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Abstract
We describe the low-temperature optical conductivity as
a function of frequency for a quantum-mechanical sys-
tem of electrons that hop along a polymer chain. To this
end, we invoke the Su–Schrieffer–Heeger tight-binding
Hamiltonian for noninteracting spinless electrons on a
one-dimensional (1D) lattice. Our goal is to show via
asymptotics how the interband conductivity of this sys-
tem behaves as the smallest energy bandgap tends to
close. Our analytical approach includes: (i) the Kubo-
type formulation for the optical conductivity with a
nonzero damping due to microscopic collisions, (ii)
reduction of this formulation to a 1D momentum inte-
gral over the Brillouin zone, and (iii) evaluation of this
integral in terms of elementary functions via the three-
dimensional Mellin transform with respect to key phys-
ical parameters and subsequent inversion in a region
of the respective complex space. Our approach reveals
an intimate connection of the behavior of the conduc-
tivity to particular singularities of its Mellin transform.
The analytical results are found in good agreement with
direct numerical computations.
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1 INTRODUCTION

The past several decades have seen significant advances in condensed matter physics, particu-
larly the design, synthesis,modeling, and applications of low-dimensionalmaterials with unusual
yet practically appealing properties. These systems include conducting polymer chains,1 one-
dimensional (1D) nanowires,2 and two-dimensional (2D) topological insulators with intriguing
edge states.3 We should also mention the celebrated graphene, a 2D semimetal, along with fami-
lies of its variants such as 2DvanderWaals heterostructures.4–8 Someof thesematerials offer novel
paradigms of electronic transport.8–11 When the mean free paths of electron–electron, electron–
impurity, and electron–phonon collisions are sufficiently small, 2D conducting systems may host
nanoscale electromagnetic waves that challenge the classical diffraction limit.7 From a quantum-
mechanical view, this property is related to features of Hamiltonians for the wave motion of
low-energy electrons in the underlying crystal (Bravais) lattices.3,5,12
These developments give rise to the following broad question: How does themicroscalemotion

of electrons in 1D and 2D materials, including topological insulators, affect the material optical
response? This question is not new; but its placement into the context of recent technological
advances inspires mathematical problems that had eluded attention.
The theory of energy bands traditionally addresses the response to light of solids with periodic

atomic potentials.13–15 The electromagnetic field is treated as classical, and is perturbatively cou-
pled withHamiltonians of low-energy noninteracting electrons.16,17 This theory aims to explain in
a simple fashion why crystallinematerials can be electric conductors or insulators. A key quantity
is the optical conductivity 𝝈(𝜔), a matrix-valued function of the frequency 𝜔. This 𝝈 is macro-
scopically defined as a Fourier component of the coefficient entering the linear relation between
the induced electric current density and the applied electric field. The microscopic origin of 𝝈
was studied extensively; see the review article by Allen.18 For example, Kubo19 and Bellissard20
make use of the trace of an operator involving current–current correlations. Usually, albeit not
always,21 the losses due to electron scattering aremodeled phenomenologically through a constant
relaxation time, 𝜏.8,20,22,23 We adopt this view here.
In this paper, we carry out asymptotics to derive explicit formulas for the interband part, 𝝈𝐼(𝜔),

of the conductivity 𝝈(𝜔) of a prototypical 1D system, an electron hopping along a polymer chain,
in the zero-temperature limit. The function 𝝈𝐼(𝜔) is composed of contributions from matrix ele-
ments of the electron current operator that connect quantum states with distinct energies; these
contributions lead to resonances of the conductivity at nonzero 𝜔. In 1D, 𝝈𝐼(𝜔) reduces to a
scalar function, 𝜎𝐼(𝜔).We compute this 𝜎𝐼(𝜔) analytically by applying the three-dimensional (3D)
Mellin transform to an integral for 𝜎𝐼(𝜔)with respect to physical parameters. We show how 𝜎𝐼(𝜔)

is affected as the smallest energy bandgap, 𝜀𝑔, tends to close. We believe that a novelty of our
approach lies in the use of this multidimensional transform.
We employ the Su–Schrieffer–Heeger (SSH) tight-binding model,24,25 which is a limit of

the dynamics of a Schrödinger particle.26 The model considered here is discrete in the

 14679590, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12604, W
iley O

nline L
ibrary on [07/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MARGETIS et al. 557

configuration space and continuous in the momentum space, and has two energy bands at every
momentum variable.
In physics it is generally known that, for fixed material parameters, 𝝈𝐼(𝜔) has branch points at

𝜔 = 𝜔𝑅
𝑖
, which correspond to energy band differences at critical points in themomentum space14;

the index 𝑖 counts the points 𝜔𝑅
𝑖
. The type of branch point depends on the spatial dimensionality,

and other considerations. For typical textbook cases, see, e.g., table 4.1, p. 35 in Ref. 15. By using
the Mellin transform, we are able to analytically show how this behavior can be affected when
a material parameter, particularly 𝜀𝑔, is relatively small. We also show how the branch points of
𝜎𝐼(𝜔) are intimately connected to singularities of the Mellin transform. To our knowledge, these
aspects were previously unexplored.
We take into account the relatively small bandgap 𝜀𝑔 and relaxation rate 𝜏−1while the frequency

𝜔 varies in a reasonably wide range. Our study emphasizes distinct limiting procedures that come
into play if the real frequency 𝜔 is close to any “resonance,” that is, if |𝜔 − 𝜔𝑅

𝑖
|, 𝜏−1, and 𝜖𝑔 are

simultaneously small, at low enough temperatures. We numerically demonstrate that our results
are practically uniform in the frequency 𝜔.
Our procedure can be outlined as follows. First, for the SSH model we derive a momen-

tum integral for 𝜎𝐼 over the Brillouin zone at nonzero temperatures. Then, we exactly evaluate
the 3D Mellin transform of this integral with respect to physically appealing parameters. The
transformed conductivity involves theRiemann zeta function and theGamma functionwith argu-
ments depending on linear combinations of (dual) complex variables. By inversion in a region of
a complex space, we obtain 𝜎𝐼 in the limit of zero temperature from a singularity of the 3DMellin
transform. We are unaware of similar applications of the multidimensional Mellin transform.
In our analysis, we relax mathematical rigor but provide an estimate for an error term germane

to our low-temperature approximation for 𝜎𝐼(𝜔). We repeat that we numerically demonstrate the
agreement of our asymptotics with direct numerical computations of the momentum integral.

Notation. Calligraphic capital letters, for example,, denote operators on aHilbert space; but the
“density matrix” is 𝜚. The tilde on top of a symbol, for example, 𝐼̃(𝜈), denotes theMellin transform
of the respective function, for example, 𝐼(𝜖). 𝑓 = 𝑂(𝑔) (𝑓 = 𝑜(𝑔)) means that |𝑓∕𝑔| is bounded by
a nonzero constant (tends to zero) in a prescribed limit. 𝑓 ∼ 𝑔means 𝑓 − 𝑔 = 𝑜(𝑔). “Schrödinger
dynamics” and “Schrödinger particle” imply the system evolution by Hamiltonians of the form
−

ℏ2

2𝑚
Δ + 𝑉;𝑚 is the mass and ℏ is the reduced Planck constant. We use the 𝑒−i𝜔𝑡 single-frequency

time dependence (i2 = −1).

1.1 Linear optical response, SSHmodel, and problem statements

Let us recall the abstract framework of linear response theory. The optical conductivity matrix, 𝝈,
is given by19,20,22

𝝈(𝜔) = −4𝜎0 Tr
{
(∇)

( − iℏ(𝜔 + i𝜏−1)
)−1

(∇𝑓( − 𝜇))
}
. (1a)

In the above,  is the unperturbed electronic Hamiltonian, which acts on an appropriate
Hilbert spaceℌ ( ∶ ℌ → ℌ); and, in the spirit of Ref. 22,∇ ∶ ℌ → ℌdenotes the commutator
−i [ ,] = −i( −) for any suitable ∶ ℌ → ℌwhere is the particle position operator.
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558 MARGETIS et al.

F IGURE 1 Schematic of geometry
and kinetics of the SSH model. Each
fundamental cell has length 2𝑎; and the
dimerization parameter 𝛿 is defined in
Section 2.1. Each cell contains A and B
types of atoms (indicated by different
colors). An electron hops between
neighboring atoms of distinct types with
rate 𝑔0 within a cell and rate 𝑔1 across
cells.

Note that 𝑓() is the Fermi–Dirac distribution, namely,

𝑓() =
(
𝑒𝛽 + 1

)−1
, (1b)

where 𝛽 = 1∕𝑇 is the inverse absolute temperature. The quantity 𝜇 is the chemical potential, a
Lagrange multiplier fixed by the total number,𝑁, of noninteracting electrons;𝑁 = Tr{𝑓( − 𝜇)}.
The symbol  denotes the Liouville superoperator for, which acts on any operator ∶ ℌ →

ℌ via() = i[,] = i( −). The constant 𝜎0 = 𝑒2∕(4ℏ) has units of conductance and
𝑒 is the absolute value of the electron charge (𝑒 > 0). The origin of (1a) is reviewed in Appendix A.
The zero-temperature (as 𝛽 → ∞) limit of (1b) is 𝟏<0(), the indicator function of the set { <

0}. In what follows, we set 𝜇 = 0; see Section 1.3.
Trace (1a) can be computed via any suitable basis set. The interband part, 𝝈𝐼(𝜔), comes from

extraction of the Drude conductivity, 𝝈𝐷 , namely,

𝝈𝐼(𝜔) = 𝝈(𝜔) − 𝝈𝐷(𝜔) ; 𝝈𝐷(𝜔) = −
4iℏ−1𝜎0
𝜔 + i𝜏−1

Tr{(∇)(∇𝑓())}. (1c)

If the eigenvectors of  are employed for the trace, then 𝝈𝐷 contains only diagonal matrix
elements of ∇ and ∇𝑓(). Hence, 𝝈𝐷 is composed only of the intraband transitions, to be
contrasted to 𝝈𝐼 .
By the SSHmodel,24 the electronHilbert space isℌ = 𝓁2(ℤ;ℂ2).25 Hence,ℌ is spanned by state

vectors of the form 𝜓𝛼
𝑙
where 𝑙 ∈ ℤ labels the lattice site and 𝛼 ∈ {A, B} expresses the type of the

atom per fundamental cell. The tight-binding SSH Hamiltonian is defined via the scheme24,25

(𝜓)𝑙 =

(
−𝑔1𝜓

B
𝑙−1

− 𝑔0𝜓
B
𝑙

−𝑔0𝜓
A
𝑙
− 𝑔1𝜓

A
𝑙+1

)
∀ 𝑙 ∈ ℤ, (2)

where 𝜓𝑙 = (𝜓A
𝑙
, 𝜓B

𝑙
)⊤ ∈ ℂ2; see Figure 1. The constants 𝑔0, 𝑔1 are hopping rates. We assume 𝑔0 ≥

𝑔1 > 0, without loss of generality. In Section 2.1, we review the connection of scheme (2) to the
1-particle Schrödinger dynamics.

