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The Burton-Cabrera-Frank (BCF) model for the flow of line defects (steps) on crystal surfaces has offered
useful insights into nanostructure evolution. This model has rested on phenomenological grounds. Our goal is to
show via scaling arguments the emergence of the BCF theory for noninteracting steps from a stochastic atomistic
scheme of a kinetic restricted solid-on-solid model in one spatial dimension. Our main assumptions are: adsorbed
atoms (adatoms) form a dilute system, and elastic effects of the crystal lattice are absent. The step edge is treated
as a front that propagates via probabilistic rules for atom attachment and detachment at the step. We formally
derive a quasistatic step flow description by averaging out the stochastic scheme when terrace diffusion, adatom

desorption, and deposition from above are present.
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I. INTRODUCTION

The design and fabrication of optoelectronic devices rely on
understanding how crystalline features evolve across several
length scales, from a few nanometers to hundreds of microns.
At low enough temperatures, below the roughening transition,
crystal surface structures evolve through the collective motion
of line defects, steps [1-3]. The motion of individual steps is a
mesoscale phenomenon: On the one hand, it manifests defects
of atomic size; on the other hand, steps appear to move in
a continuum fashion by exchanging mass with nanoscale re-
gions, terraces. For the description of crystal surface dynamics
in a wide range of length and time scales, it is thus useful to
explore the validity and applicability of mesoscale models
for step flow. These models capture atomistic features in the
direction vertical to the high-symmetry plane of the crystal,
while retaining the advantages of continuum theories in the
lateral directions.

Such a hybrid approach is the Burton-Cabrera-Frank (BCF)
model [4]; for reviews, see, e.g., Refs. [1,2]. In this model,
step edges are represented by moving smooth curves, which
are boundaries of terraces. The step motion is mediated by the
continuous diffusion of adsorbed atoms (adatoms). A typical
BCF-type description consists of the following [1,2]: (i) a
step velocity law; (ii) the diffusion equation for the adatom
density on each terrace; and (iii) a near-equilibrium, linear
kinetic relation that involves the adatom flux normal to the
step edge and forms an extension of the boundary condition
for the adatom density in Ref. [4]. The motion laws for steps
have been conceived phenomenologically by the principles of
mass conservation and local thermodynamic equilibrium. The
connection of this mesoscale picture to fundamental atomistic
processes is not adequately understood.

In this paper, we develop a stochastic scheme adopted from
a kinetic restricted solid-on-solid (SOS) model [5,6] for the
hopping of atoms on a stepped surface in 1+1 dimensions (one
spatial dimension, 1D, plus time) in the absence of elastic
effects. We derive the BCF description for the flow of steps as
a scaling limit of averaged equations of the atomistic model.
First, we analyze an epitaxial system with a single step in the
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presence of external material deposition and desorption; and
then extend our analysis to many steps. We assume that the
adatoms are noninteracting and form a dilute system; thus,
on average, only a small number of adatoms occupy each
lattice site at any given time. This diluteness has been observed
experimentally [7] and simplifies the atomistic laws.

Our present approach is inspired by recent efforts to shed
light on the nature of the BCF theory [6,8]; see also Refs. [9—
11]. It is tempting to explore whether the BCF model can be
interpreted as the universal, in some appropriate sense, limit
of atomistic processes. Adopting a line of investigation that
favors this view, we invoke basic mechanisms of atomistic
motion in the presence of steps; these include generic local
rules for the atom attachment and detachment at a step edge.
Our hypotheses lead to a linear kinetic relation between the
mesoscale adatom flux and the adatom density in the presence
of a step-edge energy barrier on both sides of the step [2,12].
We also discuss the case when such a barrier is absent.

This study is motivated by the broader question how
to develop mesoscale models for crystal defects. A long-
term objective is to construct by purely atomistic principles
mesoscale theories for kinetic regimes far from thermody-
namic equilibrium (for related models, see Refs. [13-16]).

Several past works [6,8—11,17] with a similar perspective
should be mentioned. In Refs. [6,8], the starting point is a
master equation for the probabilities of finding a one-step
system in atomistic configurations characterized by the total
number of adatoms and their positions on a one-dimensional
lattice. The mesoscale motion of the step comes from the
ensemble average of its microscale position. In this setting,
the entire BCF-type description emerges as the low-density
limit of the adatom system [8]. This formalism is not directly
extensible to two spatial dimensions (2D). In Ref. [9], the
authors connect atomistic rates to BCF-type parameters via
balancing out discrete and continuum fluxes at the step edge
in 1D, without invoking a stochastic scheme or describing the
effect of noise; their results are compatible with ours. On the
other hand, the studies in Refs. [10,11] concern geometries
in 2D with focus on more particular aspects of step flow. For
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example, in Ref. [10] the step position is held fixed; and in
Ref. [11] only numerical comparisons of kinetic Monte Carlo
(KMC) simulations to the BCF model are pursued. Notably, in
Ref. [17] the authors start with a 2D master equation and reduce
it to a Langevin-type description for continuous-in-time height
columns by retaining discreteness in the lateral directions. We
believe that a direct comparison of this last approach to the
BCF theory is not compelling. Other, related yet different in
perspective, works focus on characterizing near-equilibrium
growth conditions on semiconductor surfaces [18,19].

