ga, PP (a)=a+ goﬂ— 2
7N a)=a+ goﬁ— ?a, &)= a+ 277a4— %‘r’a% 7;5
PP (a)=a’+ ?aﬁ— ?a“—k goﬂ— %95, (B22)
P (a)= e+ @(ﬂ_ 1683a5+ 8979a3_ 169 1550[1

2 4 2 8

87 2745 42 555 732 375 424 305
.9/)(1%)(04)= %+ 7a8— 7 ab+ 7 at— 3 a’+ g

i 1 107 0 4245 ; 90 525 5 2 433 855 3 13399 155
(%(11)(a)=a +7a -z« + 7@ 8 a’+ 8 a;

?(13)(a)=a, %(23)((1):&2, 7’(33)(a)=a3+3a, ?23)(a)=a4+7a2,
7I(a)=a’+12a°— 450, 7P (@)= a’+18a*— 12302,

7P (a)=a’+25a°—249°+ 1575,

(B23)
73 (@)= a®+33a°— 4410* + 49502,
PP (@)= a’+42a"— 72005+ 11 790°— 99 225,
73 (a)=a*+ 5228 — 1110+ 24 66" — 354 1952 ;
P a)=a?, 7P (a)=a*+2a, 7P(a)=a*+5d%
ZP(a)=a’+9a°— 160, 7(a)=a’+14a*—51a?,
7W(a)=a’+20a°—117a°+ 384a,
PP (@)= a®+27a%— 22%*+ 14972, (B24)

7P ()= a®+35a"—405a°+ 4257a°— 18 432,
70 (@)= ™+ 4408~ 6660°+ 10 26Qv*— 85 0952,
73 (@)= a*+54a°— 103627+ 22 05Qr°— 290 92%°+ 1 474 56Q.

As explained in Sec. lll, the final formulas for,(«) may be extended over complex values
of a for which |arg a|<ar. Small-argument approximations faf,(«) follow from Egs. (B11)—
(B15) and (B20)—(B24) if the series expansions ia for Hg 1(a), Yo1(@), and,F3(1,1;3, 3,2;

— a?/4) are taken into account. Large-argument approximations \aen <, |arga|<a can be
readily obtained either from E@B1) via Laplace’s methd or by use of the asymptotic expan-
sions of the related transcendental functiét@.
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APPENDIX C: EVALUATION OF ¢(a;B) BY THE MELLIN TRANSFORM TECHNIQUE

In this appendix, Eq.52) is derived formally via application of the Mellin transform
techniqué?’?® For mathematical convenience, |8t=i3 and take3>0. Then,

. _ ” e " 1% TR iR 152 R’
o(a;B(d)) deSs—i—iEm (1-09)11(e;0)—16N1— 6% 5(«;0), (Cy

where

5= =—is, 6= : (C2

— as

ly(@:3)= J :ds —— - % [€°Ei(~3a) + &~ P"Ei(Ba)], €3

52452

V1482

s2+ 82

lo(a;8)= j:d s e s, (C4)

Whena=0(1)>0, Eq.(38) implies that an expansion o(«;d) in powers ofs can be obtained
quite straightforwardly by invoking its Mellin transforin(«; {). Avoiding elaboration on math-
ematical subtleties, such as issues related to convergence of any of the resulting series, consider

aw
sin ¢

_ o - o) 1
|2(a;§)=f d6%(6%) ‘I y(a;d)= fdse—“Ss—Zf 1+¢?, 0<Re{<3, (C5)
0 0

by interchanging the order of integration. Inversion of the above formula is studied initially
according to the formula

’

I -75)=i () (B o<c'<1 (C6)
la, 27T| o i g 2(a1§ ( ’ 2

Of course,l_z(a;g) defined by(C5) can be analytically continued into Re<0, Re{=1/2, as
shown below. It is noteworthy that

o
sinw{

Ty(a; )~ fo dse s~

__ 7 201101
“sinag & r-29

2 Q21

T sin @l sin 2w T(20)

o (277)3/2(201/29—24 In 27 +(2+3im)+ (20~ D a

|¢| e, O<larg¢|<m/2, (o)

where the upper sign holds for Re-0 and the lower sign for R&<0, and use was made of the
Stirling formula

[(z)~2me 2t W2Inz 7| o |argz|<w.

