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Electromagnetic fields in air of traveling-wave currents
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The problem of the electromagnetic field created by a thin, straight conductor of
infinite length carrying a forward traveling-wave current with a complex propaga-
tion constantg above a homogeneous and isotropic planar earth of wave numberk1

is formulated in terms of contour integrals. In the limit whereg becomes equal to
the free-space wave numberk0 , the component of the magnetic field in air normal
to both conductor and interface is evaluated in closed form in terms of known
special functions while the remaining components of the field in air are expressed
as series expansions ind5k0

2(k1
42k0

4)21/2 via the application of a contour integra-
tion technique. The new analytical formulas involve familiar transcendental func-
tions and are valid at any distance from the source. The analysis sheds light on the
intricate nature of low-frequency electromagnetic fields generated by transmission
lines in the presence of a conducting or a dielectric half-space. ©1998 American
Institute of Physics.@S0022-2488~98!02811-4#

I. INTRODUCTION

The determination of the propagation modes for the current and evaluation of the en
electromagnetic field of a thin, infinitely long straight wire immersed in a stratified medium
fundamental and fairly old problem in electromagnetic theory. Of particular interest is the ca
which the conductor is placed parallel to an isotropic, homogeneous half-space. In the thi
approximation, the field is computed with the assumption that the current is axial and concen
in a line at the center of the cross section of the wire. Early investigations1,2 employed approxi-
mate transmission-line theory and were essentially limited to a relatively dense neighborin
dium and to distances from the source that are short compared to the medium’s wavelen
later analyses3–6 the field components of a conductor carrying an exponential current were
pressed in terms of Fourier integrals in the direction normal to the conductor and parallel
interface, with the tacit or explicit assumption that the field tends to zero when the dis
perpendicular to the wire approaches infinity. In these studies, it has not been possible to e
all requisite integrals of the so-called Sommerfeld type, even for special values of the propa
constantg for the current.

Coleman7 was probably the first to point out that in the limita/d→0, wherea is the radius of
the wire andd is the distance from the interface, the modal equation yields a solution forg which
approaches the wave numberk0 of the ambient medium. Approximate analytical derivatio
through disparate mathematical methods by Chang and Wait4 and by Kinget al.8 with the condi-
tion 0,k0d!1 and for a relatively dense neighboring medium have corroborated and re
Coleman’s7 findings whena!d. For the air-earth configuration, deviations from the valueg
5k0 result then in negligible deviations of the fields in air for all distances of interest at extre
low frequencies. In the case of two or more thin, parallel conductors the condition of a vani
total current reinforces the reasoning for the assumptiong5k0 because of the confinement of th
field closer to the source.9,10 Notably,g changes drastically when the wire approaches the vici
of the boundary (d;a) because of the proximity effect of the earth’s surface.4,7,9 Investigation of
the modal equation for a wide range of frequencies is a formidable task.11,12

In a recent paper by King and Wu10 simple approximate formulas for the field were deriv
under the conditionk0

2!uk1
2u via integration of the approximate lateral-wave formulas for the fi

a!Electronic mail: margetis@huhepl.harvard.edu
58700022-2488/98/39(11)/5870/24/$15.00 © 1998 American Institute of Physics
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of a horizontal electric dipole,13 wherek1 is the wave number of the earth. However, as poin
out in Ref. 10, the violation of the requisite conditionuk1r 8u.1 at extremely low frequencies
wherer 8 is the distance from the dipole, introduced an inaccuracy for the axial component o
electric field.

This paper has a twofold purpose. The first is to outline a procedure for obtaining int
representations for all components of the electromagnetic field under the thin-wire approxim
in the general case when the current in thex-directed conductor at a fixed frequencyv is of the
form eigx2 ivt, where Reg.0, Im g>0, by invoking the condition that the field be described a
superposition of outgoing waves in the direction normal to both conductor and interface. T
turn leads to a radiation field which is exponentially increasing in the direction normal to the
when Img.0 and the surrounding medium is a perfect dielectric, such as air, in agreemen
the studies on the theory of the microstrip.14–17 This point is discussed further in Sec. IV.

The second purpose is to evaluate exactly the requisite integrals for the field in air a
distance from the source in the limitg→k0 by relaxing the conditionk0

2!uk1
2u, wherek1 is the

wave number of the adjacent medium. This is achieved by applying a contour integration
nique. The new integrated formulas involve series expansions ind2 for udu,1, whered is ex-
pressed asd5hS/k, hS being the limit asg→k0 of the Sommerfeld pole andk5Ak1

22k0
2, with

series coefficients that depend on known special functions. These series are shown to co
uniformly in distance. In certain limiting cases the formulas in question reduce to simp
expressions, such as the well known Carson’s series,1 that have been previously derived b
different approximate means. It is emphasized that the proposed treatment is not intended t
as a substitute for previous simple approximate results; it rather aims at demonstrating rigo
exact solubility of the model in question with the removal of certain restrictions on the phy
parameters. Consequently, stringent conditions for the validity of practically appealing sim
cations can follow.

Compared with actual current-carrying wires the main idealizations involved here are~1! the
current-carrying conductor in air is infinitely long and thin (a!d); ~2! the air-earth interface is
planar;~3! the source current has the dependenceeigx with the distancex along the wire. The limit
g→k0 corresponds to the transverse electromagnetic~TEM! mode in air in the absence of th
earth. This propagation constant reasonably describes the slow-wave currents in actual mu
transmission lines above the earth.9,10 The e2 ivt time dependence is suppressed throughout
analysis.

II. FORMULATION

The geometry of the problem is shown in Fig. 1. It consists of an infinitely longx-directed
conductor lying in the vertical planey50 in the air~region 0,z.0! at heightd above the surface
(z50) of an isotropic, homogeneous and nonmagnetic earth~region 1,z,0!. The associated
current density is assumed to be

J~r !5eigxd~y!d~z2d!x̂, Reg.0, Im g.0, ~1!

wherer5(x,y,z). At this point, it is not advisable to employ the usual spatial Fourier transf
in y of the field since the requisite integrability condition foruyu→` is not necessarily met. A
remedy to this problem is to seek a meaningful integral representation of the form

Fj~x,y,z!5
1

2p E
G
dhF̄j~x,h,z!eihy, ~2!

whereFj5Ej , Bj ( j 50,1) denote the electric and magnetic field, respectively, in each regio
1 andG is a properly chosen infinite integration path with horizontal asymptotes in theh-plane.
Specifically, when a scalar integral coefficient becomes 1, the respective integral yields the
delta functiond(y). Conventional inversion of the integral formula of Eq.~2! is not generally
possible.

Formally, with a dependence of the form

Fj~r !5eigxf j~y,z!, ~3!
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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Ej andBj satisfy Maxwell’s equations if the coefficientsf̄ j5ēj , b̄j ( j 50,1) obey the following
equations:

ējy5
i

kj
22g2 F ihgējx1v

]b̄ jx

]z
G , ~4!

ējz5
i

kj
22g2 Fg

]ējx

]z
2 ihvb̄ jxG , ~5!

b̄ jy52
1

kj
22g2 Fhgb̄ jx1

ik j
2

v

]ējx

]z
G , ~6!

b̄ jz5
1

kj
22g2 F ig

]b̄ jx

]z
2

hkj
2

v
ējxG , ~7!