Our derivation of the BCF limit in 1D in this paper differs
from the analysis of Refs. [6,8] in several interrelated aspects.
First, here we apply the hypothesis of a dilute adatom system,
whereas in Ref. [8] the diluteness results as a special case.
Second, we invoke a stochastic scheme, in contrast to the
master-equation approach of Ref. [8]. This, along with the
diluteness hypothesis, enables us to include richer kinetic
effects, namely, desorption and material deposition from
above, and many steps with relative algebraic ease. Third,
we introduce the step front position as a stochastic variable
whose motion is coupled with the random number of adatoms
per lattice site.

Nucleation is not included in our atomistic model. At low
enough temperatures this effect can cause a decrease of the
step velocity, enabling deviations from the linear kinetic law
of the BCF model [20]. Step permeability, which is usually
introduced phenomenologically at the BCF level [21], does
not directly ensue from our model; an additional atomistic
process may be needed to capture this effect (see our remarks
in Sec. II B).

An important aspect of our analysis is the systematic
averaging of a stochastic scheme that allows the derivation
of BCF-type laws as scaling limits when the lattice spacing
approaches zero. We believe that our methodology has not
previously been applied in epitaxial growth.

Our analysis reveals how the stochastic noise affects step
motion for small lattice spacing. In fact, we show that, under
appropriate scalings of the kinetic rates, this noise tends
to vanish. Hence, the mesoscale step position and adatom
density approach their expectation values. In the language of
probability theory, the BCF model with a linear kinetic relation
for the mass flux emerges in a regime where the “law of large
numbers” applies.

Our starting scheme invokes ideas of a random choice
method (“Glimm scheme”) invented for solving certain
systems of conservation laws such as those arising in gas
dynamics [22,23]. The main idea is to construct the appropriate
solution (say, a shock wave) through a sequence of operations;
these include a sampling scheme by use of a random variable
that is uniformly distributed over a fixed interval. Our approach
has a similar flavor but bears particularities tailored to the
physics of epitaxial growth: The time-dependent random vari-
able, £(¢), that we employ takes discrete values corresponding
to the events of advancement, retreat, or immobility of the step
edge as adatoms attach to the step, detach from it, or move
otherwise, respectively. These events have prescribed proba-
bilities involving known atomistic rates subject to the principle
of detailed balance in the sense of Ref. [14] (see Sec. II).

Our work has limitations. These are mainly due to re-
stricting our attention to: dilute systems, noninteracting steps,
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and 1D. In particular, the possible emergence of force-dipole
step-step interaction [24] may require the alteration of the
stochastic scheme to take into account an elastic lattice with
spontaneous stress [25]. We expect that the extension of our
formalism to 2D would have to possibly involve a space-time
stochastic noise driving step fluctuations on the lattice. In
the 2D case, a challenge is that step meandering leads to
an effective source of free adatoms on terraces that implies a
modification of the concentration entering the BCF model [20].

The remainder of the paper is organized as follows. In
Sec. II, we formulate the discrete stochastic scheme for a single
step. In Sec. III, we formally derive the scaling limit of this
scheme. In Sec. IV, we discuss implications and extensions of
our analysis, particularly the presence of more than one step.
Section V concludes our work with a summary of our results
and an outline of open problems. Throughout the paper, the
expression Q = O(h) means that the quantity Q/ h is bounded
by a constant as a parameter approaches a limit. The bar on top
of a symbol for a stochastic variable implies the mean value
(expectation) of that variable.

II. ATOMISTIC SCHEME WITH ONE STEP

The single-step geometry in 1D is shown in Fig. 1. The
step lies on a lattice of uniform spacing a and length L = Na
where N > 1. Since L constitutes a natural length of the BCF
setting, we set L = 1; thus, @ = 1/N « 1. The step position
at time ¢ can be tracked by ¢(¢), an integer-valued Lagrangian
coordinate expressing the number of the lattice site located
immediately to the right of the step edge [¢(#) = 0,1, ..., N —
1]; this ¢ is distinct from j, the Eulerian coordinate for
the lattice site. Hence, the step-edge position is determined
through the discrete stochastic variable X (¢) = g(t)a.