Problem 1. By the formulation of (1) and (2), derive a 1D integral in momentum space for the
interband conductivity, 𝜎𝐼(𝜔).

Problem 1 calls for passing to the Bloch domain, which is natural since the system is translation
invariant. We express the trace for 𝜎𝐼(𝜔) in the eigenbasis of the Bloch-transformed Hamiltonian.
Let 𝐼 denote the requisite integral; see (9) in Section 2.2. We are unable to exactly compute 𝐼 in
simple closed form in terms of known functions. Hence, we apply asymptotics.
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MARGETIS et al. 559

Problem 2. Define the nondimensional parameters

𝜖1 ∶=
(𝑔0 − 𝑔1)

2

𝑔0𝑔1
, 𝜖2 ∶=

4(𝑔0 − 𝑔1)
2 − ℏ2(𝜔 + i𝜏−1)2

4𝑔0𝑔1
, 𝜖3 ∶= 𝛽

√
𝑔0𝑔1. (3a)

Compute the integral 𝐼 for the interband conductivity to the leading order in the low-
temperature regime

0 < 𝜖1 ≪ 1 , 𝜖3
√
𝜖1 ≫ 1. (3b)

The parameter
√
𝜖1 expresses the size of the smallest energy bandgap; 𝜖2 depends on 𝜔, and

signifies resonances; and 𝜖3 measures the strength of the hopping energies relative to the abso-
lute temperature, 𝑇. We repeat that the expressions for 𝜎𝐼(𝜔) and integral 𝐼 are given in (9)
(Section 2.2).
The last condition in (3b) is roughly suggested by the Fermi–Dirac distribution, 𝑓(); cf. (1b).

At low temperatures 𝑒−𝛽 should be small enough, where the exponent is controlled by 𝛽 (i.e.,
𝜖3) times the smallest energy scale,

√
𝜖1. We will neglect such exponentially small terms. In

Section 3.4, we address the related error estimate for 𝜎𝐼 by manipulation of the 1D momentum
integral, and formally justify the parameter regime of (3b).

1.2 On the mathematical approach

For Problem 1, we employ the eigenvectors of the SSH Hamiltonian along with (1c). Hence, we
solve the eigenvalue problem for the spectrum of.
For Problem 2,we invert the (3D)Mellin transformof the requisite integral 𝐼(𝜖1, 𝜖2, 𝜖3) for𝜎𝐼(𝜔).

This technique can be powerful, although is not used often27–30; see Appendix B. Applications of
the 1D Mellin transform include, but are not limited to, the evaluation of Feynman integrals31,32
and the computation of the radiated power of classical current distributions.33 We apply the 3D
Mellin transform to a 1D integral for 𝜎𝐼 in the zero-temperature limit. An ensuing task is to com-
pute exactly certain power series from strings of poles in a dual variable, after the other two dual
variables are approximately integrated out (Section 3.3). The extension of this transform technique
to higher orders in the (temperature-dependent) parameter 𝑒−𝜖3

√
𝜖1 presents difficulties that we

leave unresolved; see Section 3.4.
The Mellin transform of 𝐼(𝜖1, 𝜖2, 𝜖3) is defined by

𝐼̃(𝜆, 𝜈, 𝜗) = ∫
∞

0
∫

∞

0
∫

∞

0

𝐼(𝜖1, 𝜖2, 𝜖3) 𝜖
−𝜈
2 𝜖−𝜆1 𝜖−𝜗3 d𝜖3 d𝜖1 d𝜖2. (4a)

In the above, (ℜ𝜆,ℜ𝜈,ℜ𝜗) lies in some region𝔻 ⊂ ℝ3; and 𝐼̃ is expressed in terms of the Gamma
and Riemann zeta functions.34 See Proposition 1. We approximately invert 𝐼̃ in the appropriate
complex space, and write

𝐼(𝜖1, 𝜖2, 𝜖3) =
1

(2𝜋i)3

𝛾2+i∞

∫
𝛾2−i∞

𝛾1+i∞

∫
𝛾1−i∞

𝛾3+i∞

∫
𝛾3−i∞

𝐼̃(𝜆, 𝜈, 𝜗) 𝜖𝜈−12 𝜖𝜆−11 𝜖𝜗−13 d𝜗 d𝜆 d𝜈, (4b)
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560 MARGETIS et al.

where (𝛾1, 𝛾2, 𝛾3) ∈ 𝔻, by using a particular order of integrations. The zero-temperature limit of
𝐼 arises from a simple pole in the 𝜗-plane, for fixed 𝜆 and 𝜈 (Section 3.3). The integration with
respect to 𝜈, which is the variable dual to 𝜖2, yields power series that are calculated in terms of
hypergeometric functions. Our findings reduce to elementary functions capturing resonances that
correspond to the smallest and largest energy bandgaps. Themain result is stated in Proposition 2;
and proved in Section 3.3.

1.3 Physical motivation and assumptions

The SSH Hamiltonian provides a quantum-mechanical toy model of electron transport in 1D.
This model embodies some essential physics, while it is analytically tractable for the study of the
interband conductivity as a function of frequency and material parameters. Because of the ide-
alizations involved, one may wonder if our results can offer insights into realistic situations. We
invoke a minimal setting to analytically show how the behavior of the conductivity at singulari-
ties (branch points) in the 𝜔-plane is affected by microscale parameters. We believe that aspects
of this behavior are universal, and must be described systematically.
In general, the description of the optical response of a system when the parameters entering

the unperturbed Hamiltonian take extreme values is practically compelling. This situation is rele-
vant to physical systems in which a broken symmetry of the Hamiltonian causes a relatively small
energy bandgap. Furthermore, in the celebrated multilayer graphene the optical conductivity can
be altered through the associated kinetic rates, doping, and twist angle.5,8,9 Our ultimate goal,
which is not addressed here but partly motivates our work, is to apply a similar method to truly
2D materials.5,8,35
Besides the tight-binding character and dimensionality of the SSH model, a few other simpli-

fying assumptions should be spelled out. We phenomenologically consider dissipative effects via a
constant relaxation time, 𝜏.18 We use a zero chemical potential 𝜇 (𝜇 = 0) in the Fermi–Dirac dis-
tribution. This choice is consistent with the fact that conducting polymers such as polyacetylene,
usually described by the SSH model, have intriguing properties at low doping levels, that is, near
charge neutrality.1 We also neglect couplings of the electronicHamiltonianwith lattice vibrations;
thus, we assume that the hopping rates in the SSH model are (lattice-independent) constants.24

1.4 Paper organization

In Section 2, we review the SSH model and the tight-binding approach, and present two main
results, Propositions 1 and 2. In Section 3, we prove Propositions 1 and 2, and provide a rele-
vant low-temperature error estimate. Section 4 focuses on comparisons of our analytical results
to numerical computations of the requisite integral. Section 5 concludes the paper.

2 SSHMODEL ANDMAIN RESULTS

In this section, we review the SSH model and outline our results for the Mellin transform of
the main integral and the asymptotic behavior of the interband conductivity, 𝜎𝐼 , as 𝑇 → 0. We
also calculate the eigenvectors and spectrum of the Hamiltonian in the Bloch domain, needed in
Section 3.
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MARGETIS et al. 561

2.1 SSH Hamiltonian: Definition and connection to Schrödinger
particles

We consider a 1D dimerized chain of atoms.24 If the lattice constant is 2𝑎, the Bravais lattice Λ is
defined by use of discrete position variable 𝑅 as

Λ ∶= {𝑅 = 2𝑎𝑙 ∶ 𝑙 ∈ ℤ}.

A fundamental cell is [0, 2𝑎). Within the 𝑅-th cell, there are two types of atoms (A and B) at
positions 𝑅 + 𝜏𝛼 (𝛼 = A, B) where 𝜏A = 0 and 𝜏B = 𝑎 + 𝛿; 𝛿 ∈ (−𝑎, 𝑎) is the dimerization param-
eter.
The electronic state vectors are modeled as elements 𝜓 of the Hilbert space ℌ ∶= 𝓁2(ℤ;ℂ2).

We denote such elements by (𝜓𝑅)𝑅∈Λ = (𝜓A𝑅 , 𝜓
B
𝑅)

⊤
𝑅∈Λ where |𝜓𝛼𝑅|2 represents the electron density

on sublattice 𝛼 ∈ {A, B} in the 𝑅-th cell. We slightly modify the notation of Section 1.1, replacing 𝑙
by 𝑅. The SSH Hamiltonian,, acts on 𝜓 according to (2), which is now recast to

(𝜓)𝑅 =

(
−𝑔1𝜓

B
𝑅−2𝑎 − 𝑔0𝜓

B
𝑅

−𝑔0𝜓
A
𝑅 − 𝑔1𝜓

A
𝑅+2𝑎

)
. (5)

Recall the schematic shown in Figure 1. The parameters 𝑔0 and 𝑔1 have units of energy, and
express hopping rates within the same cell or across neighboring cells, respectively. We take 𝑔0 ≥
𝑔1 > 0, without loss of generality.