]2ējx

]z2 1g j
2ējx52

ivm0

kj
2 ~kj

22g2!d~z2d!, ~8!

]2b̄ jx

]z2 1g j
2b̄ jx50, ~9!

where

g j
25kj

22g22h2. ~10!

Theh-Riemann surface forēj , b̄j consists of four sheets. For definiteness, the first Riemann s
R1 is defined as

;hPR1 , 2p/2,arg g j<p/2. ~11!

The corresponding branch cuts are parts of hyperbolas, as depicted in Fig. 2. Final express
ēj , b̄j are uniquely determined by imposition of:

~1! Outgoing waves inz; this excludes solutions of the forme2 ig0z for z.d and eig1z for
z,0 in Eqs.~8! and ~9!.

FIG. 1. Cross section of an infinitely thin, infinitely long conductor above the earth.
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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~2! Continuity of ējx , b̄ jx , ējy , b̄ jy at z50.
Accordingly, forz.0 the axial components read

ē0x52vm0

g1~k0
22g2!1g0~k1

22g2!

K~h!L~h!
eig0~z1d!1

ivm0

g0k0
2 ~k0

22g2!eig0z. sin~g0z,!, ~12!

b̄0x5m0

hg~k1
22k0

2!

K~h!L~h!
eig0~z1d!, ~13!

while for z,0

ē1x52vm0

g1~k0
22g2!1g0~k1

22g2!

K~h!L~h!
eig0de2 ig1z, ~14!

b̄1x5m0

hg~k1
22k0

2!

K~h!L~h!
eig0de2 ig1z, ~15!

where

K~h!5g01g1 , ~16a!

L~h!5k1
2g01k0

2g1 . ~16b!

In the above,z. is the larger one ofz andd andz, is the smaller one. Similar formulas for th
remaining components are obtained directly from Eqs.~4!–~7!. If g is considered to be real,ēj and
b̄j designate the two-dimensional spatial Fourier transforms inx,y of the projections inx of the
tensor Green’s functions for the electric and magnetic field. From Eq.~16b! it is inferred that when
gÞk0k1 /Ak0

21k1
2, L(h) has four simple zeros in theh-Riemann surface which are the Somme

feld poles:

h56hS56A k0
2k1

2

k0
21k1

2 2g2. ~17!

In contrast,K(h) is free of zeros in any finite region of this surface. It is noteworthy that theb̄ jz

are free of theL(h) denominator.
An integration pathG which is symmetric under inversion through the origin is subseque

chosen so that:~1! It lies entirely in R1 . ~2! All integrals are absolutely convergent.~3! The
positive and negative real axes are asymptotes of the path. Among these requirements,~1! and~2!

FIG. 2. Integration pathG in the complexh-plane for the electric and magnetic field of an infinitely long wire in air~wave
numberk0! carrying aneigx, Reg.0, Im g.0, current over the earth~wave numberk1!.
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp
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suffice to determine the field. The chosen contour is shown in Fig. 2. Integral representatio
the field follow from Eq.~2!. These satisfy Maxwell’s equations in each region 0, 1 along with
prescribed boundary conditions atz50 and are expressed as a Fourier superposition of outg
waves inz.

In the limit z→`, the principal contribution to integration arises from the vicinity ofh50,
yielding a leading term that is exponentially growing inz. Similar asymptotic behavior can b
found via the method of steepest descents18 whenAy21z2→` for z.0, as outlined in Appendix
A.

Evidently, the integral representations may be continued tog5k0 . The respective field tend
to zero whenAy21z2→`.

III. THE CASE g5k 0

A. Integral representations for the field in air

In the limit g→k0 , the integration pathG in Eq. ~2! can be deformed to coincide with th
entire real axis. By use of Eqs.~2!–~7!, ~12! and~13!, and evaluation of the elementary integra
it is straightforward to arrive at the following expressions for the fieldsE0 , B0 :

E0x52
vm0

2p
eik0xE

2`

`

dheihye2uhu~z1d! F 1

i uhu1Ak22h2
2

k0
2

k0
2Ak22h21 ik1

2uhuG ~18a!

5
ivm0

2p
eik0x@F1~y,z;1!2~k0

2/k1
2!F1~y,z;k0

2/k1
2!#, ~18b!

E0y5
vm0k0

2p
eik0xE

2`

`

dheihye2uhudhF2 i sinh~hz!

hk0
2 1

e2uhuz

ik1
2uhu1k0

2Ak22h2G , 0,z,d

~19a!

5
m0c

2p
eik0xF S y

r0
2 2

y

r1
2D 1k

k0
2

k1
2 C2~y,z;k0

2/k1
2!G , ~19b!

E0z5
vm0k0

2p
eik0xE

2`

`

dheihye2uhudF2
cosh~hz!

k0
2 1

Ak22h2

ik1
2uhu1k0

2Ak22h2
e2uhuzG , 0,z,d

~20a!

5
m0c

2p
eik0xF S z2d

r0
2 2

z1d

r1
2 D 2 ik

k0
2

k1
2 U~y,z;k0

2/k1
2!G , ~20b!

B0x52 i
m0k0

2p
eik0xE

2`

`

dheihye2uhu~z1d! sgn~h!F 1

Ak22h21 i uhu
2

k0
2

ik1
2uhu1k0

2Ak22h2G
~21a!

5
m0v

2pc
eik0x@F2~y,z;1!2~k0

2/k1
2!F2~y,z;k0

2/k1
2!#, ~21b!

B0y5
m0

2p
eik0xE

2`

`

dheihye2uhudF cosh~hz!

1
k1

2h22k0
2~k21 i uhuAk22h2!

~ i uhu1Ak22h2!~ ik1
2uhu1k0

2Ak22h2!
e2uhuzG , 0,z,d ~22a!
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52
m0

2p
eik0xF S z2d

r0
2 2

z1d

r1
2 D 2 ikW~y,z;k0

2/k1
2!G , ~22b!

B0z5
m0

2p
eik0xE

2`

`

dheihye2uhudhF2 i sinh~hz!

h
1

e2uhuz

i uhu1Ak22h2G , 0,z,d ~23a!

5
m0

2p
eik0xF S y

r0
22

y

r1
2D 1kC2~y,z;1!G , ~23b!

where

k5Ak1
22k0

2, Im k>0, ~24!

c5(e0m0)21/2 is the velocity of light, sgn(h) is the sign function

sgn~h!5H 1, h.0

0, h50

21, h,0,

and, with the introduction of a new variables5 ik21uhu,

F6~y,z;b!5w~a1 ;b!6w~a2 ;b!, C6~y,z;b!5c~a1 ;b!6c~a2 ;b!, ~25!

U~y,z;b!5u~a1 ;b!1u~a2 ;b!5
1

b S 1

a1
1

1

a2
D2

1

b
C1~y,z;b!, ~26!

W~y,z;b!5w~a1 ;b!1w~a2 ;b!5C1~y,z;1!2~11b!C1~y,z;b!1S 1

a1
1

1

a2
D , ~27!

w~a;b!5E
0

`ei t

dse2as
1

s1bAs211
, ~28!

c~a;b!5E
0

`ei t

dse2as
s

s1bAs211
52

]

]a
w~a;b!, ~29!

u~a;b!5E
0

`ei t

dse2as
As211

s1bAs211
5

1

b F 1

a
2c~a;b!G , ~30!

w~a;b!5E
0

`ei t

dse2as
s21b~11sA11s2!