We distinguish the edge atom, which has only one in-plane
nearest neighbor, from the step atom, which has two in-plane
nearest neighbors, as shown in Fig. 1. An adatom is a movable
particle that is neither an edge atom nor a step atom.

A. Kinetic frame: Assumptions

To prescribe the adatom kinetics relative to the step edge,
we apply the following main assumptions [6].

(i) An atom is only allowed to move horizontally, left or
right, by one lattice site at any given time.

(i) The adatoms are noninteracting and have low density,
i.e., only a small average number of adatoms occupy any lattice

a
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FIG. 1. Microscale view of a step edge at time ¢ = ¢,. The step
has height a, an atomic length, and lies on a 1D lattice of spacing a
and total length L = Na, where N is the total number of lattice sites
(N > 1).The step position is determined by the lattice site g" = ¢q(t,)
directly to the right of the edge (¢" = 0,1, ... N — 1). The step atoms
(light gray) of the upper terrace and the edge atom (dark gray) are
represented by squares; the atom position is indexed by the left side
of each square, as indicated by arrows in the vicinity of the step. The
Eulerian coordinateisx = ja (j =0, ...N —1).
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FIG. 2. Schematic of basic atomistic processes of our model
at t =t, and corresponding values of random variable £(z,) = &”
(Sec. II B). Upper panel: Unbiased hopping of adatom with rate D
from a lattice site of a terrace to an adjacent site of the same terrace
to the right or left; the step does not move. Middle panel: Attachment
of an adatom to the step edge from the upper terrace with rate D¢_,
or the lower terrace with rate D¢_ ; the step moves to the right by one
lattice spacing, a. Lower panel: Detachment of an edge atom from
the step to the upper terrace with rate Dk¢_, or the lower terrace with
rate Dk¢. ; the step moves to the left by distance a.

site at any given time. Hence, it is unlikely that islands form
[see also (vi) below].

(iii) An adatom can hop from a lattice site to an adjacent
site of the same terrace with a probability proportional to the
constant rate D. This rule gives rise to the usual, unbiased
diffusion process as the result of a random walk [see Figs. 2(a)
and 2(b)].

(iv) An adatom from the upper (—) or lower (4) terrace
attaches to the step edge and becomes an edge atom with rate
D¢, where the nondimensional ¢ (¢+ < 1) accounts for the
Ehrlich-Schwoebel barrier [1,6,12]; ¢+ = e /T, E, > 0,
and T is the Boltzmann energy (absolute temperature). As a
result, the step edge moves forward (to the right) by a distance
equal to a [see Figs. 2(c) and 2(d)].

(v) Anedge atom can detach from a step, breaking a bond,
become an adatom, and hop to the upper (—) or lower (+)
terrace with rate Dk¢--, where k = e~ 5/T and Ey, is the edge-
atom bond energy barrier, Ey, > 0. Thus, the step retreats (to
the left) by distance a [Figs. 2(e) and 2(f)].

(vi) A step atom cannot become an adatom, or vice versa.

(vii) Only adatoms can evaporate from the surface.

(viii) Atoms deposited on the terrace from above instantly
become adatoms.

In our atomistic model, steps move only via rules (iv) and
(v). By our choice of kinetic rates at the step edge, detailed
balance is satisfied in the sense of Refs. [14,26,27]. This
principle implies that at equilibrium the microscale adatom
fluxes toward the step edge vanish [14]. In particular, by setting
Dy = D¢_, D = Do, Dy = Dk¢_, and Dy = Dk¢..,
we note the relation Dy Dy = Dy Der. In the special case of
asimple cubic SOS model [14,28], itis expected that D?E =D
and D = Dgp; thus, ¢ = ¢_ = 1. This plausibly leads
to the Dirichlet boundary condition that the adatom density
equals an equilibrium density at the step [1], which we discuss
as a special case in Sec. IIT A.
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Experimental estimates of £, and thus of ¢, are outlined
in Ref. [6]. For a detailed list of associated values, see Table VI
in Ref. [2]. In particular, for Ni(110), one finds E_ = 0.9 eV
and E; ~ 0eV;hence, ¢_ < 1and ¢, ~ 1at 500 K. Thus, in
a BCF-type description for this system, our analysis predicts
a distinct type of boundary condition for each side of the step
edge (see Sec. III A), as expected from past works based on
other approaches [1,6,8].