2.1.1 Connection to continuum Schrödinger dynamics

Wenow sketch a formal derivation of themodel (5) from Schrödinger dynamics (see, e.g., Ashcroft
andMermin13), althoughwewill discuss shortlywhy this argument should be regardedwith some
skepticism. Let 𝑉at(𝑥) denote the atomic potential, which is a real function such that the atomic
continuum Schrödinger operator − ℏ2

2𝑚
Δ + 𝑉at(𝑥) has a nondegenerate ground state, Φ(𝑥). Then,

define the continuum Schrödinger operator (with ℏ = 1 = 2𝑚)

cont ∶= −Δ + 𝑉(𝑥), 𝑉(𝑥) ∶=
∑
𝑅∈Λ

𝑉at(𝑥 − (𝑅 + 𝜏𝐴)) + 𝑉at(𝑥 − (𝑅 + 𝜏𝐵)) . (6)

Model (5) emerges when (6) is projected onto the subspace of 𝐿2(ℝ) generated by translations of
the atomic ground state, {Φ(𝑥 − (𝑅 + 𝜏𝐴)), Φ(𝑥 − (𝑅 + 𝜏𝐵))}𝑅∈Λ, with neglect of matrix elements
corresponding to interactions between atomic ground states that are separated beyond nearest
neighbors. This approximation is formally justified assuming sufficient decay of thewave function
Φ. The components 𝜓𝛼𝑅 appearing in (5) correspond to the coefficients of the translated ground
states Φ(𝑥 − (𝑅 + 𝜏𝛼)) for every 𝑅 ∈ Λ and 𝛼 ∈ {𝐴, 𝐵}, while the coefficients 𝑔0, 𝑔1 denote the
overlap integrals between nearest-neighbor atomic potentials, that is, 𝑔0 ≈ ⟨Φ(⋅ − 𝜏𝐴)|contΦ(⋅ −

𝜏𝐵)⟩𝐿2 , 𝑔1 ≈ ⟨Φ(⋅ − 𝜏𝐵)|contΦ(⋅ + 2𝑎 − 𝜏𝐴)⟩𝐿2 ; ⟨⋅|⋅⟩𝐿2 is the 𝐿2-inner product.
A rigorous derivation of (5) from (6) was carried out by Shapiro, Fefferman, and Weinstein in a

sequence of papers,26,36,37 following earlierwork of Lee-Thorp, Fefferman, andWeinstein38 aswell
as work of Helffer and Sjöstrand.39,40 The basic idea is to replace 𝑉 by 𝜆̆2𝑉 and then consider the
limit of large 𝜆̆. (This is, equivalently, the semiclassical, or deep-well limit.) Two important sub-
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562 MARGETIS et al.

tleties arise in the derivation,26 which are worth emphasizing, since they indicate the limitations
of the formal argument given previously. First, to rigorously derive (5) with nonzero dimerization
parameter 𝛿 ≠ 0, the distances between atoms in the model (6) must be scaled with 𝜆̆. Second, the
topological classification (in the sense of Kitaev’s table of topological insulators41) of the discrete
SSH model emerges only in the tight-binding limit. In particular, topologically distinct discrete
SSH models (5) may emerge from topologically equivalent continuum SSH models (6).

2.1.2 Diagonalization of SSH Hamiltonian in Bloch domain

The SSHHamiltonian,, is invariant under lattice translations. Hence, it is natural to pass to the
Bloch domain, ℌ∗ (defined below). Accordingly, we introduce the reciprocal lattice constant 𝑏,
and the reciprocal Bravais lattice

Λ∗ ∶= {𝐺 = 𝑏𝑛 ∶ 𝑛 ∈ ℤ} ; 𝑏 ∶=
𝜋

𝑎
.

We take [0, 𝑏) as a fundamental cell of this lattice (Brillouin zone).
The Bloch domain isℌ∗ = 𝐿2([0, 𝑏); ℂ2). In this domain, the electronic state vectors are written

as
𝜓̂ =

(
𝜓̂(𝑘)

)
𝑘∈[0,𝑏)

=
(
𝜓̂𝐴(𝑘), 𝜓̂𝐵(𝑘)

)⊤
𝑘∈[0,𝑏)

.

The unitary Bloch transform  ∶ ℌ → ℌ∗ and its inverse are defined by

[𝜓]𝛼(𝑘) ∶= 1√
𝑏

∑
𝑅∈Λ

𝑒−i𝑘(𝑅+𝜏
𝛼)𝜓𝛼𝑅 =∶ 𝜓̂𝛼(𝑘),

[−1𝜓̂]𝛼
𝑅
∶=

1√
𝑏 ∫

𝑏

0

𝑒i𝑘(𝑅+𝜏
𝛼)𝜓̂𝛼(𝑘) d𝑘 , 𝛼 ∈ {A, B}.

The system Hamiltonian is block diagonal onℌ∗, taking the form(−1𝜓̂)(𝑘) =∶ ̂(𝑘)𝜓̂(𝑘), (7a)

where

̂(𝑘) = −

(
0 𝐹(𝑘)

𝐹∗(𝑘) 0

)
, 𝐹(𝑘) = 𝑒i𝑘(𝜏

B−𝜏A)(𝑔0 + 𝑔1𝑒
−2i𝑘𝑎), (7b)

and 𝐹∗ denotes the complex conjugate of 𝐹. The Hamiltonian ̂(𝑘) is directly diagonalized. It
has eigenpairs

𝜀𝑠(𝑘) = 𝑠|𝐹(𝑘)|, 𝜑̂𝑠(𝑘) =
1√
2

(
1, −𝑠𝑒−i𝜒(𝑘)

)⊤
; 𝜒(𝑘) ∶= Arg(𝐹(𝑘)) (8a)

and 𝑠 = ±. The functions 𝜀± ∶ [0, 𝑏) → ℝ are the Bloch bands; these are

𝜀±(𝑘) = ±

√
(𝑔0 − 𝑔1)2 + 4𝑔0𝑔1 cos

2(𝑘𝑎), 𝑘 ∈ [0, 𝜋∕𝑎). (8b)
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MARGETIS et al. 563

For every𝑘, 𝜀+(𝑘) − 𝜀−(𝑘) is the bandgap. The smallest bandgap is 𝜀𝑔 ∶= 2|𝑔0 − 𝑔1| = 2(𝑔0 − 𝑔1)

and the largest one is 2(𝑔0 + 𝑔1). We often refer to the former as the “small bandgap” and the latter
as the “large bandgap.”
We should note that the dependence of the Bloch Hamiltonian (7b) on 𝛿 through 𝜏B − 𝜏A can

always be removed by a gauge transformation; or, equivalently, by a redefinition of the Bloch
transform. For simplicity of our presentation, we therefore set 𝜏B − 𝜏A = 𝑎 henceforth.

2.2 Results on 3DMellin transform and zero-temperature
asymptotics

We show that by (1c) the conductivity 𝜎𝐼(𝜔) can be written as

𝜎𝐼(𝜔) =
i𝑎𝜎0
2

ℏ(𝜔 + i𝜏−1)(𝑔20 − 𝑔21)
2(𝑔0𝑔1)

−5∕2𝐼(𝜖1, 𝜖2, 𝜖3), (9a)

where 𝐼 can be expressed as a 1D integral over the Brillouin zone (Section 3.1). In principle, the
frequency 𝜔 is complex (𝜔 ∈ ℂ). However, in many applications 𝜔 takes only real values. By a
change of variable, integral 𝐼 is recast to the contour integral

𝐼(𝜖1, 𝜖2, 𝜖3) ∶=
1

2𝜋i ∮{|𝑧|=1}
𝑓(𝑧; 𝜖1, 𝜖3) − 𝑓(𝑧; 𝜖1, −𝜖3)

{𝜖1 + 𝑟(𝑧)}3∕2
1

𝜖2 + 𝑟(𝑧)

d𝑧

𝑧
. (9b)

In the above, we define the following functions of the complex variable 𝑧:

𝑓(𝑧; 𝜖1, 𝜖3) ∶=
(
1 + 𝑒𝜖3

√
𝜖1+𝑟(𝑧)

)−1
, 𝑟(𝑧) ∶=

(𝑧 + 1)2

𝑧
; (9c)

𝜖𝑗 (𝑗 = 1, 2, 3) are the parameters introduced in (3a). Evidently, 𝑓(𝑧; 𝜖1, 𝜖3) is the Fermi–Dirac
distribution, 𝑓(𝜀+), at the energy band 𝜀+(𝑘) under the mapping 𝑘 ↦ 𝑧 with 𝑧 = 𝑒2i𝑘𝑎. This
transformation maps the Brillouin zone onto the unit circle in the 𝑧-plane.
By (4a) we evaluate the Mellin transform of 𝐼(𝜖1, 𝜖2, 𝜖3) exactly; see Section 3.2 for details. The

result can be stated as follows.

Proposition 1. The Mellin transform of integral 𝐼(𝜖1, 𝜖2, 𝜖3) equals

𝐼̃(𝜆, 𝜈, 𝜗) = −2−2𝜈−2𝜆+𝜗−2𝜋
1

2
−𝜗

𝜁
(
𝜗,

1

2

)
sin (𝜋𝜗∕2)

×
Γ(1 − 𝜆) Γ(𝜆 − 𝜗 +

3

2
) Γ(1 − 𝜈) Γ(𝜈) Γ(−𝜈 − 𝜆 + 𝜗 − 1)

Γ(−
1

2
− 𝜆 − 𝜈 + 𝜗) Γ(

5

2
− 𝜗)

; (10)

𝜁(𝜗, 𝜍) is the generalized (Hurwitz) zeta function. Integral (4a) converges in the region

𝔻 =

{
(𝛾1, 𝛾2, 𝛾3) ∶ −

1

2
< 𝛾1 < 1, 0 < 𝛾2 <

1

2
, 1 < 𝛾3 < 2, 1 + 𝛾2 < 𝛾3 − 𝛾1 <

3

2

}
where (𝛾1, 𝛾2, 𝛾3) = (ℜ𝜆,ℜ𝜈,ℜ𝜗).
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564 MARGETIS et al.

