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ABSTRACT 
 

We study theoretical aspects of step fluctuations on vicinal surfaces by adding 

conservative white noise to the Burton-Cabrera-Frank model in one spatial dimension. We 

consider material deposition from above, as well as entropic and elastic-dipole step repulsions. 

Two approaches are discussed: (i) the linearization of stochastic equations when fluctuations are 

small, which captures correlations; and (ii) a mean field approach, which leaves out correlations 

but captures nonlinearities. Comparisons to kinetic Monte-Carlo simulations are presented.  

 

 

 

INTRODUCTION 

 

The fluctuations of steps on surfaces of crystalline materials such as silicon have been the 

subject of active experimental interest. A goal is to determine dominant pathways of atomic mass 

transport by observing the terrace width probability density or distribution (TWD) [1, 2]. 

Developing a complete theory of stochastic effects on vicinal surfaces poses a challenge. Crucial, 

yet largely unresolved, issues include: (1) the derivation of noise models from microscopic 

principles, and (2) the rigorous description of statistics for terrace widths in large systems. An 

approach that partly circumvents issue (1) is to add ad hoc noise to the celebrated Burton-

Cabrera-Frank (BCF) model [3, 4] of step flow. In this vein, a systematic kinetic description of 

terrace-width fluctuations in terms of a mean field was proposed recently [5] on the basis of 

hierarchies for terrace correlation functions in one space dimension (1D). This formalism was 

recently applied to a large system of interacting steps in the absence of material deposition under 

the assumption that the noise obeys a second-order conservative scheme [6]. Here, we extend the 

formulation of [6] to the case with material deposition of flux F from above. In addition, we 

discuss possible physical implications that stem from the analysis, and illustrate limitations of 

approximations for the (intrinsically nonlinear) stochastic equations of motion. We show how the 

step interactions and deposition flux can jointly cause narrowing of the TWD, thus enriching the 

recent related work by Hamouda, Pimpinelli and Einstein [2] with step energetics. 



THEORY: MODELING AND ANALYSIS  

 

 The step geometry is shown in figure 1. The j-th terrace is the region xj<x<xj+1 which has 

width wj, where j=0,…, N-1, and N is large. We apply screw periodic boundary conditions, 

mapping steps to point particles on a ring [5, 6]. For a vicinal crystal, the average terrace width is 

fixed at a constant value, w, and wj equals w initially (at t=0).  

 
Figure 1. Schematic of a vicinal surface in 1D; xj are step positions and a is the step height. 
 

      

           To formulate equations of motion for wj(t), we use the BCF theory [3, 4] with an external 

deposition flux, F, as well as entropic and elastic-dipole step repulsions [7]. Following [2], we 

apply a Galilean transformation to the co-moving frame with velocity Faw. We assume that 

step motion is slower than adatom diffusion (i.e., apply the quasistatic approximation) in this co-

moving frame. Then, we add second-order conservative white noise to the equation of motion for 

wj: the noise term is −ηj+1+2 ηj−ηj-1 where ηj(t) are independent (and identically distributed) 

white (delta-correlated) noises. This choice yields a finite variance of the TWD but is not unique. 

However, lower-order (non-conservative and first-order) schemes for white noise fail to yield a 

finite variance for long times [6]. Details of the formulation are given in [2, 5, 6, 8]. By change 

of variables from wj  to wj/w, denoted sj, and use of non-dimensional time via scaling of t by 

some scale t
*
, e.g., w

2
/Ds where Ds is the terrace diffusivity, the stochastic equations are 

 

 
   

  
      (                      )                          〈 〉                                  

 

 

where   … s …  blows up as 1/s
3
 if any terrace-width variable, s, approaches zero [6, 8].  

 

 

Small fluctuations: linearization and steady-state TWD 

 

            The linearization of  Eqs. (1) leads to the matrix equation    
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 Here, w and η are N-dimensional vectors with components wj and ηj, and A and Q are N×N 

circulant matrices. For example, for diffusion-limited kinetics these matrices have first rows [1-

2p+3g(1+2ς), -1+p-g(3+4ς), g(1+ς), 0, …, 0, gς, p-g(1+4ς)] and [2, -1, 0, …, 0, -1] where [8] 
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 ̃ is a typical step-step interaction energy, kBT is the Boltzmann energy, m0 is the initial 

(constant) slope of the vicinal crystal, and cs is the equilibrium adatom concentration at steps. 

            By basic stochastic calculus, we assert that the solution to Eq. (2) is a (vector) Gaussian 

random variable for every time t>0. Thus, the corresponding TWD turns out to be the Gaussian  
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For a finite number,  , of steps, the variance,      
 , of this TWD can be expressed exactly in 

terms of a discrete sum involving the eigenvalues of the matrices     and      (where the 

superscript T denotes the matrix transpose) [5, 6]. Each set of eigenvalues is the discrete Fourier 

transform of the first row of the corresponding matrix [5]. In the macroscopic limit,      the 

discrete sum is replaced by an integral [5, 6]. The respective steady-state variance is found to be 
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which accounts for terrace correlations (but not for nonlinearities). For zero deposition rate (i.e., 

as     , Eq. (5) yields (2g)
-1
w

2
/(Dst

*
), in agreement with [6]. In figure 2, we plot σst

2
 versus 

p for different values of the interaction parameter, g. Note that Eq. (4) predicts a nonzero 

probability for negative terrace widths, which amounts to step crossing. If σst
2
 is small enough, 

this likelihood of step crossing can be ignored. In [8], the variance of the TWD was computed 

for flux-induced, first-order conservative noise, whose coefficient depends linearly on p and 

stems from the asymmetric attachment of atoms at steps. 