~s1A11s2!~s1bA11s2!
5c~a;1!2~11b!c~a;b!1

1

a
, ~31!

a652 ik~z1d6 iy !52 ikr1e6 iu1, 2p/2,u1,p/2,

r05A~z2d!21y2, r15A~z1d!21y2, sin u0,15y/r0,1, z.0, ~32!

t5
p

2
2arg~k!. ~33!

The integral formulas in the first expressions, Eqs.~18a!–~23a!, are invertible.19 The restriction
0,z,d has been removed in the second expressions, Eqs.~18b!–~23b!, since the singular term
1/r0

2 is extracted by direct integration and the ensuing representations may be continuez
>d. In Eq. ~29!, the interchange of the order of differentiation and integration is legitim
because the integrals are absolutely and uniformly convergent.
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



the
r

on
the

f
al

.

ositive

ic

5876 J. Math. Phys., Vol. 39, No. 11, November 1998 Dionisios Margetis

Downloaded
The quantitiesF6 , C6 , U, W introduced above designate solely the corrections to
solution for a perfectly conducting earth (k1→`). The form of the solution above verifies that fo
a current supporting a TEM mode in air thex-components of the field satisfy Laplace’s equati
in y,z in the simply connected region$(y,z):z.0% whereas the rest of the components satisfy
Poisson equation in the same region.

An examination of Eqs.~25!–~31! indicates that only the integrations forw~a;b!, whereb
51 andk0

2/k1
2, need to be carried out.

B. Evaluation of w,c,u ,w

For mathematical convenience it is assumed thata.0. The extension over the range o
complex values ofa for which uargau,p is attained via analytic continuation. The princip
integral reads

w~a;b!5E
0

1`

dse2as
1

s1bAs211
, ~34!

where the integration path coincides with the entire positive real axis. The integrand in Eq~34!
has two branch points ats56 i . A branch of the square root is chosen such thatA11s2.0 for
s.0. The first Riemann sheet is subsequently defined by taking the branch cuts along the p
and negative imaginary axis, as shown in Fig. 3. A study of the casesb51 and b5k0

2/k1
2

essentially evinces the differences introduced by the denominatorsK(h) andL(h) of Eqs.~16a!
and ~16b!, respectively. These two possibilities need to be considered separately.

~i! b51. In this case,w~a;b! is cast in the form

w~a;1!5E
0

1`

dse2as~A11s22s!5
1

a
S1,1~a!2

1

a2 . ~35!

In the above,Sn,n(a) (n51) denotes Lommel’s function

Sn,n~a!52n21p1/2GS n1
1

2D @Hn~a!2Yn~a!#, ~36!

FIG. 3. Branch-cut configuration in thes-plane for the integral of Eq.~34!. The modified path serves the analyt
continuation ofw~a;b! along the respective contour enclosing the origin in theb-plane.
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whereHn(a) andYn(a) are Struve’s function and Neumann’s function, respectively, from p
of Ref. 20.

~ii ! b5k0
2/k1

2. In this case, it has not been possible to obtain similar expressions in c
form. In particular, in the limitb→0 the integral of Eq.~34! becomes divergent. ForbÞ0, the
denominator of the integrand vanishes to first order at

s56d, d5b/~12b2!1/25k0
2/~k1

42k0
4!1/2, ~37!

which implies the existence of two simple poles in thes-Riemann surface. For definiteness, it
assumed thatd.0 for 0,b,1. Accordingly, the poles52d alone is present in the selecte
Riemann sheet.

The analytic continuation ofw~a;b!, qua function ofb, along any simple closed curveb
5b(t) enclosing the origin in theb-plane is carried out through deformation of the integrat
path in thes-plane in order that the poles52d(b(t)) does not cross the modified path.
particular, when the initial point isb5b0 and the contour is described once in the counterclo
wise sense in theb-plane, thes-integration picks up the residue ats52d(b0)[2d0 , as shown
in Fig. 3:

w~a;b0ei2p!2w~a;b0!522p iRess52d0F e2as

s1b0As211
G522p i ~11d0

2!ead0. ~38!

This calculation indicates the existence of a logarithmic singularity atb50. Accordingly, the task
is assigned of expanding the regular part ofw~a;b~d!! in powers ofd in the unit discD5$d
PC:udu,1%.

In order to extract the singular contribution, it is desirable to write

1

s1bAs211
5

11d2

s1d
2dA11d2

1

As2111A11d2
, ~39!

which in turn leads to

w~a;b!52~11d2!edaEi~2da!2dA11d2w1~a;d!, ~40!

where

w1~a;d!5E
0

`

dse2as
1

As2111A11d2
, ~41!

and Ei(2z) is the exponential integral defined on p. 267 of Ref. 21 as

Ei~2z!52E
z

`

dte2tt21. ~42!

The integrand in Eq.~41! no longer admits any pole in the first Riemann sheet. By inspect
w1(a;d) is holomorphic inD . It is noted in passing that

ezEi~2z!5 (
n50

N21
~21!n11

n!
z212n1O~ uzu2N21! for z→`, N51,2,...,uarg~z!u,3p/2,

~43!

Ei~2z!5g1 ln z1 (
n51

`
~21!nzn

n!n
, Ei~2zei2p!5Ei~2z!12p i , ~44!

whereg50.5772... is Euler’s constant.
For the purpose of obtaining a series expansion ofw1(a;d) in d2, w1(a;d) is expressed as a

contour integral, namely,
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w1~a;d!52
1

2p i EC
dse2asEi~2ase2 ip!

As2112A11d2

s22d2 , ~45!

in view of Eq. ~44!. A branch of Ei(2ase2 ip) is chosen such that 0<arg(s),2p. ContourC is
traversed in the clockwise sense and its interior contains the pointss56d, as depicted in Fig. 4.
By virtue of

1

s22d2 5 (
l 50

L21

d2ls22l 221d2L
s22L

s22d2 , ~46!

whereL is any fixed positive integer, Eq.~45! is rearranged to give

w1~a;d!5 (
l 50

L21

d2l S 2
1

2p i D EC
dse2asEi~2ase2 ip!s22l 22FA11s22 (

m50

l S 1
2

m
D s2mG

1 (
l 50

L21

(
m50

l S 1
2

m
D d2l S 2

1

2p i D EC
dse2asEi~2ase2 ip!s2m22l 22

1A11d2
1

2p i EC
dse2asEi~2ase2 ip!

1

s22d2

2d2L
1

2p i EC
dse2asEi~2ase2 ip!s22L

As211

s22d2 . ~47!

In regard to the first sum of the preceding expression, the integration may be performed us
positive real axis since the integrands are all integrable ats50,̀ . The double sum and the thir
term are zero because the respective integrals can be indented at infinity and no singula
within the resulting contour. The fourth term represents the remainder of the summation
evaluated by folding the contour around the branch cuts in the imaginary axis, as shown in
Accordingly,w1(a;d) reads

w1~a;d!5 (
l 50

L21

d2lq2l 12~a!1RL~a;d!, ~48!

FIG. 4. Branch-cut configuration and contour of integrationC in the s-plane for the integral of Eq.~45!.
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where

q2l 12~a!5E
0

`

dse2ass22l 22FA11s22 (
m50

l S 1
2

m
D s2mG ~49a!