The Mellin transform is reviewed in Appendix B We show that

𝜁
(
𝜗,

1

2

)
= (2𝜗 − 1)𝜁(𝜗), (11)

where 𝜁(𝜗) is the Riemann zeta function34; see Appendix C. Our definitions of the parame-
ters 𝜖𝑗 (𝑗 = 1, 2, 3) are crucial for obtaining the result of Proposition 1. Furthermore, we are
able to extract a simple asymptotic formula for 𝜎𝐼(𝜔) near the small-bandgap resonance, as
outlined below.
By (4b) we invert transform (10) in the parameter regime of (3b). The main result is stated as

follows:

Proposition 2 (Zero-temperature limit of interband conductivity). Let us assume that 0 < 𝜖1 ≪ 1

and 𝜖3
√
𝜖1 ≫ 1. Then, the integral 𝐼(𝜖1, 𝜖2, 𝜖3) entering (9a) and (9b) is expressed by the asymptotic

formula

𝐼 ∼ −
1

𝜋

1

𝜖1𝜖2

(
1 −

𝜖1
𝜖2

)−1⎧⎪⎨⎪⎩1 −
𝜖1
𝜖2

(
1 −

𝜖1
𝜖2

)−
1

2

ln

(√
𝜖2
𝜖1

+

√
𝜖2
𝜖1

− 1

)⎫⎪⎬⎪⎭
−

1

16𝜋

1

𝜖2

{
−1 +

64

𝜖2

sin
−1(√

−4∕𝜖2
)√

−4∕𝜖2

1√
1 + 4∕𝜖2

−
8

𝜖2
ln

(
16

𝜖2

)}
. (12)

Remark 1. Formula (12) is obtained from (9a) by taking the limit as 𝛽 → ∞ (or, 𝑇 → 0); and
then expanding in 𝜖1. This result captures both the small- and the large-bandgap resonances with
respect to𝜔. For fixed 𝜖1 and 𝜏 → ∞, in the former type of resonance, we have𝜔 → ±𝜖𝑔 = ±2(𝑔0 −

𝑔1), or 𝜖2 → 0; while in the latter type of resonance we have 𝜔 → ±2(𝑔0 + 𝑔1), or 1 +
4

𝜖2
→ 0.

Remark 2. For real 𝜔, we now compare predictions from (12) near the small-bandgap resonance to
the typical textbook case for the behavior of𝜎𝐼(𝜔)near a resonance,15 in viewof our condition 𝜖1 ≪
1. We distinguish two limiting procedures involving the ratio 𝜖1∕𝜖2, which is controlled by |𝜔 ∓

2(𝑔0 − 𝑔1)|∕(2(𝑔0 − 𝑔1)) and (𝑔0 − 𝑔1)𝜏 near this resonance, where𝜔 ∼ ±2(𝑔0 − 𝑔1). To start with,
let (𝑔0 − 𝑔1)𝜏 → ∞while |𝜔2 − 4(𝑔0 − 𝑔1)

2|∕(4(𝑔0 − 𝑔1)
2) is fixed and small. It can be shown that

this case amounts to taking 𝜖2 → 0 while 𝜖1 is fixed and small (thus, 𝜖2∕𝜖1 → 0). Expanding (12)
in powers of 𝜖2∕𝜖1, we find 𝐼 ∼ −(i∕𝜋)𝜖

−3∕2
1 𝜖

−1∕2
2 . By (9a), we obtain

𝜎𝐼(𝜔)

2𝜎0𝑎
∼

1

2𝜋

(𝑔0 + 𝑔1)
2

𝑔0𝑔1

1√
𝜖2

∼
1

𝜋

(𝑔0 + 𝑔1)
2√

𝑔0𝑔1

1√
4(𝑔0 − 𝑔1)2 − 𝜔2 − 2i𝜔𝜏−1

, (13a)

which reduces to the typical textbook case in 1D15 if 2i𝜔𝜏−1 is neglected. Formula (13a) holds if|𝜖2|≪ 𝜖1 ≪ 1, or 4(𝑔0 − 𝑔1)𝜏
−1 ≲ |𝜔2 − 4(𝑔0 − 𝑔1)

2|≪ 4(𝑔0 − 𝑔1)
2, near the small-bandgap reso-

nance. Now consider a different limiting procedure near this resonance: Let (𝑔0 − 𝑔1)𝜏 → 0while|𝜔2 − 4(𝑔0 − 𝑔1)
2|∕(4(𝑔0 − 𝑔1)𝜏

−1) is small; thus, take 𝜖1 → 0 while 𝜖2 is fixed and possibly small
(thus, 𝜖1∕𝜖2 → 0). By expanding (12) in powers of 𝜖1∕𝜖2, we obtain 𝐼 ∼ −(1∕𝜋)𝜖−11 𝜖−12 . Hence,
by (9a), we find

𝜎𝐼(𝜔)

2𝜎0𝑎
∼

1

2𝜋

(𝑔0 + 𝑔1)
2

𝑔0𝑔1

1√
𝜖2

∼
1

𝜋

(𝑔0 + 𝑔1)
2√

𝑔0𝑔1

1√
𝜏−2 − 2i𝜔𝜏−1

, (13b)
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MARGETIS et al. 565

which becomes linearwith 𝜏 if 2i𝜔𝜏−1 is neglected. At𝜔 = 0, (13b) resembles the intraband contri-
bution to the conductivity, which is consistent with the reduction of the SSHmodel to a one-band
model when 𝜖1 → 0. Approximation (13b) is reasonable if 𝜖1 ≪ |𝜖2|≪ 1, or |𝜔2 − 4(𝑔0 − 𝑔1)

2|≪
4(𝑔0 − 𝑔1)𝜏

−1 and 4(𝑔0 − 𝑔1)
2 ≪ 4(𝑔0 − 𝑔1)𝜏

−1 while
√
𝑔0𝑔1𝜏 ≫ 1. Note that 𝜎𝐼(𝜔) has the same

asymptotic form as a function of 𝜖2 in the two limiting cases; cf. (13a).

Remark 3. We may extend the above study to complex frequencies 𝜔 by allowing 𝜔 + i𝜏−1 ∼

±2(𝑔0 − 𝑔1), when 𝜏 is finite and nonzero. In the limits 𝜔 + i𝜏−1 → ±2(𝑔0 − 𝑔1), 𝜎𝐼(𝜔) exhibits
(two) branch points in the 𝜔-plane that correspond to the small bandgap. The behavior of 𝜎𝐼(𝜔)
in the vicinity of each branch point is sensitive to the ratio 𝜖1∕𝜖2. Indeed, in this vein we can
show that 𝜎𝐼(𝜔)

2𝜎0𝑎
= 𝑂(|𝜖2|−1∕2) as 𝜖1 → 0 with 𝜖2∕𝜖1 → 0; while 𝜎𝐼(𝜔)

2𝜎0𝑎
= 𝑂(

√
𝜖1∕|𝜖2|) when 𝜖2 → 0

with 𝜖1∕𝜖2 → 0. An underlying property is that 𝜔+i𝜏
−1√

𝑔0𝑔1
= 𝑂(

√
𝜖1) regardless of the order of magni-

tude of 𝜏. Compare to the case with real 𝜔 (Remark 2). A branch point of the same type occurs if
𝜖2 → −4, for the large bandgap; but the behavior of 𝜎𝐼(𝜔) in the vicinity of this point is not affected
by 𝜖1. This is expected because the band structure of the system near this resonance is insensitive
to 𝜖1.

Remark 4. For our proofs of Propositions 1 and 2, see Sections 3.2 and 3.3, respectively. In the proof
of Proposition 2 (Section 3.3), we focus on the derivation of formula (12) directly from the exact 3D
Mellin transform of 𝐼(𝜖1, 𝜖2, 𝜖3). The role of the condition 𝜖3

√
𝜖1 ≫ 1 is discussed in Section 3.4.

Numerical computations for comparison purposes are carried out in Section 4. In the remainder
of the paper, we set ℏ = 1 for ease of notation.

3 ASYMPTOTIC EVALUATION OF 𝝈𝑰(𝝎) BY THEMELLIN
TRANSFORM

In this section, we derive a 1D integral representation for 𝜎𝐼(𝜔) within the SSH model. Further-
more, we prove Propositions 1 and 2, and discuss the nature of a possible correction term in the
low-temperature expansion.
First, let us generally discuss the computation of trace (1a) in terms of matrix elements in a

convenient basis. Extending the notation of Section 2.1 to 𝑑 spatial dimensions, we employ the
eigenbasis {𝜑̂𝑠(𝑘)}𝑠, which consists of the eigenvectors of the unperturbed Hamiltonian in the
Bloch domain,ℌ∗. The index 𝑠 (𝑠 = 1, … , 𝑛𝑏) counts energy bands, 𝑘 is in the Brillouin zone, and
𝜑̂𝑠(𝑘) ∈ ℂ𝑛𝑏 . By use of (1c), the integral for 𝝈𝐼 is (𝑙, 𝑚 = 1, … , 𝑑)8

𝜎𝐼
𝑙𝑚

= −
i4𝜎0

(2𝜋)𝑑

∑
𝑠≠𝑠′ ∫BZ

⟨𝑠|𝜕𝑘𝑙̂|𝑠′⟩⟨𝑠′|𝜕𝑘𝑚̂|𝑠⟩
𝜀𝑠𝑠′ (𝑘) + 𝜔 + i𝜏−1

𝑓(𝜀𝑠(𝑘)) − 𝑓(𝜀𝑠′ (𝑘))

𝜀𝑠𝑠′ (𝑘)
d𝑘, (14)

where the integration is carried out over the Brillouin zone, denoted as BZ. In the above, ̂(𝑘)

is the Bloch-transformed Hamiltonian (an 𝑛𝑏 × 𝑛𝑏 matrix), ⟨𝑠|𝜕𝑘𝑙̂|𝑠′⟩ ∶= 𝜑̂∗𝑠 (𝑘)
⊤(𝜕𝑘𝑙̂)𝜑̂𝑠′ (𝑘),

𝜀𝑠𝑠′ (𝑘) ∶= 𝜀𝑠(𝑘) − 𝜀𝑠′ (𝑘), 𝜀𝑠(𝑘) is the 𝑠-th eigenvalue (band) of ̂(𝑘), and 𝑘𝑙 is the 𝑙-th component
of momentum 𝑘.
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566 MARGETIS et al.

In particular, for the SSH model (Section 2.1), we have 𝑑 = 1 and 𝑛𝑏 = 2. Thus, let 𝑠, 𝑠′ =
±. The energy bands are 𝜀±(𝑘) (𝜀+ = −𝜀− > 0). The matrix [𝜎𝑙𝑚] ([𝜎𝐼𝑙𝑚]) reduces to a scalar,
𝜎 (𝜎𝐼).