Atoms are assumed to be deposited on the surface from
above with constant flux f, which expresses number of
atoms per unit time per lattice site, and can be evaporated
with constant rate 7! where 7. is a typical evaporation or
desorption time. In addition, we introduce boundary conditions
at the fixed points x =0 and x = 1 for definiteness. We
consider a steady incoming flux, f;,, of adatoms from the left
boundary, x = 0. Some of the incoming adatoms attach to the
step so that the step moves forward; while some other adatoms
leave the system from the right boundary, x = 1. Adatoms
are not allowed to enter the prescribed spatial domain, 0 <
x < 1, from the right boundary or leave it from the left
boundary. Other choices of boundary conditions are possible
without distorting the step motion laws. For example, one can
alternatively impose screw-periodic boundary conditions in
the atomistic description.

B. Stochastic scheme

Next, we formulate a stochastic scheme for the (random)
step position variable, X (¢), coupled with the (random) num-
ber, (1), of adatoms at lattice site j (j =0,1,... ,N —1).
We discretize time, t = t,, with a constant, sufficiently small
timestep, T = #,41 — f,. The main idea is to describe how X(¢)
changes at each time increment by relating X(#,+1) to X(%,)
via the values of a random variable, £(z,); see Fig. 2. For
ease in notation, set ¢" = ¢(t,), Q;f =0;(ty), §" = &(t,), and
X" = X(t,).

Consider the discrete random variable £(¢) that takes values
in the set {—1,—2,0,1,2}. These integer values correspond to
the possible atomistic events at t = ¢, (Fig. 2). In particular,
&" = 1 or 2 if an adatom attaches to the step from the upper or
lower terrace, respectively, so that the step advances; and £ =
—1 or —2 if the edge atom detaches toward the upper or lower
terrace, so that the step retreats. The value §” = 0 amounts to
processes that do not cause step motion for #, < 1 < t;,41.

The microscale step position is updated with time as

X" if &' =0,
= +a 1 = or s
X"+ X" if & =1 2 1)
X"—a if £&€"=-1 or —2.

We supplement this rule with the probabilities

P(E" =1)=D¢_t0lh_,. PE"=2)= D¢+TQZH+1’2)
P(" = 1) = Dké_t. PE" = —2)= Dkppr,

which express rules (iv) and (v) of Sec. II A [cf. Figs. 2(c)—
2(f)]. For example, P(§" = 1) is the probability that an adatom
attaches to the step edge from the upper terrace, depending
on the adatom number, Q';, at the site left of the edge, j =
q" — 1. Clearly, P(¢" = 0) follows from Eq. (2): P(§" = 0) =
1= Dt(p-Ql_y + d4Qlyy) — DTA(D- + ).
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It remains to prescribe the discrete scheme for the adatom
number, o', per lattice site. For sites sufficiently away from
the step edge, we have

n+l __ n n " Zo"
oj*! == 2D0)e} + D (o +efy1) — —a + 1/,
€

j5&0"]”_2’5]'1_l,qn,qn‘i‘l,N_1, (3)

which expresses the usual unbiased random walk on a lattice
[Figs. 2(a) and 2(b)] in the presence of desorption and external
material deposition from above. At the domain boundaries
(j =0, N — 1), for definiteness we impose

T
0y = (1= Du)gy + D7o} + fur — —0f +7f,  (4)
€

T
o™y = (1=2D7))y_ + Dtely, — —eh + 7/ (4b)

Alternatively, one can impose relations that amount to screw-
periodic boundary conditions for g;. For the remaining sites,
the scheme accounts for atom attachment and detachment at
the step edge:

oy = (1 =2D1)l 5 + D0l 5+ 0l )
T
702 + fr+1¢E" = -1, (5a)
€
n+l __ n n T n
Qg1 = = D1)og_ + Dtog._, — Ot fr
e

—1¢E" = 1), (5b)
T
0 = (1= D)oy + DTgr — —0p + f7
S

+1(¢&" = -2), (5¢)
leﬁl =- 2DT)QZ"+1 + DT(Q:;" + Qsz)
T
- T—anﬂ + fr = 1" =2). (5d)
€

In the above, 1(-) is the indicator function, viz., 1(A) = 1 if the
event A occurs, and 1(A) = 0, otherwise. Thus, the presence
of this indicator in Eqgs. (5) signifies the addition or removal of
an adatom to or from the corresponding lattice site when the
step edge moves [Figs. 2(c)-2(f)].