5~21! l
1

ip E
1

`

dj@eiajEi~2 iaj!2e2 iajEi~ iaj!#j22l 22Aj221, ~49b!

and

RL~a;d!5~21!Ld2L
1

ip E
1

`

dj@eiajEi~2 iaj!2e2 iajEi~ iaj!#j22L
Aj221

j21d2 . ~50a!

When 2L@1,

RL~a;d!5~21!Ld2L
p21/2

4i H 1

11d2 @eiaEi~2 ia!2e2 iaEi~ ia!#L23/21O~L25/2!J ~50b!

for any a, d (udu,1). In the limit L→`, RL(a;d)→0 uniformly in a, d. Furthermore,

q2l 14~a!

q2l 12~a!
52

*1
`dj@eiajEi~2 iaj!2e2 iajEi~ iaj!#j22l 24Aj221

*1
`dj@eiajEi~2 iaj!2e2 iajEi~ iaj!#j22l 22Aj221

5O~1! ~51a!

to all orders ina. Specifically,

q2l 14~a!

q2l 12~a!
;2

*1
`djj22l 24Aj221

*1
`djj22l 22Aj221

52
2l

2l 13
~2l @1! ~51b!

uniformly in a. The preceding expressions are suggestive of the efficiency of the expans
question whenudu!1.

The final formula forw~a;b! is

w~a;b~d!!52~11d2!edaEi~2da!2dA11d2(
l 50

`

d2lq2l 12~a!, for udu,1, ~52!

where theq2l 12(a) are given by Eqs.~49a! and ~49b! and can be expressed in terms of know
special functions for any finitel . An outline of the procedure along with the first six coefficien
are provided in Appendix B. A straightforward, yet tedious, alternative derivation of Eq.~52! is
carried out in Appendix C by invoking the Mellin transform technique. A strong indication of
validity of Eq. ~52! is provided in Tables I and II which display values of the principal quan
w1(a;d) obtained both numerically through the integral of Eq.~41! and from the series of Eq
~48!, for selected positive values ofd and a as well as for negative imaginary values ofa. As
verified analytically, the rate of convergence of the series is essentially independent ofa.

Once w~a;b! is evaluated,c~a;b! is obtained by direct differentiation. In particular, fo
udu,1, term-by-term differentiation of the right-hand side of Eq.~52! is justified on grounds of
uniform convergence of the resulting series whenuau.0. Consequently,

c~a;1!52
2

a3 2
1

3
1

1

3a
S2,2~a!, ~53!

c~a;b~d!!5
11d2

a
1d~11d2!edaEi~2da!2dA11d2(

l 50

`

d2lq2l 11~a!, for udu,1,

~54!
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where

q2l 11~a!52
d

da
q2l 12~a!5E

0

`

dse2ass22l 21FA11s22 (
m50

l S 1
2

m
D s2mG ~55a!

5~21! l 11
1

p E
1

`

dj@eiajEi~2 iaj!1e2 iajEi~ iaj!#j22l 21Aj221.

~55b!

The first six coefficientsq2l 11(a) of the above series are tabulated in Appendix B. The remain
of this expansion whenL terms are summed equals

QL~a;d!52
]

]a
RL~a;d!5~21!L11d2L

1

p E
1

`

dj@eiajEi~2 iaj!

1e2 iajEi~ iaj!#j22L11
Aj221

j21d2 , ~56!

which is O(lna) as a→0 and O(1/a2) as a→`, i.e., integrable ata50,̀ . In the limit L
→`, QL(a;d)→0 uniformly in udu,1, uau.0. The preceding expansion preserves the sa
interesting features as those implied by Eqs.~51a! and ~51b!.

Substitution forc~a;b! into Eqs.~30! and ~31! yields

u~a;b~d!!52~11d2!3/2edaEi~2da!2
dA11d2

a
1~11d2!(

l 50

`

d2lq2l 11~a!, ~57!

TABLE I. Values for w1(a;d)obtained for positivea, d (d,1)by numerical integration according to Eq.~41! and by
evaluation of series on right-hand side of Eq.~48!. The coefficientsqn(a),n52, 4, 6, 8, are evaluated both by numeric
integration from Eq.~49a! and by use of the results of Appendix B.

a From Eq.~41!

Series from Eq.~48!

L51 L52 L53 L54

Case A:w1(a;d50.8)

10215 33.481 87 33.654 71 33.441 37 33.495 99 33.476 015

1025 10.456 17 10.628 98 10.415 68 10.470 29 10.450 32

1022 3.612 42 3.774 62 3.573 72 3.625 98 3.606 79
1 0.373 44 0.419 04 0.360 50 0.378 28 0.371 36
10 4.366531022 4.976331022 4.183831022 4.436831022 4.335731022

100 4.384631023 4.999 7531023 4.199831023 4.455831023 4.353431023

104 4.384831025 5.000031025 4.200031025 4.456031025 4.353631025

Case B:w1(a;d50.1)

10215 33.651 39 33.654 71 33.651 37 33.651 39 33.651 39
1025 10.625 66 10.628 98 10.625 65 10.625 66 10.625 66
1022 3.771 49 3.774 62 3.771 48 3.771 49 3.771 49
1 0.418 13 0.419 04 0.418 13 0.418 13 0.418 13
10 4.964031022 4.976331022 4.963931022 4.964031022 4.964031022

100 4.987331023 4.999 7531023 4.987 2531023 4.987331023 4.987331023

104 4.987631025 5.000031025 4.987531025 4.987631025 4.987631025
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w~a;b~d!!52
2

a3 2
1

3
1

1

3a
S2,2~a!2

d@d1~11d2!1/2#

a

2d~11d2!1/2@d1~11d2!1/2#edaEi~2da!

1d@d1~11d2!1/2#(
l 50

`

d2lq2l 11~a!, for udu,1. ~58!

The analytic continuation to complex values ofa can be carried out through the appropria
rotation of both contourC and the enclosed branch cut in the right halfs-plane. The condition
udu,1 holds when the surrounding medium is air and the adjacent medium is earth, being d
on mathematical grounds by the use of a power series representation ind along with the existence
of branch points atd56 i . A physical situation corresponding to these points arises when
ambient medium becomes perfectly conducting and the field is identically zero.

C. The z-component of the magnetic field in air

The field is easily evaluated with Eqs.~18b!–~27!. Only thez-component of the magnetic fiel
B0z is calculable in simple closed form:

B0z5
m0

2p
eik0xFyS 1

r0
2 2

1

r1
2D 2

4y

k2

y223~z1d!2

r1
6 1

1

3i ~z1d2 iy !
S2,2~2ky2 ik~z1d!!

2
1

3i ~z1d1 iy !
S2,2~ky2 ik~z1d!!G . ~59!

This relatively simple structure is not surprising since it originates from the absence of any p
the integrand of Eq.~29! whenb51.

TABLE II. Complex values ofw1(a;d) obtained for positived and pure imaginarya by numerical integration according
to Eq. ~41! and by evaluation of series on right-hand side of Eq.~48!. These integrals arise, for example, over a very d
earth~conductivitys.0! at y50.

ia From Eq.~41!

Series from Eq.~48!