3.1 SSHmodel: Integral for 𝝈𝑰(𝝎) over Brillouin zone

Consider the unperturbed Hamiltonian (7b), in the Bloch domain. In view of formula (14), we
need to compute matrix elements of 𝜕𝑘̂ in the eigenbasis {𝜑̂𝑠(𝑘)}𝑠. A direct calculation using the
eigenpairs of (8) yields

⟨𝑠|𝜕𝑘̂|𝑠′⟩ = −
1

2

(
1, −𝑠𝑒i𝜒(𝑘)

)( 0 𝜕𝑘𝐹(𝑘)

𝜕𝑘𝐹
∗(𝑘) 0

)(
1

−𝑠′𝑒−i𝜒(𝑘)

)
=

𝑎

2𝜀+(𝑘)

{
i(𝑠′ − 𝑠)(𝑔20 − 𝑔21) − 2(𝑠′ + 𝑠)𝑔0𝑔1 sin(2𝑘𝑎)

}
(𝑠, 𝑠′ = ±).

The quantities 𝑠′ ± 𝑠 are evaluated by the replacements of 𝑠 and 𝑠′ by ±1.
For 𝜎𝐼(𝜔), we need the matrix element ⟨+|𝜕𝑘̂|−⟩ = −i𝑎(𝑔20 − 𝑔21)∕𝜀+(𝑘). After some algebra,

by (14) we obtain (with 𝑏 = 𝜋∕𝑎)

𝜎𝐼(𝜔) =
i2𝜎0
𝜋

𝑎2(𝑔20 − 𝑔21)
2(𝜔 + i𝜏−1)∫

𝑏

0

𝑓(𝜀+(𝑘)) − 𝑓(𝜀−(𝑘))

4𝜀+(𝑘)2 − (𝜔 + i𝜏−1)2
1

𝜀+(𝑘)3
d𝑘. (15)

This representation provides the answer to Problem 1 (Section 1.1). The mapping 𝑘 ↦ 𝑧 with
𝑧 = 𝑒2i𝑘𝑎 yields the formulas displayed in (9).

3.2 Calculation of 𝑰(𝝀, 𝝂, 𝝑): Proof of Proposition 1

Next, we compute 𝐼̃(𝜆, 𝜈, 𝜗) by starting with (4a) in view of definition (9b). We first carry out each
of the 1D integrations with respect to 𝜖𝑗 (𝑗 = 3, 1, 2) in a specific order, treating 𝑟(𝑧) as a nonzero
and finite parameter; and finally integrate along the unit circle in the 𝑧-plane. In the course of this
procedure, we determine the region 𝔻 via integrability requirements. Without loss of generality,
we treat all 𝜖𝑗 as positive (𝜖𝑗 ≥ 0, ∀𝑗).
Let us focus on the temperature-related integral

𝐼̃3(𝜗) ∶=∫
∞

0

𝜖−𝜗3 {𝑓(𝑧; 𝜖1, 𝜖3) − 𝑓(𝑧; 𝜖1, −𝜖3)} d𝜖3

= − {𝜖1 + 𝑟(𝑧)}𝜗−1 lim
𝑤→−1|𝑤|<1 ∫

∞

0

𝜖−𝜗
1 − 𝑒−𝜖

1 − 𝑤𝑒−𝜖
d𝜖.

This integral converges and the requisite limit, as 𝑤 → −1 within the unit disk, exists if 1 <
ℜ𝜗 < 2, which contributes to determining region 𝔻. By expansion of (1 − 𝑤𝑒−𝜖)−1 in powers of
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MARGETIS et al. 567

𝑤𝑒−𝜖 and term-by-term integration, we find

𝐼̃3(𝜗) = {𝜖1 + 𝑟(𝑧)}𝜗−1Γ(1 − 𝜗)

{
1 + lim

𝑤→−1|𝑤|<1
∞∑
𝑛=1

𝑤𝑛
[
(𝑛 + 1)𝜗−1 − 𝑛𝜗−1

]}
.

We now invoke the known function Φ(𝑤, 𝑠, 𝑣) ∶=
∑∞

𝑛=0
(𝑣 + 𝑛)−𝑠𝑤𝑛 as 𝑤 → −1 with |𝑤| < 1,

while 𝑠 = 1 − 𝜗, 𝑣 = 1; and Joncquière’s relation, namely,34

𝐿(𝑤, 𝑠) + 𝑒i𝑠𝜋𝐿(1∕𝑤, 𝑠) =
(2𝜋)𝑠

Γ(𝑠)
𝑒
i𝜋𝑠

2 𝜁

(
1 − 𝑠,

ln𝑤

2𝜋i

)
, 𝐿(𝑤, 𝑠) ∶= 𝑤Φ(𝑤, 𝑠, 1),

where 0 < Arg(𝑤 − 1) < 2𝜋 for the principal branch of 𝐿(𝑤, 𝑠) (if 𝑠 is fixed), and 𝜁(𝜗, 𝜍) =∑∞

𝑛=0
(𝜍 + 𝑛)−𝜗 is the generalized zeta function for ℜ𝜗 > 1, −𝜍 ∉ ℕ (see Appendix C). Note

that in the limit 𝑤 → −1 with 0 < Arg(𝑤 − 1) < 2𝜋, the logarithm ln𝑤 approaches the value
ln(𝑒i𝜋) = i𝜋; thus, the generalized zeta function yields lim𝑤→−1 𝜁(1 − 𝑠, (ln𝑤)∕(2𝜋i)) = 𝜁(1 −

𝑠, 1∕2). Therefore, after some algebra, we obtain

𝐼̃3(𝜗) = −(2𝜋)1−𝜗{𝜖1 + 𝑟(𝑧)}𝜗−1
𝜁
(
𝜗,

1

2

)
sin(𝜋𝜗∕2)

. (16a)

The next task is to compute34

𝐼̃1(𝜆, 𝜗) ∶=∫
∞

0

𝜖−𝜆1 {𝜖1 + 𝑟(𝑧)}
𝜗−

5

2 d𝜖1

= 𝑟(𝑧)
−𝜆+𝜗−

3

2

Γ(1 − 𝜆) Γ
(
𝜆 − 𝜗 +

3

2

)
Γ
( 5
2
− 𝜗
) . (16b)

Evidently, the integral 𝐼̃1(𝜆, 𝜗) converges ifℜ(𝜗 − 𝜆) < 3∕2 andℜ𝜆 < 1.
Regarding the integration with respect to 𝜖2, we have34

𝐼̃2(𝜈) ∶= ∫
∞

0

𝜖−𝜈2 {𝜖2 + 𝑟(𝑧)}−1 d𝜖2 = 𝑟(𝑧)−𝜈Γ(1 − 𝜈) Γ(𝜈) . (16c)

This integral converges provided 0 < ℜ𝜈 < 1.
By combining the above results, we write

𝐼̃(𝜆, 𝜈, 𝜗) = −(2𝜋)1−𝜗
𝜁
(
𝜗,

1

2

)
sin(𝜋𝜗∕2)

Γ(1 − 𝜆)Γ
(
𝜆 − 𝜗 +

3

2

)
Γ(1 − 𝜈)Γ(𝜈)

Γ
( 5
2
− 𝜗
) Ξ(𝜆 + 𝜈 − 𝜗),

where

Ξ(𝜍) ∶=
1

2𝜋i ∮{|𝑧|=1} 𝑧
𝜍+

1

2 (1 + 𝑧)−2𝜍−3 d𝑧.
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568 MARGETIS et al.

F IGURE 2 Contours for integral Ξ(𝜍)
and requisite branch cuts (wavy curves) in
the 𝑧-plane. The unit circle (initial
integration path) is deformed to the contour
𝐶𝑏, which is wrapped around the branch cut
from −1 to 0.

Our task now is to computeΞ(𝜍). This integral converges ifℜ(2𝜍 + 3) < 1, which impliesℜ(𝜆 +

𝜈) < ℜ𝜗 − 1. Evidently, the integrand has branch points at 𝑧 = 0 and 𝑧 = −1. It can be shown that
the associated cuts can be defined as separate line segments from −∞ to −1 and from −1 to 0 in
the real axis (see Figure 2). By deforming the initial integration path (unit circle) to the contour
𝐶𝑏, as depicted in Figure 2, we find the alternate representation

Ξ(𝜍) =
1

2𝜋i ∮𝐶𝑏 𝑧
𝜍+

1

2 (1 + 𝑧)−2𝜍−3 d𝑧

=
1

2𝜋i ∫
1

0

𝑥
𝜍+

1

2 (1 − 𝑥)−2𝜍−3
{
𝑒
−i𝜋
(
𝜍+

1

2

)
− 𝑒

i𝜋
(
𝜍+

1

2

)}

= −
1

𝜋
cos(𝜍𝜋)

Γ
(
𝜍 +

3

2

)
Γ(−2𝜍 − 2)

Γ
(
−𝜍 −

1

2

) . (17)

Let us collect all the integration results pertaining to 𝐼̃(𝜆, 𝜈, 𝜗). After some algebra by use of (16)
and (17) along with the known identities34

Γ(−2𝜍 − 2) =
1√
𝜋
2−2𝜍−3Γ(−𝜍 − 1) Γ

(
−𝜍 −

1

2

)
, cos(𝜍𝜋) =

𝜋

Γ
( 1
2
+ 𝜍
)
Γ
( 1
2
− 𝜍
) ,

we obtain (10). The description of region𝔻 follows from the above regions of integral convergence.
This concludes the proof of Proposition 1. □

3.3 Zero-temperature limit of 𝝈𝑰 and proof of Proposition 2

Next, we define the zero-temperature limit of 𝜎𝐼(𝜔) via 𝐼̃(𝜆, 𝜈, 𝜗); see (10). Then, we use this defini-
tion alongwith inversion formula (4b) to derive approximation (12) of Proposition 2. The condition
𝜖3
√
𝜖1 ≫ 1, assumed in Proposition 2, underlies our procedure but is not explicitly invoked in our

proof. This condition is discussed in Section 3.4.
First, let us recall that taking the limit as 𝑇 → 0 of the optical conductivity, while keeping

all other parameters fixed, formally means setting 𝑓(𝜀+(𝑘)) ≡ 0 and 𝑓(𝜀−(𝑘)) ≡ 1 in momentum
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MARGETIS et al. 569

integral (15)13; cf. Section 1.1. The resulting integral for 𝜎𝐼 is convergent. We need to define the
inversion of 𝐼̃(𝜆, 𝜈, 𝜗) in terms of iterated integrals with respect to the dual variables in a fashion
consistent with the above formal limit as 𝜖3 → ∞.
For this purpose, we write (4b) as