Some remarks on the meaning of Eqs. (5) are in order; see
also Fig. 2. By Egs. (5a) and (5d) pertaining to sites g” — 2 and
q" + 1, an adatom at these sites can either hop to or from any
of the two adjacent sites with rate D [Figs. 2(a) and 2(b)]; or
evaporate with rate 7.!'; or be deposited from the vapor to the
surface with rate f; or come from an atom detaching from the
step edge [Eq. (5a) and Fig. 2(e)]; or attach to the step [Eq. (5d)
and Fig. 2(d)]. In the same vein, in regard to Egs. (5b) and (5¢)
for sites ¢" — 1 and ¢”, an adatom at these sites can either hop
to or from the adjacent site of the same terrace with rate D;
or evaporate; or be deposited from above; or attach to the step
edge [Eq. (5b) and Fig. 2(c)]; or come from the detachment of
the edge atom [Eq. (5c) and Fig. 2(f)].

Note that an atomistic process amounting to step perme-
ability at the BCF level [21] can plausibly be incorporated, in
an ad hoc fashion, into our scheme. A particular choice for
such a process is that an adatom directly hops from a site, say,
q" — 1, 1in the upper terrace to ¢" in the lower terrace, and vice
versa, without attaching to the step. The respective probability
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is considered as proportional to: an extra, appropriately scaled,
permeability rate; and the difference of adatom numbers at the
two relevant sites. We do not further pursue this extension in
our analysis.

C. Averaging of stochastic scheme

We now average out the governing stochastic laws of
Sec. IIB in the limit T — 0 by keeping the spacing a fixed.
To simplify the analysis, we henceforth apply the condition
that a <« 1 and take into account that, as argued in Sec. I B
for the appropriate scaling of parameters, the stochastic noise
for the step position, X(¢), is negligible for small enough a.
Therefore, we carry out the averaging procedure by allowing
the mean of g,(¢), where g is a stochastic variable, to be set
approximately equal to g5(7) [29].

By Egs. (1) and (2), we obtain the expectation

E[X" — X" = a{PE" =1 or2) — P(£" = —1 or —2)}
~ Daf(p-8_y + ¢+8511)
—k(p— + ¢}, (6)
where E[X] = X. We also compute the variance
VIX"*! = X"] = Da*{($—pg—1 + P+ Pg+1)
+ k(p- + o)t +0EH. (D)

In the limit T — 0, we thus derive a mean step velocity law
att =t, in terms of @;? where j denotes sites adjacent to the
step edge:

d Xt — xn
s _ nmIE[—]
T

~ a{D(¢-05-1 + ¢+05+1) — Dk(p- + ¢} (8)

here, § = G(t) and x,(t) = X(t) = G(t)a denote averages.
Accordingly, as T — 0 the heuristic limit of the mean of
Egs. (3) and (4), for j #q —2,q — 1,q,q + 1, reads

d@j B B B 1 _
d—=D(Qj—1—2Qj+Qj+1)——Qj+f; 9)
t Te
do 1
% — D@1 — 80) + fin — — 00+ . (102)
t Te
don— 1
ON-l o 2Dpy-1+ Don-s— —n-1 + f.  (10b)
dt Te

For lattice sites near the step edge, the scheme reads

005 1
Q;t 2 = D(05-3 — 2052 + 05-1) — r—équz + f + Dk¢_,
(11a)
0051 _ _ 1 _ _
aq = D(0g-2 — 05-1) — —05-1+ f — Dp_04_1,
t Te
(11b)
004 _ _ 1_
5 = D@1 —09) = 05+ f + Dko., (I11¢)
t Te
00g+1 _ _ _ 1_ _
a7 = D(0g+2 — 204+1 + 0g) — 041 + f—=D¢105+1.
(53

(11d)
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Equations (9) and (11) are recast into the compact form

00; _ _ _ 1_

5 =P —20i+ej)— et f
t T

+ Dk¢_8; 52+ [D(05-1 — 05) — Dop_05-118;.5-1

+ [D(@g — 03-1) + Dk¢118;5 — DP10g+18.4+1,
(12)

in which j # 0, N — 1, and §; ; denotes Kronecker’s 4.

Equation (8) couples the discrete mean step velocity law
with the average adatom numbers on each side of the step.
In the limit a — 0, this coupling will give rise to a mass
conservation statement involving the values of the adatom
flux directly to the left and right of the edge (Sec. III).
This flux can be determined via Egs. (9)—(11). To reduce the
discrete equations to BCF-type laws, we need to appropriately
scale variables and parameters with the system size, N = a~!
(Sec. IID).