L51 L53 L54

Case A:w1(a;d50.8)

10215 33.481 871 i1.570 80 33.654 711 i1.570 80 33.495 991 i1.570 80 33.476 011 i1.570 80

1025 10.456 0351 i1.570 64 10.628 871 i1.570 67 10.470 161 i1.570 64 10.450 181 i1.570 64

1022 3.568 051 i1.506 88 3.736 641 i1.517 41 3.581 981 i1.507 44 3.562 271 i1.506 66

1 0.118 171 i0.441 83 0.147 401 i0.496 82 0.122 121 i0.447 35 0.116 421 i0.439 50
10 9.581331027 14.441231027 10.932531027 8.847631027

1 i4.405431022 1 i5.026931022 1 i4.477731022 1 i4.373731022

100 i4.385031023 i5.000 2531023 i4.456231023 i4.353831023

104 i4.384831025 i5.000031025 i4.456031025 i4.353631025

Case B:w1(a;d50.1)

10215 33.651 391 i1.570 80 33.654 711 i1.570 80 33.651 391 i1.570 80 33.651 391 i1.570 80
1025 10.625 551 i1.570 67 10.628 871 i1.570 67 10.625 551 i1.570 67 10.625 551 i1.570 67
1022 3.733 401 i1.517 22 3.736 641 i1.517 41 3.733 401 i1.517 22 3.733 401 i1.517 22
1 0.146 801 i0.495 73 0.147 401 i0.496 82 0.146 801 i0.495 73 0.146 801 i0.495 73
10 1.432731026 1.444131026 1.432731026 1.432731026

1 i5.014431022 1 i5.026931022 1 i5.014431022 1 i5.014431022

100 i4.987831023 i5.000 2531023 i4.987831023 i4.987831023

104 i4.987631025 i5.000031025 i4.987631025 i4.987631025
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D. Approximate expressions for the field when k 0
2!zk 1

2z, zk 0k 1
21

„k 0r1…z!1

Clearly, the critical parameters of the problem area652 ik(z1d6 iy) and k0
2/k1

2. When
k0

2!uk1
2u, at most only the first term of the associated series expansions needs to be re

essentially regardless of the magnitude ofua6u, while the conditionuda6u;uk0k1
21(k0r1)u!1

enables approximation of the exponential integral Ei(2a6d) according to Eq.~44!.
In particular, the exact integrated formulas may be greatly simplified under the cond

uk1r1u2!1 as, for instance, when the earth is highly conducting and the vertical distance fro
image is much shorter than the wavelength in earth. Indeed, thenua6u!1 in Eqs.~25!–~27! and
small-argument approximations become effective. The resulting approximate expressions

E0x;2
ivm0

2p
eik0xH g2

1

2
2

ip

2
1

2i

3
k~z1d!1F11

1

8
k2~z1d!22

1

8
k2y2G lnS 1

2
kr1D

2
1

32
~524g12p i !k2@~z1d!22y2#2

1

4
k2~z1d!y tan21S y

z1dD
2

2k0
2

k1
2 Fg2

ip

2
1 lnS k0

2

k1
2 kr1D G J , ~60!

E0y;
m0c

2p
eik0xyF 1

r0
2 2

122k0
2/k1

2

r1
2 G , ~61!

E0z;
m0c

2p
eik0xFz2d

r0
2 2

~122k0
2/k1

2!~z1d!

r1
2 G , ~62!

B0x;2 i
m0v

2pc
eik0xH F11

1

8
k2~z1d!22

1

8
k2y2G tan21S y

z1dD1
2i

3
ky

1
1

4
k2~z1d!y lnS 1

2
kr1D2

1

16
~524g12p i !k2~z1d!y2

k0
2

k1
2 tan21S y

z1dD J , ~63!

B0y;2
m0

2p
eik0xH z2d

r0
2 1

1

4
k2~z1d!lnS 1

2
kr1D1

2ik

3
2

1

16
~324g12p i !k2~z1d!

2
1

4
k2y tan21S y

z1dD1
2i

15
k3@~z1d!22y2#22ik

k0
2

k1
2 F lnS 2k1

2

k0
2 D 21G J , ~64!

B0z;
m0

2p
eik0xH yF 1

r0
2 1

1

16
~324g12p i !k22

1

4
k2 lnS 1

2
kr1D2

4

15
ik3~z1d!G

2
1

4
k2~z1d!tan21S y

z1dD J . ~65!

Equation~60! gives the first few terms of Carson’s series1,3,9 if k is approximated byk1 , with the
exception of the correction term proportional tok0

2/k1
2. This discrepancy is due to the neglect

the Sommerfeld-pole contribution in Carson’s formulation. Equations~60!–~65! agree with the
findings of image theory in the static limitv→01. In this limit, the exact integrated formula
~18!–~23! reduce to the results of image theory without any restriction onk0 andk1 . In particular,
when the earth has zero conductivity andv→01, only the first term in the series expansion of E
~54! is nonzero. Only the approximate formula in Eq.~61! and the zeroth-order terms in Eq.~62!
for the y- andz-components of the electric field are in accord with the application of the late
wave formulas of Ref. 10. No 1/r1

2 term of the reflected field is involved in they- and
z-components of the magnetic field because the earth was assumed to be nonmagnetic.

Another limiting case involvesuk1r1u;ua6u@1. Then large-argument approximations app
and the integrated formulas simplify to
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E0x;2
vm0

p
eik0xH z1d

kr1
2 2 i

~z1d!22y2

k2r1
4 2 i

k0
2

k1
2 Fg2

ip

2
1 lnS k0

2

k1
2 kr1D G J , ~66!

E0y;
m0c

2p
eik0xyH 1

r0
2 2

122k0
2/k1

2

r1
2 J , ~67!

E0z;
m0c

2p
eik0xH z2d

r0
2 2

z1d

r1
2 1 i

k0
2

k1
2

~z1d!22y2

kr1
4 12ik

k0
2

k1
2 Fg2

ip

2
1 lnS k0

2

k1
2 kr1D G J , ~68!

B0x;
m0v

pc
eik0xH y

kr1
2 2

2iy~z1d!

k2r1
4 1 i

k0
2

k1
2 tan21S y

z1dD J , ~69!

B0y;2
m0

2p
eik0xH z2d

r0
2 2

~112k0
2/k1

2!~z1d!

r1
2 12ik

k0
2

k1
2 Fg2

ip

2
1 lnS k0

2

k1
2 kr1D G J , ~70!

B0z;
m0

2p
eik0xyH 1

r0
2 2

1

r1
2 1

4i ~z1d!

kr1
4 J . ~71!

Only they-component of the electric field preserves its static character to first order ink0
2/k1

2. The
correction terms O(k0

2/k1
2) become significant over a very dry earth. These either stem from

vicinity of the Sommerfeld pole~logarithm and inverse-tangent terms! or are due to secondar
imperfect reflections from the image inside the earth~terms proportional to 1/r1

2, 1/r1
4!.

IV. CONCLUSIONS AND DISCUSSION

The problem of the field created by an infinitely long and infinitely thin conductor carryin
traveling-wave current above a planar earth is revisited, but with a perspective different
previous analyses. Integral representations for the field in terms of contour integrals are der
a physically meaningful way. It is shown that, as a direct consequence of this formulatio
exponentially decreasing outgoing current along the conductor~in the positivex direction! causes
exponential increase of the radiation field in any direction perpendicular to the line source
result is in accord with preliminary studies on the theory of the microstrip14 that seem to have
escaped attention in a considerable part of the recent literature.