𝐼(𝜖1, 𝜖2, 𝜖3) =
1

(2𝜋i)2 ∫
ℂ2

d(𝜆, 𝜈) 𝜖𝜈−12 𝜖𝜆−11

⎧⎪⎨⎪⎩
1

2𝜋i

𝛾3+i∞

∫
𝛾3−i∞

𝐼̃(𝜆, 𝜈, 𝜗) 𝜖𝜗−13 d𝜗

⎫⎪⎬⎪⎭. (18a)

Here, ∫
ℂ2
d(𝜆, 𝜈) denotes an appropriate integral with respect to the complex variables 𝜆

and 𝜈 over some region ℂ2 ⊂ ℂ2. This ℂ2 and the real constant 𝛾3 (𝛾3 ∈ ℝ) are subject to
restrictions according to the definition of region 𝔻 (Proposition 1). For our purposes, we
define

ℂ2 ∶= {(𝜆, 𝜈) ∶ ℜ𝜆 = 𝛾1, ℜ𝜈 = 𝛾2; −
1

2
< 𝛾1 < 0, 0 < 𝛾2 <

1

2
, 𝛾1 + 𝛾2 < 0}; (18b)

hence, 1 < 𝛾3 < min(3∕2 +ℜ𝜆, 2) in view of𝔻. It is of essence to allow 𝛾3 = ℜ𝜗 to have greatest
lower bound equal to 1 in the integrand of (18a).

Definition 1 (Zero-temperature limit of 𝜎𝐼(𝜔)). Consider inversion formula (18a), subject
to (18b) and 1 < 𝛾3 < min(3∕2 +ℜ𝜆, 2). By (9a), the limit of 𝜎𝐼(𝜔) as 𝑇 → 0 comes from
the residue of 𝐼̃(𝜆, 𝜈, 𝜗) 𝜖𝜗−13 at the simple pole 𝜗 = 𝜗𝑝 = 1 in the iterated integral with
respect to 𝜗. Recall that 𝜗𝑝 coincides with the pole of the Riemann zeta function, 𝜁(𝜗), in
𝐼̃(𝜆, 𝜈, 𝜗).

We can verify that Definition 1 yields the expected integral formula for 𝜎𝐼(𝜔) over the Brillouin
zone, with 𝑓(𝜀+(𝑘)) ≡ 0 and 𝑓(𝜀−(𝑘)) ≡ 1. By inspection of (10), for fixed 𝜆 and 𝜈, the simple pole
of 𝐼̃(𝜆, 𝜈, 𝜗) at 𝜗 = 1 is the pole of the generalized zeta function 𝜁(𝜗, 1∕2) = (2𝜗 − 1)𝜁(𝜗); cf. (16a)
and Appendix C. Next, we use Definition 1 in order to prove Proposition 2.

3.3.1 Proof of Proposition 2

By calculation of the residue at 𝜗 = 1 of 𝐼̃(𝜆, 𝜈, 𝜗) 𝜖𝜗−13 , while 𝜆 and 𝜈 are held fixed, we have

𝐼|𝑇=0 = −
1

𝜋

1

(2𝜋i)2 ∫
ℂ2

d(𝜆, 𝜈) 𝜖𝜆−11 𝜖𝜈−12

Γ(1 − 𝜆)Γ
(
𝜆 +

1

2

)
Γ(1 − 𝜈)Γ(𝜈)Γ(−𝜈 − 𝜆)

22(𝜈+𝜆)Γ
( 1
2
− 𝜆 − 𝜈

) .

Recall that 𝜖1 ≪ 1. We integrate in 𝜆 while keeping 𝜈 fixed and enforcing −1∕2 < ℜ𝜆 < −ℜ𝜈;
cf. (18b). Hence, we shift the integration path to the right of the above strip in the 𝜆-plane, and
pick up only the residue ofΓ(−𝜆 − 𝜈) at 𝜆 = −𝜈. For themoment, let us neglect contributions from
poles in the region {ℜ𝜆 > −ℜ𝜈}, since these yield higher powers of 𝜖1.Wewill see that the ensuing
approximation for 𝐼 captures the singularity of 𝜎𝐼(𝜔) at the resonance of the small bandgap, but
needs to be improved.
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570 MARGETIS et al.

Considering only the pole at 𝜆 = −𝜈 (with fixed 𝜈), we compute

𝐼||𝑇=0 ∼ −
𝜋−3∕2

𝜖1𝜖2

1

2𝜋i

𝛾2+i∞

∫
𝛾2−i∞

d𝜈

(
𝜖2
𝜖1

)𝜈

Γ(1 − 𝜈) Γ(𝜈) Γ(1 + 𝜈) Γ
( 1
2
− 𝜈
)
=∶ 𝐼(0)

for 𝜖1 ≪ 1, where 0 < 𝛾2 < 1∕2. We carry out the contour integral for 𝐼(0) exactly in terms of the
hypergeometric function 2𝐹1,34 by shifting the integration path to the left of the strip {0 < ℜ𝜈 <

1∕2} in the 𝜈-plane, for 0 < |𝜖1∕𝜖2| < 1. Thus, we pick up the residues of the integrand at the
simple pole located at 𝜈 = 0 and the double poles at 𝜈 = −𝑛, 𝑛 ∈ ℕ ⧵ {0}. After some algebra, this
procedure leads to the convergent series

𝐼(0) = −
1

𝜋

1

𝜖22

⎧⎪⎨⎪⎩
𝜖2
𝜖1

−
1√
𝜋

∞∑
𝑛=0

(
𝜖1
𝜖2

)𝑛 Γ
( 3
2
+ 𝑛
)

𝑛!

[
Γ′(1 + 𝑛) − Γ′

( 3
2
+ 𝑛
)
− ln

(
𝜖1
𝜖2

)]⎫⎪⎬⎪⎭,
where Γ′(𝑧) ∶= d

d𝑧
Γ(𝑧) here. By manipulating this series, we find

𝐼(0)(𝜖1, 𝜖2, 𝜖3) = −
1

𝜋

1

𝜖1𝜖2

{
1 −

𝜖1
3𝜖2

2𝐹1
( 3
2
, 1;

5

2
; 1 − 𝜖1∕𝜖2

)}
. (19a)

The requisite hypergeometric function can be computed as

2𝐹1
( 3
2
, 1;

5

2
; 𝑧
)
=

3

𝑧

{
1√
𝑧
ln

(
1 +
√
𝑧√

1 − 𝑧

)
− 1

}
. (19b)

Details of this calculation are provided in Appendix D. The above result for 𝐼(0) is analytically
continued to all physically relevant complex 𝜖2∕𝜖1.
Equation (19) describes the singularity of 𝜎𝐼(𝜔) in correspondence to the smallest bandgap,

when 𝜔 + i𝜏−1 → 2(𝑔0 − 𝑔1) (for complex 𝜔) or 𝜖2 → 0. This asymptotic formula for 𝐼|𝑇=0 does
not capture the in principle weaker but physically distinct resonance of the largest bandgap, as
𝜖2 → −4, or, 𝜔 + i𝜏−1 → 2(𝑔0 + 𝑔1). A remedy is to include in the approximate calculation of the
𝜆-iterated integral the contributions of: the pole at 𝜆 = −𝜈 + 1, which is due to the factorΓ(−𝜈 − 𝜆)

in the integrand of the exact integral for 𝐼|𝑇=0; and the contribution of the pole at 𝜆 = 1, due to
the factor Γ(1 − 𝜆).
In this vein, let 𝐼(𝑗) denote the contribution to 𝐼|𝑇=0 from the pole at 𝜆 = −𝜈 + 1 (if 𝑗 = 1) or

𝜆 = 1 (𝑗 = 2). In a way similar to the calculation for 𝐼(0), for 0 < 𝛾2 < 1∕2, we obtain

𝐼(1) = −
1

8𝜋3∕2

1

𝜖2

1

2𝜋i

𝛾2+i∞

∫
𝛾2−i∞

d𝜈

(
𝜖2
𝜖1

)𝜈

Γ(1 − 𝜈) Γ(𝜈)2 Γ
( 3
2
− 𝜈
)

= −
1

8𝜋
√
𝜋

1

𝜖2

∞∑
𝑛=0

(
𝜖1
𝜖2

)𝜈 Γ
(
𝑛 +

3

2

)
𝑛!

{
Γ′(1 + 𝑛) − Γ′

( 3
2
+ 𝑛
)
− ln

(
𝜖1
𝜖2

)}
= −

1

24𝜋

1

𝜖2
2𝐹1
( 3
2
, 1;

5

2
; 1 − 𝜖1∕𝜖2

)
, (20)

 14679590, 2023, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/sapm

.12604, W
iley O

nline L
ibrary on [07/08/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



MARGETIS et al. 571

𝐼(2) = −
1

8
√
𝜋

1

𝜖2

1

2𝜋i

𝛾2+i∞

∫
𝛾2−i∞

d𝜈
(𝜖2
4

)𝜈 Γ(1 − 𝜈) Γ(𝜈) Γ(−𝜈 − 1)

Γ
(
−

1

2
− 𝜈
)

=
1

16𝜋

1

𝜖2

⎧⎪⎨⎪⎩
(
8

𝜖2
− 1

)
ln

(
16

𝜖2

)
+ 1 −

(
8

𝜖2

)2

Γ
(
3

2

) ∞∑
𝑛=0

(
−
4

𝜖2

)𝑛
Γ(1 + 𝑛)2

Γ
(
𝑛 +

3

2

) 1

𝑛!