III. SCALING LIMITASa — 0

Next, we carry out the scaling limit of Eqs. (8)—(11) as
a — 0byuse of Eq. (12). For this purpose, we restrict attention
to macroscopic times by defining

f=at, % =ar., (13)

and the variable
pi(0) =0;(t)/a, (14
which is the adatom number density. We also consider 7,7, =
O(1) and p; = O(1) (bounded). For notational economy, we
will drop the tildes and also replace g by g.
By Eq. (8), the mean step velocity law reads
dx,

2 = UaPer —ra) F (r Pg1 =14, (15)

where both sides are bounded as a — 0. Equation (15)
forms the core of our scaling argument. The requisite kinetic
coefficients are defined by

rf = Dk¢y, rF = D¢.a, (16)

a

which are the mesoscopic detachment (d) and attachment (a)
rates to the left (—) or right (+) of the step edge. Hence, in
order to obtain a linear kinetic relation for the adatom flux at
the step edge, it is reasonable to assume that, as a — 0, the
rates of Egs. (16) are finite and independent of a (Sec. IIL A).
Thus, Eq. (12) for the adatom number density becomes
8,0 j

1 _
a—L =D(pj1 = 2p; + pjs1) — —p; + fa”!
ot Te

+ {Da(loq - pq—l)((sj,q - (Sj,q—l)
+ (g 8jg — 1 Pg+18j.441)
+ (g8 q-2 — Ty Pg—18q+1)}a ", (17)

where j =1, ... ,N — 2. In the following, we use Eq. (17)
in order to express the step velocity, the right-hand side of
Eq. (15), as the sum of adatom fluxes toward the step edge.
We additionally impose Egs. (10), suitably scaled, at the
domain boundaries, x = 0, 1. Alternatively, we can impose
screw-periodic boundary conditions.
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A. Scaling of atomistic rates

We now discuss the scaling of the kinetic parameters with
a, by inspection of Egs. (15)-(17). First, we set

D = Da*> = O(1), (18)

i.e., require that the rate D scale with the system size
as 1/a®> = N%. This D expresses the usual macroscopic
diffusivity resulting from a random walk on a lattice [30].
By Egs. (10), (16), and (17), we also assume that

¢+ =0(a), k=0(@), [f=0@), fa=01), (19
and define
F=fa'=0Q1). (20)

Equations (18) and (19) are in agreement with assumptions
made in previously published results, e.g., Refs. [6,8], for the
corresponding kinetic regime, and suffice for deriving a kinetic
relation for the adatom flux as a linear function of the adatom
density at the step edge. Note that scaling Eq. (19) for ¢+
implies that the Ehrlich-Schwoebel energy barriers, E., scale
logarithmically with the lattice spacing, a: E+ = O(Ina). The
parameters D! fi; and ©~'F should be sufficiently small,
consistent with the diluteness hypothesis.

We alert the reader that Eqs. (19) preclude ¢, ~ 1 or ¢_ =~
1. This case signifies the absence of an Ehrlich-Schwoebel
barrier [1,12]. In this regime, the dominant balance of terms in
the averaged microscopic description yields, to leading order in
a, an anticipated Dirichlet boundary condition: the continuum-
scale adatom density, p, equals an equilibrium density at the
step edge [1,4,6]. Indeed, in this case the expression in the
third or fourth line of Eq. (17) is large, O(1/a), and, thus,
should vanish to leading order. This amounts to a step-edge
adatom density p* = lim,_.o pye1 =rg /r}7 =ry /ry to the
right (4) or left (—) of the step edge; cf. Eq. (28). Moreover, the
right-hand side of mean step velocity law Eq. (15) converges
to a BCF-type law, with the velocity determined by the
derivative of the adatom density on the corresponding side.
Hence, formally, we still arrive at BCF-type laws, albeit with a
Dirichlet boundary condition, to be contrasted with the linear
relation for the adatom flux in Egs. (27) below. However, unlike
the case ¢,¢_ = O(a), the variance of the step position does
not vanish asa — 0 when ¢, or ¢_ is O(1); cf. Eq. (21) below.
Hence, the law of large numbers becomes questionable. We
leave a more systematic treatment of this regime to near-future
work. In the following analysis, we assume that Egs. (19) hold,
unless stated otherwise.

B. On limit of stochastic noise

Next, we show that the stochastic noise underlying mean
step velocity law Eq. (15) vanishes as a — 0. By Egs. (6)
and (7), the stochastic differential equation for the step position
variable, X(¢), is

dX, ~ cydt + Jacy dW,, @21)

where dt =t,41 —t, =1, dX, = X"*' — X", and W, is the
Wiener process [30] so that dW, = wrtl — W” is discrete
“white noise.” The finite quantities ¢y and ¢, come from the
expectation E[d X,] [Eq. (6)] and standard deviation </ V[d X/ ]
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[Eq. (7)] of X! — X" as dt — O:

- - +
Cs =7V, Pg—1 —Tq +71, Pg1 —Fyq,

;)1/2_

(22)
o= (ry pg—1 +7q 1 pgr1 +r,

By inspection of Eq. (21) under Egs. (18) and (19), the white
noise vanishes as a — 0 provided the densities p,_; and p 41
approach finite values. This is not surprising: the step front
can only move by distance +-a each time, which in turn causes
a negligibly small variance of its random motion. Hence, in
this regime, step motion can be viewed as a phenomenon in
the context of the law of large numbers. It should be noted,
however, that a mesoscale description in which the noise is
preserved as a — 0 may result under different kinetics or
scaling scenario. It is worthwhile observing, for example, that
in the absence of an Ehrlich-Schwoebel barrier [12], when
¢+ ~ 1or¢_ = 1, the coefficient of d W, in Eq. (21) becomes
O(1). This issue deserves to be the subject of future studies.

C. Step flow limit

We now complement Eq. (15) with a description of the
adatom number density, p;(¢), as a — 0. Suppose the step
position is still denoted x4(¢) in this limit. By slightly abusing
notation, we replace p;(t) by the function p(#,x), assuming
that this limit exists; 0 < x < 1 with x # x4(¢) and t > 0.
Furthermore, ©, rdi, rj[, T., and F take their finite limiting
values. We will suppress the time dependence of p(#,x) for
algebraic convenience.

Consider Eq. (17). First, a(dp;/dt) ~ a[dp(t,x)/0t] — O
for fixed time ¢, since dp; /9t is bounded. Second, itis tempting
to replace the second-order difference term, a =2(p i1 — 20 +
pj—1), by the Laplacian of p(x), A, p, for x < x4 and x > x.
A word of caution is in order. If j =g — 1 or j =g, the
above discrete term involves values of p; on both sides of
the step edge; however, p(x) can be discontinuous across the
step. In an effort to describe the limit of Eq. (17) transparently,
we introduce reference densities p* such that the scheme for
the adatom number density at sites adjacent to the step edge
reads [1,8]

1
j=q-1: 0=©[a‘2(p,’71—2p,~+p§)]—t—p,-+F

—{rypj +®la (o — pplla", (23a)

. _ 1
Jj=¢q: 0=9la 2[(,0j+1—2,0j+05+)]—;/)j+F
(S

+{rd +®la"(pj — pH}a". (23b)

The densities p= can be thought of as representing the
continuum limits of p; at either side of the step edge, and can
be determined so that they produce the appropriate adatom
fluxes to the right (4) or left (—) of the step. Specifically,
+a~'(p; — p¥) is let to approach (3p/dx)*, the respective
value of the derivative of p(x), for j =g (+)or j =g —1
(—). These terms contribute to the desired boundary conditions
as shown below.
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In the limit @ — 0, Eq. (17) becomes
0={DAp — 7. ' p(x) + FIO(x — x) + 6(x, — x)]
+ 8 (=T +rf —rfph)
+ 8. (T +rg—ry,p), O0<x<lL (24)

In the above, 0(x) is the Heaviside function [6(x) = 0if x < O
and 6(x) = Lifx > 0]; 87 = lim,_.o(a™'8;,) is the § function
centered at x, to the left (—) or right (4) of the step edge, for
l=qg—2,q—1andl = q,q + 1, respectively; and J* is the
adatom flux restricted at the step edge, viz.,

(25)

Evidently, there is no convective term present in J *_ which is
consistent with the elimination of dp/d¢. This feature signifies
the quasistatic regime.

Equation (24) is equivalent to a diffusion equation on each
terrace along with kinetic boundary conditions involving the
adatom flux at the step edge:

DA -1, p(x)+F =0, x#x, (26)
It ==rf(et —ri/rh, x=x,
27
T =r (p” —rg /1) X =x,,
where

+ -

ry ry . k

_— = — = e :1 _— N 28

o aﬂ%(d) @

which is finite by Eq. (19). This pq represents the equilibrium
number density of adatoms at the step edge; cf. [1,8,9]. Thus,
step velocity law Eq. (15) reads

dxs —( ot - +
E =r, (07 = peg) + 1, (0 _peq):j -J7. 29
Equations (26), (27), and (29) are the desired BCF-type laws.
Notably, in the regime where r;” or r; becomes large, but peq
and J* remain bounded, Eqs. (27) formally give rise to a
Dirichlet boundary condition [1].

Finally, we need to add conditions at the domain boundaries,
x =0 and 1. By Egs. (10), we obtain

0 = lim(Dla"' (o1 = po)l + fin — at. ' po + aF)

0
= J(0) = -9 (—p> = fin: (30)
dx x=0
0= C}iir(l){—@pzv—l —D(pn-1 — pn-2)}
= p(1) =0, 31)

Alternatively, screw-periodic boundary conditions on p can be
imposed.
IV. DISCUSSION

In this section, we briefly discuss issues that underlie the
exposition and formal analysis of Secs. II and III.
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EMERGENCE OF STEP FLOW FROM AN ATOMISTIC ...