In the limit where the propagation constantg for the current becomes equal to the free-spa
wave number, all integrals for the field in air are, for the first time, evaluatedexactlyin terms of
series expansions in the Sommerfeld pole. A prominent feature of the new series represen
is the essential independence of their rates of convergence from distance. These series
corrective contributions for the reflected~secondary! field to take account of the fact that it is no
actually the field of an ideal image, and involve coefficients of nontrivial, yet calculable, for
terms of incomplete integrals of cylindrical functions. Finally, the component of the magnetic
normal to both conductor and interface is evaluated in simple closed form in terms of Lo
functions.

It should be borne in mind that the method of solution here crucially depends on the fac
the radiative structure is planar, and therefore is restricted in its applicability. Nevertheles
present exposition forg5k0 reveals the nature of the field produced by multiphase transmis
lines operating at sufficiently low frequencies above the earth, where the total field, triv
obtained via superposition, is spatially confined near the wires.

In the case of a complex propagation constantg with Im g.0, the usual radiation condition in
three dimensions22,23 is not explicitly invoked because the line has infinite length. This poin
also discussed in Ref. 14. Heuristically speaking, the field growth in the radial distanceAy21z2

characterizes an asymptotic region in space where the assumed exponential increase a
negative xdirection dominates over the free-space radiation decrease inversely proportiona
distance. This region extends to infinity, in some sense, when the line becomes infinitely
 19 Jan 2005 to 18.87.1.204. Redistribution subject to AIP license or copyright, see http://jmp.aip.org/jmp/copyright.jsp



ndary
ical

their
ris and
rofessor
rted in

arvard

ts

the

5884 J. Math. Phys., Vol. 39, No. 11, November 1998 Dionisios Margetis

Downloaded
Application of a limiting procedure that, starting with a localized source and the usual bou
condition at infinity, may lead to Eq.~2! and the accompanying assumptions in full mathemat
rigor remains an open question for future work.
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APPENDIX A: ON THE ASYMPTOTIC BEHAVIOR OF THE RADIATION FIELD IN AIR

For definiteness, considery>0. The phase associated with Eqs.~12! and ~13! reads

F7~h!5Ak0
22g22h2~z7d!1hy, z.d. ~A1!

The corresponding saddle point,h5h7
(sp) , is

h7
~sp!5Ak0

22g2 sin u0,1, 0<u0,1,p/2, ~A2!

where2p/2,argAk0
22g2<0, yielding

F7~h~sp!!5Ak0
22g2r0,1, Im F7~h~sp!!,0, ~A3!

d2F7

dh2 U
h5h~sp!

52
r1

3

~z7d!2 ~k0
22g2!21/2. ~A4!

r0,1 andu0,1 are defined by Eqs.~32!. For uAk0
22g2ur0,1@1 and fixedu0,1, the steepest descen

path is determined by the conditions

Re@F7~h!2F7~h~sp!!#50, ~A5!

Im@F7~h!2F7~h~sp!!#.0. ~A6!

Once the integration pathG is properly deformed to pick up the saddle-point contribution,
exponential growth inAy21z2 of the field follows easily from~A3!.

Under the usual substitution

h5h~x!5Ak0
22g2 sin x, ~A7!

eachF7(h) is recast in the form

F7~h~x!!5Ak0
22g2r0,1 cos~u0,12x!. ~A8!

A branch ofx5x(h) can be chosen so thatx(0)50. In the x-plane, the saddle point isx7
(sp)

5u0,1, while the steepest descents path is now described by the relations

A cos~x r2u0,1!coshx i2D sinh x i sin~x r2u0,1!5A, ~A9!

A sinh x i sin~x r2u0,1!1D cos~x r2u0,1!coshx i,D, ~A10!

whereA5ReAk0
22g2.0, D52ImAk0

22g2.0, andx r5Rex, x i5Im x. The path configuration
in the x-plane is depicted in Fig. 5. Note that

tan ū5A/D. ~A11!
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Possible contribution from a Sommerfeld pole is recognized as exponentially recessive.

APPENDIX B: EVALUATION OF q n„a…

From Eqs.~49a! and ~55a!, theqn(a) read

qn~a!5E
0

1`

dse2ass2nFA11s22 (
m50

[ ~n21!/2] S 1
2

m
D s2mG , ~B1!

wherea.0, n50,1,. . . , and@x# denotes the integral part of the real numberx. These satisfy the
following equations:

d

da
q2l 12~a!52q2l 11~a!, ~B2!

d

da Fq2l 11~a!2S 1
2

l
D ln aG52q2l~a!, ~B3!

wherel>0 and

q0~a!5E
0

1`

dse2asA11s25
1

a
S1,1~a!. ~B4!

Sn,n(a) is given by Eq.~36!.
The application of Lebesgue’s dominated convergence theorem to Eq.~49b! when a→0, l

>1 entails:

cl[ lim
a→0

q2l 12~a!5~21! lE
1

`

djj22l 22Aj2215
~21! l

2

G~3/2!G~ l !

G~~3/2! 1 l !
. ~B5!

For l>1, the integral of Eq.~55b! is recast in the form

q2l 11~a!2S 1
2

l
D ln a5

~21! l 21

p E
1

`

dj@eiajEi~2 iaj!1e2 iajEi~ iaj!22 ln a#j22l 21Aj221.

~B6!

FIG. 5. A sketch of the integration-path configuration in thex-plane under~A7!. G8 is the image ofG of Fig. 2 andCsp8

is the steepest descents path. For simplicity, the branch points corresponding toh56Ak1
22g2 are not shown here. The

dashed lines are vertical asymptotes (ū5p/22argAk0
22g2).
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For 0,a!1, the preceding integral may be rewritten as

E
1

`

5E
1

O~a2l!
1E

O~a2l!

`

,

where 0,l,1. In the limit a→0, the second term tends to zero because absolute converg
obtains. In regard to the first term, the integrand in brackets is properly expanded according
~44!. This in turn leads to

dl[ lim
a→0

H q2l 11~a!2S 1
2

l
D ln aJ 52

~21! l 21

p E
1

`

dj~g1 ln j!j22l 21Aj221

5221S 1
2

l
D F2g1c~11 l !2cS 2

1

2
1 l D G , ~B7!

wherel>1 and

c~z!5
d

dz
ln G~z!, c~1!52g, c~ 1

2!52g22 ln 2,

c~z1 l !5
1

z
1¯1

1

z1 l 21
1c~z!.

Note thatq2(a) andq1(a)2 ln a exhibit different behavior from that described in Eqs.~B5! and
~B7!, respectively. By use of Eq.~B1!,

q1~a!5 ln a1
1

a
1g1 ln 2211O~a ln a! for a→0. ~B8!

Likewise,

q2~a!52 ln a2g1 ln 2211O~a ln a!. ~B9!

Equations~B2!–~B5! and ~B7!–~B9! suffice to determineqn(a) for any n>1.
In consideration of the following formulas:20

d

dt
@ tS1,1~ t !#5tS0,0~ t !, S1,1~ t !512

d

dt
S0,0~ t !, ~B10!

along with Eqs.~B8! and ~B9!, Eqs.~B3! and ~B2! are properly integrated forl 50 to give

q1~a!5
1

a
1 ln a1~g1 ln 221!1 lim

d1→01

E
d1

a

dtH 1

t2 2
1

t
S1,1~ t !J

5211g1 ln~2a!2D~a!1S1,1~a!, ~B11!

q2~a!52 ln a2g1 ln 2212 lim
d1→01

E
d1

a

dtH ln t1g1 ln 2211S1,1~ t !2D~ t !2
1

t J
52a@211g1 ln~2a!2D~a!#1S0,0~a!2aS1,1~a!. ~B12!