⎫⎪⎬⎪⎭
=

1

16𝜋

1

𝜖2

{(
8

𝜖2
− 1

)
ln

(
16

𝜖2

)
+ 1 −

(
8

𝜖2

)2

2𝐹1
(
1, 1;

3

2
; −4∕𝜖2

)}
. (21a)

A few comments on these steps are in order. Regarding 𝐼(1), we calculated the residues of the
integrand at the double poles located at 𝜈 = −𝑛 (𝑛 ∈ ℕ), thus using the same series as the one
involved in 𝐼(0). For 𝐼(2), we evaluated the residues at the double poles at 𝜈 = 0, −1 and the simple
poles at 𝜈 = −𝑛, 𝑛 ∈ ℕ ⧵ {0, 1}. We now employ the formula (see Appendix D)

2𝐹1
(
1, 1;

3

2
; 𝑧
)
=

1√
1 − 𝑧

sin
−1(√

𝑧
)√

𝑧
. (21b)

This function exhibits a singularity that corresponds to the large-bandgap resonance of 𝜎𝐼(𝜔), in
the limit 𝜖2 → −4 (or 𝑧 → 1).
Finally, we need to write 𝐼|𝑇=0 ∼ 𝐼(0) + 𝐼(1) + 𝐼(2), combining (19)–(21). The resulting, modi-

fied formula for 𝐼 yields (12) after the neglect of subdominant terms given that 𝜖1 ≪ 1, and also|𝜖2|≪ 1 near the resonance of the smallest bandgap. This consideration concludes the proof of
Proposition 2. □

3.3.2 On the 3D Mellin transform and zero-temperature expansion

Our use of the exact 3D Mellin transform of 𝐼(𝜖1, 𝜖2, 𝜖3) points to two issues. First, we should
justify our choice of applying the 3D Mellin transform to 𝐼 instead of the (simpler) alternative of
applying the 2DMellin transform to the zero-temperature limit of 𝐼. Second, it is useful to discuss
an estimate for correction terms to (12) that come from residues at other poles in the 𝜆 dual variable
(when 𝜈 is fixed).
Regarding the first issue, the reason for our choice is primarily motivated on mathematical

grounds: By using the exact formula for 𝐼̃(𝜆, 𝜈, 𝜗), we are able to show that the expected zero-
temperature limit of the conductivity corresponds to the pole of the zeta Riemann function
included in 𝐼̃(𝜆, 𝜈, 𝜗). Thus, in this sense, we formally demonstrate the mapping of a physical
limit (zero temperature) to a singularity of the respective 3D Mellin transform in the context of
the linear optical response theory.
In passing, we are now tempted to ask the following question: Can one utilize the exact formula

for 𝐼̃(𝜆, 𝜈, 𝜗) (Proposition 1) to extend the result of Proposition 2 to nonzero small 𝑇? If 𝜖3 ≫ 1, we
have been unable to obtain a plausible low-temperature expansion of 𝜎𝐼 by inversion of 𝐼̃ via the
next-order residue in the 𝜗 dual variable (with fixed 𝜆 and 𝜈), forℜ𝜗 < 1. The actual expansion
should involve the small parameter 𝑒−𝜖3

√
𝜖1 , for large enough 𝜖3

√
𝜖1 (Section 3.4). In fact, the 3D
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572 MARGETIS et al.

Mellin transform is limited by our definition of the parameter 𝜖3. However, it is worth studying
whether, in the inversion procedure for 𝐼̃, onemay be able to exactly sum up the power series in 𝜖3
arising from residues in {ℜ𝜗 > 1}, when 𝜖3 is small; and analytically continue the result to 𝜖3 ≫ 1.
This task is not addressed here.
In regard to the second issue, that is, the effect of (𝜖2-dependent) higher-order terms due to the

small bandgap on the zero-temperature expansion for 𝜎𝐼 , the last stage of our proof in Section 3.3.1
provides some clues. By the inversion procedure, we realize that away from the resonances such
neglected terms cause an𝑂(𝜖1) error. Near each resonance, the neglect of such higher order terms
amounts to an error of the order of the small parameter of the corresponding resonance, for exam-
ple, an 𝑂(𝜖2) error for the small-bandgap resonance. In Section 4, we test asymptotic formula (12)
against the numerical evaluation of integral (15) for a wide range of 𝜔 (i.e., 𝜖2).

3.4 On the role of the small parameter 𝒆−𝝐𝟑
√
𝝐𝟏

Next, we discuss the effect of small nonzero temperatures. We develop a formal argument for
the condition 𝜖3

√
𝜖1 ≫ 1 (Proposition 2) if 𝜔 is real and 𝜏 is finite and nonzero. Consider the

integral (15) and replace 𝑘 by 𝑘∕𝑎. By

𝑓(𝜖) − 𝑓(−𝜖) = −1 +
2𝑒−𝛽𝜖

1 + 𝑒−𝛽𝜖
(𝛽 = 1∕𝑇 > 0 , 𝜖 = 𝜖(𝑘) = 𝜖+(𝑘∕𝑎)),

the (properly scaled) correction to the zero-temperature limit of 𝜎𝐼(𝜔) is

𝜎̌𝐼(𝜔) ∶=
𝜎𝐼(𝜔) − (𝜎𝐼(𝜔))||𝑇=0

2𝜎0𝑎

=
4i

𝜋
(𝑔20 − 𝑔21)

2(𝜔 + i𝜏−1)∫
𝜋

2

0

𝑒−𝛽𝜖(𝑘)

1 + 𝑒−𝛽𝜖(𝑘)
1

4𝜖(𝑘)2 − (𝜔 + i𝜏−1)2
d𝑘

𝜖(𝑘)3
.

For fixed material parameters and real 𝜔, a baseline estimate for |𝜎̌𝐼(𝜔)| can be derived from
|𝜎̌𝐼(𝜔)| ≤ 4

𝜋

(𝑔0 + 𝑔1)
2

𝑔0𝑔1
(𝑔0 − 𝑔1)

2 |𝜔 + i𝜏−1|𝑅∗ 𝑒−𝛽(𝑔0−𝑔1) ∫
𝜋

2

0

d𝑘

𝜖(𝑘)3
. (22a)

In the above, we use 𝜖+(𝑘) ≥ 𝑔0 − 𝑔1 for all 𝑘, and define (by 𝜖 ↦ 𝑥 = 4𝜖2)

𝑅∗ ∶= 𝑔0𝑔1 max
𝜔∈ℝ

max
𝑥∈𝕀

(𝑅(𝑥; 𝜔)) , 𝕀 ∶= [4(𝑔0 − 𝑔1)
2, 4(𝑔0 + 𝑔1)

2] ;

𝑅(𝑥; 𝜔) ∶=
{
(𝑥 − 𝜔2 + 𝜏−2)2 + 4𝜔2𝜏−2

}−1∕2
(𝑥 ∈ 𝕀, 𝜔 ∈ ℝ) . (22b)

In regard to the integral on the right-hand side of (22a), we have

∫
𝜋

2

0

d𝑘

𝜖(𝑘)3
≤ 𝜋

2

𝑐√
𝑔0𝑔1(𝑔0 − 𝑔1)2

, (22c)
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MARGETIS et al. 573

where 𝑐 is an immaterial numerical constant (𝑐 > 0) and the factor of 𝜋∕2 is included for later
algebraic convenience. We obtain this estimate by applying the inequality 𝜖+(𝜋∕2 − 𝑘)2 ≥ (𝑔0 −

𝑔1)
2 + (16∕𝜋2)𝑔0𝑔1𝑘

2 for all 𝑘 ∈ [0, 𝜋∕2]; and integrating in 𝑘 by scaling out 𝑔0 − 𝑔1 via a suitable
change of variable.
The next task is to compute the dimensionless quantity 𝑅∗ by usual calculus methods. This 𝑅∗

depends on the dimensionless parameters (𝑔0 − 𝑔1)𝜏 and
√
𝑔0𝑔1𝜏. After some manipulations, we

obtain the formula

𝑅∗ =
1

4

𝑔0𝑔1𝜏

𝑔0 − 𝑔1
𝑅̌(2(𝑔0 − 𝑔1)𝜏); 𝑅̌(𝜉) ∶=

⎧⎪⎨⎪⎩
2𝜉

𝜉2 + 1
, if 0 ≤ 𝜉 < 1,

1 , if 𝜉 ≥ 1.
(23)

Note that 𝑅̌(𝜉) is bounded and continuously differentiable in [0,∞).
By combining (22) and (23), and then writing 𝜉 = 2(𝑔0 − 𝑔1)𝜏 = 2𝜏

√
𝑔0𝑔1

√
𝜖1 and |𝜔 + i𝜏−1| =

2
√
𝑔0𝑔1

√
𝜖1 − 𝜖2, we derive the estimate

|𝜎̌𝐼(𝜔)| ≤ 𝑐
(𝑔0 + 𝑔1)

2𝜏√
𝑔0𝑔1

√
𝜖1 − 𝜖2√
𝜖1

𝑅̌(2𝜏
√
𝑔0𝑔1

√
𝜖1) 𝑒

−𝜖3
√
𝜖1 . (24)

This inequality can be simplified in the cases with |𝜖2|≪ 𝜖1 ≪ 1 and 𝜖1 ≪ |𝜖2|≪ 1, outlined in
Remark 2.
Let us compare (24) to the zero-temperature formula

|||||
(𝜎𝐼(𝜔))||𝑇=0

2𝜎0𝑎

||||| = 1

2

(𝑔0 + 𝑔1)
2

𝑔0𝑔1
𝜖1
√
𝜖1 − 𝜖2 𝐼(𝜖1, 𝜖2,∞),

where 𝐼(𝜖1, 𝜖2,∞) ∶= lim𝜖3→∞ 𝐼(𝜖1, 𝜖2, 𝜖3) is replaced by asymptotic formula (12). By imposing

𝑐
(𝑔0 + 𝑔1)

2𝜏√
𝑔0𝑔1

√
𝜖1 − 𝜖2√
𝜖1

𝑅̌(2𝜏
√
𝑔0𝑔1

√
𝜖1) 𝑒

−𝜖3
√
𝜖1 ≪

|||||
(𝜎𝐼(𝜔))||𝑇=0

2𝜎0𝑎

|||||,
according to (24), we need to distinguish cases for 𝑅̌(𝜉). This procedure yields the 𝜔-independent
condition 𝑒−𝜖3

√
𝜖1 ≪ 𝑐1 where 𝑐1 is a positive numerical constant of the order of unity; thus,

𝜖3
√
𝜖1 ≫ 1.