A. Convergence of atomistic scheme

Thus far, we have provided a derivation of the BCF-
type model from an atomistic scheme based on heuristic
asymptotics. To make the derivation mathematically rigorous,
it is useful to make the analogy of the atomistic dynamics
to a finite-difference numerical scheme approximating the
continuous description of the BCF-type model. The lattice
parameter a, which approaches zero, is identified with the
mesh size of the discretization.

Let us briefly sketch the main ideas of the proof of
convergence of the numerical scheme to the BCF-type model;
the details lie beyond the scope of this paper. As usual, the
convergence of the scheme involves both consistency and
stability analysis. The consistency for the scheme essentially
follows the heuristic asymptotic arguments provided above
in the derivation. The stability is more subtle. A difficulty
comes from the quasistatic time scaling on the left-hand side of
Eq. (17): The small parameter a multiplying the time derivative
of p requires stability for effectively long time evolution.
Hence, an energy estimate is needed to show that the discrete
system is dissipative. This amounts to establishing a gradient
flow structure for the atomistic scheme, which is expected to
be similar to that on the continuous scale for the BCF-type
system with detailed balance [26].

B. Multiple steps

Our analysis can be extended to more than one noninter-
acting, ordered steps without difficulty. The main observation
is that the above derivation of step motion laws is local, based
on local atomistic laws. Specifically, boundary conditions
Eq. (27) and step velocity law Eq. (29) both result from the
mass exchange between the edge atom and adatoms in the
neighboring lattice sites. Hence, the derivation of mesoscale
laws for a monotone step train follows directly, provided
the steps do not interact elastically and are sufficiently far
apart. For example, if the system consists of M noninteracting
steps with the same kinetic rates everywhere, the number of
adatoms at r = 1,11 at the kth step edge, which is at site g, (¢)
(k=1,2,...M),1is given by

n n n T n
Qq;] == Dr)oy + Dreg . - 7. %4 t /T

+ 1(& = -2), (32)

where the random variable & (¢) indicates the atomistic events
relevant to the kth step; cf. Eqs. (5). The local probabilistic
rules for & are dictated by Egs. (2).

In this case, in the scaling limit each step moves according
to velocity law Eq. (29) with the adatom density determined by
quasistatic diffusion on each terrace with the same boundary
conditions at each step edge. However, as our atomistic model
does not include elastic response of the lattice, the system of
multiple steps is deemed as physically incomplete. It is an
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interesting and challenging research direction to understand
the elastic interaction between multiple steps starting from
atomistic models.

V. CONCLUSION

We formally derived a set of quasistatic motion laws for
noninteracting steps in 1D, starting with a stochastic scheme
for the hopping of atoms on a lattice. The derived laws form the
core of known BCF-type theories. Our scheme was adopted on
the basis of a kinetic restricted SOS model for a dilute system of
adatoms. By our methodology, the step edge is treated as a front
that propagates via the attachment and detachment of atoms.
This process is described by arandom variable that takes values
under probabilistic rules associated with step kinetics. To the
best of our knowledge, our approach, based on the systematic
averaging of a stochastic scheme, has not been previously
applied in epitaxial growth.

Our formal analysis reveals some key features of the
passage from atomistic rules to mesoscale laws for line
defects in 14-1 dimensions. The emergence of BCF-type laws,
including the full boundary conditions for the adatom density
at the step edge, is intimately connected to certain, previously
known scalings of the time variable and the atomistic rates with
the system size, N =a~! (Sec. IIl). Our present approach
firmly places these scalings in the context of a stochastic
scheme, unveiling a particular dominant balance for the
adatom density and flux as the lattice spacing, a, approaches
zero. Our analysis also describes the variance of the stochastic
step fluctuations in this limit. In particular, we show that the
stochastic noise vanishes in this limit when step-edge barriers
are present on both sides of the step.

Our work points to several pending issues. An issue is
the possible emergence from atomistic rules of a stochastic
mesoscale model, in which the noise plays a significant role
as a — 0. Furthermore, in experimental situations, steps
interact as force dipoles in homoepitaxy and force monopoles
or otherwise in heteroepitaxy. Hence, our current treatment
needs to include elastic effects by taking into account the
strain dependence of kinetic rates. Last, the derivation of
a BCF-type description in 2D, where steps meander in the
presence of kinks [20], and islands form, is a viable direction
of future research.
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