 

Mean field approach and decorrelation hypothesis 

 

            An alternate approach, in which nonlinearities are retained, is to fix the value of the 

neighboring terrace widths in each of Eqs. (1) to an a priori unknown mean field, f(s,t). This field 

must be determined self-consistently [2, 5]  Seeds of this approach can be traced in the classic 

work by Gruber and Mullins [9]. Recently, the underlying kinetic framework was formulated 

systematically via appropriate hierarchies for terrace-terrace correlation functions [5].  



 

 
Figure 2. Plot of steady-state variance of the TWD as a function of parameter p by Eq. (5). 

 

 

            A goal is to reduce the system of Eqs. (1) to a single, tractable Langevin-type equation 

for an effective terrace width,  ̂ [5, 6]. This goal is achieved in three stages. First, the variables 

     and      are replaced by f  ̂  and sj is replaced by  ̂; and the noise term is replaced by qη, 

where q
2
 equals 6 (the sum of squares of elements in the first row of matrix Q) and η is the usual 

white noise. Second, we require that  ̂ produces the same TWD, P(s), as the one from the starting 

system, Eqs. (1). Alas, the ensuing consistency formula for f  turns out to be unwieldy: f  is given 

in terms of the 5-terrace correlation function, p
(5)

. Third, to enable analytical progress, we 

assume that the terrace widths are decorrelated, viz., p
(5)

 is expressed as the product of the 

TWD’s. By comparing the equations for the decorrelated sj with the Langevin equation for  ̂  we 

derive an approximate formula for the self-consistent f. In the steady state, this formula reads [6] 
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           For example, consider diffusion-limited kinetics without deposition [6]. For large g, Eq. 

(6) yields f  approximately equal to unity (average sj). The respective, “zeroth-order” TWD is 
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By deriving an asymptotic expansion for f  in powers of g
-1

, we can obtain a more accurate, 

“composite expression” for the TWD that involves a single integral of   [6]. 



DISCUSSION  

 

 The analysis of stochastic effects in 1D reveals certain advantages of the mean field 

approximation over the small-fluctuation limit of the linearized model. Recall that the 

linearization of the governing equations of motion captures certain correlations (but cannot 

account for nonlinearities). In contrast, the mean field approach under the decorrelation ansatz 

captures nonlinearities but leaves out correlations. Thus, the question naturally arises as to which 

approximation is more reliable in the present setting of vicinal surfaces. To address this issue, we 

resort to comparing the TWD’s predicted by the mean field and linearization approaches to the 

TWD produced via kinetic Monte Carlo simulations; see figure 3 [6]. This comparison indicates 

that the mean field approach, with a higher-order correction for f, reproduces accurately the 

essential features of our simulations for the steady-state TWD. A noteworthy feature is the 

asymmetry of the TWD, which should arise physically from the non-crossing condition for steps 

and is more pronounced as the step repulsion decreases. This asymmetry cannot be predicted by 

the linearized model, but is captured within the mean field approximation. Hence, in this vein, 

nonlinearities of step interactions tend to be more significant than terrace-terrace correlations. A 

similar observation can be made for the time-dependent TWD, although terrace correlations are 

stronger for finite times, and the above mean field approximation needs to be improved [6]. 

 

 

 
Figure 3. Steady-state TWD for F=0 and attachment-detachment limited kinetics, reproduced 

from figure 2 of [6]: (i) kinetic Monte Carlo simulations (kMC); (ii) linearized model (LM); and 

(iii) mean field approach by a zeroth-order (ZO) formula in which f is approximated by the 

average normalized terrace width (f≈1), and a composite expression (CE) in which f acquires a 

higher-order correction of the order of g
-1

. The parameter  ̌ is defined in Eq. (7). 

 

 

             Our analysis predicts the narrowing of the steady-state TWD under the combined effects 

of step repulsions and deposition flux, F. For example, consider diffusion-limited kinetics with 



recourse to Eqs. (4) and (5) as N→∞. For small F, the steady-state variance approaches a value 

that scales as g
-1

. As F becomes large (i.e., p→0), the steady-state variance decreases according 

to the asymptotic formula 
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            Results of the present study are limited in their applicability because of the assumed (one-

dimensional) geometry. We expect that the detailed form of the TWD, especially for small 

values of the terrace width, can be distinctly different in two spatial dimensions (2D) where steps 

meander. For example, Eq. (7) reveals a singularity of the TWD at s=0. We believe that this type 

of singularity is an artifact of 1D. However, some of our results, e.g., the narrowing of the TWD 

with the step interaction strength, should hold for quasi-1D step systems.   

CONCLUSIONS  

 

This study explores the advantages, predictions and limitations of analytical 

approximation theories for terrace fluctuations on vicinal crystals in 1D. The mean field 

approach under a decorrelation hypothesis captures the asymmetry of the steady-state TWD, in 

contrast to the small-fluctuation limit of a linearized model. Both theories predict narrowing of 

the steady-state TWD with increasing deposition rate or step-repulsion strength. A limitation of 

the present study is due to the one-dimensional geometry. However, it is expected that some 

results, such as the scaling of the TWD with the deposition rate or the step-repulsion strength, 

should be applicable to quasi-1D systems.  
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