In the above, use is made of the small-argument approximations forH0,1(a) and Y0,1(a), and
D(a) is defined as

D~a!5E
0

a

dtS0,0~ t !. ~B13!
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This function was initially studied in connection with a problem in acoustic radiation.24 Despite
the fact that20

E
0

a

dtY0~ t !5
pa

2
@Y0~a!H21~a!1H0~a!Y1~a!#, H21~a!5

2

p
2H1~a!, ~B14!

E
0

a

dtH0~ t !5
a2

p 2F3~1,1; 3
2 , 3

2,2;2a2/4!, ~B15!

the form of Eq.~B13! is more advantageous to employ here.D(a) cannot be expressed in term
of simpler transcendental functions. It is noted in passing that the integral in Eq.~B15! is a special
case of the incomplete Lipschitz-Hankel integral of the Struve type.25

For l>1, it is permissible to integrate Eqs.~B2! and ~B3! explicitly over the range@0,a#
subject to the conditions of Eqs.~B5! and ~B7!:

q2l 12~a!5cl2E
0

a

dtq2l 11~ t !, q2l 11~a!5S 1
2

l
D ln a1dl2E

0

a

dtq2l~ t !. ~B16!

Successive integrations by parts according to the recursive scheme

E t

dttnD~ t !5
tn11

n11
D~ t !2

1

n11 E t

dttn11S0,0~ t !, ~B17!

E t

dttnS0,0~ t !5tnS1,1~ t !2~n21!E t

dttn21S1,1~ t !, ~B18!

E t

dttnS1,1~ t !5
tn11

n11
2tnS0,0~ t !1nE t

dttn21S0,0~ t ! ~B19!

provide a routine procedure for the evaluation ofqn(a) for any finite n>3. For all reasonable
purposes, the first 13 integralsqn(a) (n50,1,. . . ,12) are sufficient. It is readily found thatqn(a)
(n>3) can be expressed as

qn~a!5
~21!n21

~n21!!
$P n21

~1! ~a!@g1 ln~2a!2D~a!#

2P n21
~2! ~a!2P n22

~3! ~a!S0,0~a!1P n21
~4! ~a!S1,1~a!%, ~B20!

where theP m
( j )(a) ( j 51,2,3,4) denote even or oddmth-degree polynomials ina, P m

( j )(2a)
5(21)mP m

( j )(a). For n53, . . . ,12, theP n21
( j 51,2,4)(a) andP n22

( j 53)(a) read

P 2
~1!~a!5a211, P 3

~1!~a!5a313a, P 4
~1!~a!5a416a223,

P 5
~1!~a!5a5110a3215a, P 6

~1!~a!5a6115a4245a2145,

P 7
~1!~a!5a7121a52105a31315a,

P 8
~1!~a!5a8128a62210a411260a221575, ~B21!

P 9
~1!~a!5a9136a72378a513780a3214 175a,

P 10
~1!~a!5a10145a82630a619450a4270 875a2199 225,

P 11
~1!~a!5a11155a92990a7120 790a52259 875a311 091 475a;
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P 2
~2!~a!5a22

1

2
, P 3

~2!~a!5a31
3

2
a, P 4

~2!~a!5a41
9

2
a22

3

4
,

P 5
~2!~a!5a51

17

2
a32

75

4
a, P 6

~2!~a!5a61
27

2
a42

225

4
a21

75

4
,

P 7
~2!~a!5a71

39

2
a52

501

4
a31

1785

4
a,

P 8
~2!~a!5a81

53

2
a62

963

4
a41

3255

2
a22

6195

8
, ~B22!

P 9
~2!~a!5a91

69

2
a72

1683

4
a51

8979

2
a32

169 155

8
a,

P 10
~2!~a!5a101

87

2
a82

2745

4
a61

42 555

4
a42

732 375

8
a21

424 305

8
,

P 11
~2!~a!5a111

107

2
a92

4245

4
a71

90 525

4
a52

2 433 855

8
a31

13 399 155

8
a;

P 1
~3!~a!5a, P 2

~3!~a!5a2, P 3
~3!~a!5a313a, P 4

~3!~a!5a417a2,

P 5
~3!~a!5a5112a3245a, P 6

~3!~a!5a6118a42123a2,

P 7
~3!~a!5a7125a52249a311575a,

~B23!
P 8

~3!~a!5a8133a62441a414959a2,

P 9
~3!~a!5a9142a72720a5111 790a3299 225a,

P 10
~3!~a!5a10152a821110a6124 660a42354 195a2 ;

P 2
~4!~a!5a2, P 3

~4!~a!5a312a, P 4
~4!~a!5a415a2,

P 5
~4!~a!5a519a3216a, P 6

~4!~a!5a6114a4251a2,

P 7
~4!~a!5a7120a52117a31384a,

P 8
~4!~a!5a8127a62229a411497a2, ~B24!

P 9
~4!~a!5a9135a72405a514257a3218 432a,

P 10
~4!~a!5a10144a82666a6110 260a4285 095a2,

P 11
~4!~a!5a11154a921036a7122 050a52290 925a311 474 560a.

As explained in Sec. III, the final formulas forqn(a) may be extended over complex valu
of a for which uargau,p. Small-argument approximations forqn(a) follow from Eqs. ~B11!–

~B15! and ~B20!–~B24! if the series expansions ina for H0,1(a), Y0,1(a), and2F3(1,1; 3
2 , 3

2,2;
2a2/4) are taken into account. Large-argument approximations whenuau→`, uargau,p can be
readily obtained either from Eq.~B1! via Laplace’s method18 or by use of the asymptotic expan
sions of the related transcendental functions.20,26
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APPENDIX C: EVALUATION OF w„a ;b… BY THE MELLIN TRANSFORM TECHNIQUE

In this appendix, Eq.~52! is derived formally via application of the Mellin transform
technique.27,28 For mathematical convenience, letb5 i b̃ and takeb̃.0. Then,

w~a;b~d!!5E
0

`

ds
e2as

s1 i b̃A11s2
5~12 d̃2!I 1~a; d̃ !2 i d̃A12 d̃2I 2~a; d̃ !, ~C1!

where

d̃5
b̃

A11b̃2
52 id, d5

b

A12b2
, ~C2!

I 1~a; d̃ !5E
0

`

ds
se2as

s21 d̃2
52

1

2
@ei d̃aEi~2 i d̃a!1e2 i d̃aEi~ i d̃a!#, ~C3!

I 2~a; d̃ !5E
0

`

ds
A11s2

s21 d̃2
e2as. ~C4!

Whena5O(1).0, Eq.~38! implies that an expansion ofI 2(a; d̃) in powers ofd̃ can be obtained
quite straightforwardly by invoking its Mellin transformĪ 2(a;z). Avoiding elaboration on math
ematical subtleties, such as issues related to convergence of any of the resulting series, c

Ī 2~a;z!5E
0

`

dd̃2~ d̃2!2zI 2~a; d̃ !5
p

sin pz E
0

`

dse2ass22zA11s2, 0,Re z,
1

2
, ~C5!

by interchanging the order of integration. Inversion of the above formula is studied ini
according to the formula

I 2~a; d̃ !5
1

2p i Ec82 i`

c81 i`
dz Ī 2~a;z!~ d̃2!z21, 0,c8,

1

2
. ~C6!