In view of
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s-plane

/
\\o 1

FIG. 6. ContourC, that serves the analytic continuation of the integral form@8) into the right and left{-plane
according to(C8).

eiZW{

1
—aSa—2¢ — aS
fo dse *3s 1+s 21 sin2n¢ dse 1+s%, (C8)

where the upper limis=1 is chosen arbitrarily an@ is a closed contour passing through 1 and
encircling 0 clockwise without enclosing any of the branch poststi (as shown in Fig. § it

is not difficult to deduce thaITz(a;g) is a meromorphic function of. For Re{>0, its poles are
located atZ=1 and{=1—1/2, wherel is any positive integer. By writing

1

{f ds e *Ss 242 (5 s2my fwdse*“SSﬂ
0

o

the singular behavior of,(;¢)(32)¢ ! in the vicinity of {=1 is singled out as

(— |+1 1-1 1 @2(-m-1
2(§—|)22 ( )(2| 2m—1)!

(_1)|+1 -1 (%) 20-m-1

Ty(a;0)=

sin wg

N

pe

Tz(a;§><"52>4“—1~<"52>'—1[

o 2, m[y—hz,,zm,ﬁln(?m)]
+( ;)IIH fwdse asg=2l| 14+ 62— Z ( ) 2”‘] (1=1,2,..)),
(C10
where
hy=1+2"1+---+n"1 n=1. (C1)
In the vicinity of {=1-1/2,
Toa; (32 W§(|+1)1I/2 2 SmE () (2|2<|2+12>)I (C12

Equation(C7) suggests that deformation of the original inversion pathso that it finally coin-
cides with %5, which wraps around the positive real axgee Fig. 7, is legitimate. Subsequent
summation of the residues from all pole contributions there yields
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~ 1 o
lo(a;0)=5—~ 47(/ dilo(a;0)(6%)71

L
= S 8) + [y +In(a)} ol 3)— S o )+ lim 2 (~ 1) qz2(a),
(C13
where$ is sufficiently small,g,;.(a) is given by Eq.(49a, and
_ * _ I % g20-m

.m(a:a)EIEO(—l)'aZ'-lmEO(m 2 am

© " 2

:m:O DZO (_1)p+m< m e (2p)!

\V1-82 cosda, (C14)

| =

_ ® o I 1 @2(-m+1
& . — _ 2 2 _
S0 =2 (“D 2 (m) (21—2m+1)!

© 1 2p+1
=> > (_1)P+m( 5)32(p+m) L

M=0 p=0 m (2p+1)!
1-82 .
=— sin da, (C15
)
» I % g20-m+1
Sfa;8)=2, (—1)'8 ( —————hy_
Had=2 (-1 2 | o amy 1y M2

* * 1y a,2p+1
= E 2 (_1)p+m( ’ ) sxprm — h2p+1

p=0 m=0 m (2p+1)!
1 — * (Ea)2p+l
== V1-8D (-1)P ———hy,4. (C16
3 5=0 (2p+1)1 P
Im¢
A
AC1 €-plane
;02
e T T Smololae T 9 o 1 et
A

FIG. 7. Inversion paths for the Mellin transfort_rg(a;g) of (C5). #7 is the original inversion path and’, serves the
expansion of ,(a; d) in powers ofé. | is any positive integer.
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The last series is easily evaluated by noting that
m [
(=1 (m
— 21 — 1 (c17

Therefore
* 22p+ 1

pzo(_l)p(ZpT)!hz’” 22 ~O DD @

2p 2p+1 1

© @ S2m+2n+1 1
=mE:0 20 (=1)™" (2n+1)!(2n+1) (2m)!
2m+2n+3 1
+m2_ nz O™ G 2)iznT2) (ZmT D)1
=z cosz F(z)+sinz G(z), (C18
where
» 2n
FO=2 1" Gt g (€19
2n+2
G(Z)_E( D Znvoient2) (C20
F(z) satisfies
%(zF)z%sinz, F(0)=1, (C2)
with the solution
1z sint =
F(Z):EfodtT:Z_E[EI(_IZ) Ei(iz)]. (C22
By inspection of(C20),
G(2)= fdt1 COSt:fO it %2 cost Jdt1+t2 J:C t(1(-j:t2)+ :Odt%St
=y+1In z— L[Ei(—iz)+Ei(iz)]. (c23

Equations(C18), (C22), and(C23), along with(C16), lead to
,%ég(a;3)=”5—1\/1—"52[g cosBa+[ y+In(3a)]sin o
[ ~ ~ ~
Sa; H —idapi/i
+§[e' Ei(—ida)—e ™ '°“Ei(ida)];. (C24)

Substitution of(C14), (C15), and(C24) into (C13) yields

— ) .
[ %°Ei( —i da) — e 9°Ei(i da) ] + ZO (—1)"'62qy . 2(a). (C25

lp(@;8)= ——
2i6
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By virtue of (C1) and(C3),
¢(a;ﬁ):-(1—?52>ei7$aEi(—i:sa>—i‘m—szlzo(—1>'752'q2|+2(a>, (C26

which is Eq.(52). This result can be analytically continued to complex value$of-is and
a (largal<m).
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