Of course, Ī 2(a;z) defined by~C5! can be analytically continued into Rez<0, Rez>1/2, as
shown below. It is noteworthy that

Ī 2~a;z!;
p

sin pz E
0

`

dse2ass22z

5
p

sin pz
a2z21G~122z!

5
p2

sin pz sin 2pz

a2z21

G~2z!

;2~2p!3/2~2z!1/2e22z ln 2z1~263ip!z1~2z21!ln a,

uzu→`, 0,uarg zu,p/2, ~C7!

where the upper sign holds for Rez.0 and the lower sign for Rez,0, and use was made of th
Stirling formula

G~z!;A2pe2z1~z21/2!ln z, uzu→`, uarg zu,p.

In view of
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E
0

1

dse2ass22zA11s25
ei2pz

2i sin 2pz E
C0

dse2ass22zA11s2, ~C8!

where the upper limits51 is chosen arbitrarily andC0 is a closed contour passing through 1 a
encircling 0 clockwise without enclosing any of the branch pointss56 i ~as shown in Fig. 6!, it
is not difficult to deduce thatĪ 2(a;z) is a meromorphic function ofz. For Rez.0, its poles are
located atz5 l andz5 l 21/2, wherel is any positive integer. By writing

Ī 2~a;z!5
p

sin pz H E
0

`

ds e2ass22z (
m50

l 21 S 1
2

m
D s2m1E

0

`

dse2ass22z

3FA11s22 (
m50

l 21 S 1
2

m
D s2mG J , ~C9!

the singular behavior ofĪ 2(a;z)( d̃2)z21 in the vicinity of z5 l is singled out as

Ī 2~a;z!~ d̃2!z21;~d̃2! l 21H ~21! l 11

2~z2 l !2 (
m50

l 21 S 1
2

m
D a2~ l 2m!21

~2l 22m21!!

1
~21! l 11

z2 l (
m50

l 21 S 1
2

m
D a2~ l 2m!21

~2l 22m21!!
@g2h2l 22m211 ln~ d̃a!#

1
~21! l 11

z2 l E
0

`

dse2ass22lFA11s22 (
m50

l 21 S 1
2

m
D s2mG J ~ l 51,2, . . .!,

~C10!

where

hn5112211¯1n21, n>1. ~C11!

In the vicinity of z5 l 21/2,

Ī 2~a;z!~ d̃2!z21;
p

2

~21! l

z2 l 11/2
d̃2l 23 (

m50

l 21 S 1
2

m
D a2~ l 2m21!

~2l 22m22!!
. ~C12!

Equation~C7! suggests that deformation of the original inversion pathC 1 so that it finally coin-
cides withC 2 , which wraps around the positive real axis~see Fig. 7!, is legitimate. Subsequen
summation of the residues from all pole contributions there yields

FIG. 6. ContourC0 that serves the analytic continuation of the integral formula~C5! into the right and leftz-plane
according to~C8!.
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I 2~a; d̃ !5
1

2p i R
C 2

dz Ī 2~a;z!~ d̄2!z21

5
p

2
S 21~a; d̃ !1@g1 ln~ d̃a!#S 22~a; d̃ !2S 23~a; d̃ !1 lim

L→`
(
l 50

L

~21! l d̃2lq2l 12~a!,

~C13!

whered̃ is sufficiently small,q2l 12(a) is given by Eq.~49a!, and

S 21~a; d̃ ![(
l 50

`

~21! l d̃2l 21 (
m50

l S 1
2

m
D a2~ l 2m!

~2l 22m!!

5 (
m50

`

(
p50

`

~21!p1mS 1
2

m
D d̃2~p1m!21

a2p

~2p!!

5
1

d̃
A12 d̃2 cos d̃a, ~C14!

S 22~a; d̃ ![(
l 50

`

~21! l d̃2l (
m50

l S 1
2

m
D a2~ l 2m!11

~2l 22m11!!

5 (
m50

`

(
p50

`

~21!p1mS 1
2

m
D d̃2~p1m!

a2p11

~2p11!!

5
A12 d̃2

d̃
sin d̃a, ~C15!

S 23~a; d̃ ![(
l 50

`

~21! l d̃2l (
m50

l S 1
2

m
D a2~ l 2m!11

~2l 22m11!!
h2l 22m11

5 (
p50

`

(
m50

`

~21!p1mS 1
2

m
D d̃2~p1m!

a2p11

~2p11!!
h2p11

5
1

d̃
A12 d̃2(

p50

`

~21!p
~ d̃a!2p11

~2p11!!
h2p11 . ~C16!

FIG. 7. Inversion paths for the Mellin transformĪ 2(a;z) of ~C5!. C 1 is the original inversion path andC 2 serves the
expansion ofI 2(a;d) in powers ofd. l is any positive integer.
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The last series is easily evaluated by noting that

hm52(
l 51

m
~21! l

l S m
l D . ~C17!

Therefore

(
p50

`

~21!p
z2p11

~2p11!!
h2p115 (

p50

`

(
l 50

2p

~21!p1 l
z2p11

~ l 11!! ~ l 11!

1

~2p2 l !!

5 (
m50

`

(
n50

`

~21!m1n
z2m12n11

~2n11!! ~2n11!

1

~2m!!

1 (
m50

`

(
n50

`

~21!m1n
z2m12n13

~2n12!! ~2n12!

1

~2m11!!

5z cosz F~z!1sin z G~z!, ~C18!

where

F~z!5 (
n50

`

~21!n
z2n

~2n11!! ~2n11!
, ~C19!

G~z!5 (
n50

`

~21!n
z2n12

~2n12!! ~2n12!
. ~C20!

F(z) satisfies

d

dz
~zF!5

1

z
sin z, F~0!51, ~C21!

with the solution

F~z!5
1

z E
0

z

dt
sin t

t
5

p

2z
2

1

2iz
@Ei~2 iz!2Ei~ iz!#. ~C22!

By inspection of~C20!,

G~z!5E
0

z

dt
12cos t

t
5E

0

` dt

t S 1

11t22cos t D1E
0

z

dt
t

11t22E
z

` dt

t~11t2!
1E

z

`

dt
cos t

t

5g1 ln z2 1
2 @Ei~2 iz!1Ei~ iz!#. ~C23!

Equations~C18!, ~C22!, and~C23!, along with~C16!, lead to

S 23~a; d̃ !5 d̃21A12 d̃2H p

2
cos d̃a1@g1 ln~ d̃a!#sin d̃a

1
i

2
@ei d̃aEi~2 i d̃a!2e2 i d̃aEi~ i d̃a!#J . ~C24!

Substitution of~C14!, ~C15!, and~C24! into ~C13! yields

I 2~a; d̃ !5
A12 d̃2

2i d̃
@ei d̃aEi~2 i d̃a!2e2 i d̃aEi~ i d̃a!#1(

l 50

`

~21! l d̃2lq2l 12~a!. ~C25!
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By virtue of ~C1! and ~C3!,

w~a;b!52~12 d̃2!ei d̃aEi~2 i d̃a!2 i d̃A12 d̃2(
l 50

`

~21! l d̃2lq2l 12~a!, ~C26!

which is Eq.~52!. This result can be analytically continued to complex values ofd̃52 id and
a (uargau,p).
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