In regard to the asymptotic evaluation of the correction term 𝜎̌𝐼(𝜔), one may wonder if it is
useful to conveniently employ the Mellin transform with respect to (𝜖1, 𝜖2, 𝜖3) via the (modified)
parameter 𝜖3 = 𝑒𝛽(𝑔0−𝑔1) (𝜖3 ≫ 1). We leave this problem unresolved in this paper.

4 NUMERICAL COMPUTATIONS

In this section, we validate our asymptotics for the interband conductivity, 𝜎𝐼(𝜔), as a func-
tion of frequency 𝜔 via numerical computations. We compare our asymptotic result, particularly
expression (9a) combinedwith the zero-temperature formula (12), to numerical evaluations of the
requisite exact integral (15) for small but nonzero temperatures (𝜖3 ≫ 1).
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574 MARGETIS et al.

(A)

(B)

F IGURE 3 Real part (A) and
imaginary part (B) of 𝜎𝐼 versus 𝜔 near
zero temperature. The units are such
that 𝑔0 + 𝑔1 = 1 and 2𝜎0𝑎 = 1. We use
exact integral (15) (solid curve) and
expression (9a) combined with
asymptotic formula (12) (dashed curve).
The parameter values are 𝑔0 = 0.55,
𝜏−1 = 0.05 and 𝛽 = 103, which give
𝜖1 = 0.040 and 𝜖3 = 497

(
√
𝜖1𝜖3 = 99.896); while 𝜖2 varies

through 𝜔 with |𝜖2| = 0.020 at the
small-bandgap resonance.

First, we choose convenient units of energy and conductivity. Set 𝑔0 + 𝑔1 = 1, which fixes the
unit of energy, and take (2𝑎)𝜎0 = 1, which sets the unit of conductivity. In other words, quantities
that have the dimension of energy are scaled by 𝑔0 + 𝑔1; and 𝜎𝐼(𝜔) is naturally scaled by 2𝜎0𝑎. We
numerically determine 𝜎𝐼(𝜔) by using exact integral (15) over the Brillouin zone.
The real and imaginary parts of 𝜎𝐼 are plotted versus 𝜔 in Figure 3 for 𝑔0 = 0.55, 𝜏−1 = 0.05,

and 𝛽 = 103. In our numerics, at the small-bangap resonance, where 𝜔 ≃ ±2(𝑔0 − 𝑔1) = ±0.2

and |𝜖2(𝜔)| achieves its minimum with 𝜔, we have |𝜖2| = 0.020. Since we use 𝜖1 ≃ 0.04, and√
𝜖1𝜖3 ≃ 100, we verify that the plots of Figure 3 are in the regime of Proposition 2. We see excel-

lent agreement between the exact integral (15) and the asymptotic result for a wide range of 𝜔.
Notably, Figure 3 depicts clearly the small-bandgap resonance. Evidently, this resonance corre-
sponds to the sharp peaks ofℜ𝜎𝐼(𝜔) in Figure 3A. However, the large-bandgap resonance, which
occurs at 𝜔 ≃ ±2, is much weaker in this case and thus not clearly visible in Figure 3.
Figure 4 shows both the small- and large-bandgap resonances clearly, still within the assumed

parameter regime. We use the parameters 𝑔0 = 0.7, 𝜏−1 = 0.05, and 𝛽 = 103. In this case, 𝜖1 ≃
0.762, which slightly spoils the accuracy of asymptotic formula (12), particularly near the highest
peaks of ℜ𝜎𝐼(𝜔), which signify the small-bandgap resonance. Notably, the large-bandgap reso-
nance corresponds to the local maxima ofℜ𝜎𝐼(𝜔) at 𝜔 ≃ ±2, which are clearly seen in Figure 4A.
Our asymptotic formula describes both resonances reasonably well.
In contrast, Figures 5 and 6 depict cases that are incompatible with the parameter regime of

Proposition 2. Then, our zero-temperature asymptotic formula is inaccurate. For example, the
parameter values used in Figure 5 satisfy 𝜖3

√
𝜖1 ≃ 1, which violates the second condition (i.e.,
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MARGETIS et al. 575

(A)

(B)

F IGURE 4 Real part (A) and imaginary
part (B) of 𝜎𝐼 versus 𝜔 near zero temperature.
The parameter values are 𝑔0 = 0.7, 𝜏−1 = 0.05,
and 𝛽 = 103, which give 𝜖1 = 0.762 and
𝜖3 = 458 (

√
𝜖1𝜖3 = 399.800); while 𝜖2 varies

through 𝜔 with |𝜖2| = 0.095 at the
small-bandgap resonance, and |𝜖2| = 3.999 at
the large-bandgap resonance.

(A)

(B)

F IGURE 5 Real part (A) and imaginary
part (B) of 𝜎𝐼 versus 𝜔 near zero temperature.
The parameter values are 𝑔0 = 0.505, 𝜏−1 = 0.4,
and 𝛽 = 100, which give 𝜖1 = 4 × 10−4 and
𝜖3 = 49.9 (

√
𝜖1𝜖3 ≃ 1.00); while 𝜖2 varies

through 𝜔 with |𝜖2| = 0.160 at the
small-bandgap resonance. The second
condition (i.e., 𝜖3

√
𝜖1 ≫ 1) of Proposition 2 is

violated.
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576 MARGETIS et al.

(A)

(B)

F IGURE 6 Real part (A) and
imaginary part (B) of 𝜎𝐼 versus 𝜔 near
zero temperature. The parameter values
are 𝑔0 = 0.900, 𝜏−1 = 0.050, and 𝛽 = 103,
which give 𝜖1 = 7.11 and 𝜖3 = 300

(
√
𝜖1𝜖3 = 799.937); while 𝜖2 varies via 𝜔

with |𝜖2| = 0.444 at the small-bandgap
resonance. The first condition (i.e.,
𝜖1 ≪ 1) of Proposition 2 is violated.

𝜖3
√
𝜖1 ≫ 1) of Proposition 2.Hence, low-temperature effects become important. Figure 6 provides

an examplewith 𝜖1 > 1; then, the first condition (i.e., 𝜖1 ≪ 1) of Proposition 2 does not hold. Thus,
small-bandgap corrections are significant in this case.

5 CONCLUSION

In this paper, we showed that the 3D Mellin transform can be used for the derivation of a zero-
temperature asymptotic formula for the interband conductivity, 𝜎𝐼 , of the 1D SSH model as a
function of frequency, 𝜔. This part of the conductivity has an intricate dependence on 𝜔, and in
fact exhibits physically appealing resonances at nonzero frequencies. A similar approach can be
applied to the intraband conductivity of this model, whose dependence on 𝜔 follows a standard
law and, hence, was not addressed here.
Our methodology yields a formula for 𝜎𝐼(𝜔) that is valid, for all practical purposes, uniformly

in 𝜔 when the bandgap is relatively small and the absolute temperature is sufficiently low.
Our approximate, analytical results were found to be in good agreement with direct numerical
computations based on the momentum integral for 𝜎𝐼(𝜔). We believe that our approach and
ensuing result contrasts the traditional point of view on the conductivity, which yields local (in𝜔)
information about 𝜎𝐼(𝜔)when the material parameters are fixed. In other words, in our work we
focused on approximately deriving 𝜎𝐼(𝜔) for a wide range of 𝜔, by assuming that some material
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MARGETIS et al. 577

parameters take extreme values, that is, the temperature is low and the bandgap is small. In
principle, this methodology can be extended to other parameter regimes of the SSH model, such
as the limit of large bandgap (as 𝜖1 → ∞).
It is natural to ask whether our approach, relying on the multidimensional Mellin transform

technique, can be extended to othermore realisticmodels at low temperatures. Of particular inter-
est are models in higher dimensions when a symmetry of their Hamiltonian is broken so that a
nonzero energy bandgap exists. We expect that similar calculations can be carried out for essen-
tially generic systems that exhibit a small-bandgap limit. A relatively simple example of such a
system, in 2D, is the Haldane model.35
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APPENDIX A: ON A KINETIC FORMULATION FOR LINEAR OPTICAL RESPONSE

In this appendix, we review the origin of formula (1a).19,20,22 Emphasis is placed on the modeling
of the energy loss due to electron scattering via the “relaxation time approximation,”13 in which
dissipative effects are captured through the effective constant parameter 𝜏. For details from the
perspective of partial differential equations, see our expository article.42
We sketch a derivation of (1a) in the spirit of Refs. 20, 22. Let the unperturbed one-electron

Hamiltonian be, acting on theHilbert spaceℌ. This describes electronmotion inℝ𝑑 without
the electromagnetic field. The time-dependent electric field is𝐸(𝜃 + 𝜔𝑡), where𝐸(⋅) is 2𝜋-periodic
and 𝜃 is a parameter in [0, 2𝜋). The total Hamiltonian is𝐸 =  − 𝑒𝐸(𝜃 + 𝜔𝑡) ⋅  where is the
position operator.
An observable of interest is the current density operator  = −i𝑒[ ,], which is proportional

to the electron velocity operator. We will define, and describe perturbatively with 𝐸, a suit-
able function, denoted as 𝐽(𝜔) (𝐽(𝜔) ∶ ℂ → ℂ𝑑), that results from averaging procedures applied
successively to  .
Now let us recall the notion of the “densitymatrix” operator 𝜚 ∶ ℌ → ℌ:43 If a quantum system

can occupy any one of the linearly independent (normalized) pure states {𝜓𝑗}𝑗∈𝐽 prepared with
probabilities {𝑝𝑗}𝑗∈𝐽 (where

∑
𝑗∈𝐽

𝑝𝑗 = 1, 𝑝𝑗 > 0), the related ensemble average, ⟨𝐴⟩, of ∶ ℌ →

ℌ is43

⟨⟩ ∶=∑
𝑗∈𝐽

𝑝𝑗⟨𝜓𝑗|𝜓𝑗⟩ℌ =∶ Tr{𝜚}. (A1)

Here, ⟨⋅|⋅⟩ℌ is the inner product on the Hilbert spaceℌ. Equation (A1) suggests 𝜚 ∶=
∑

𝑗∈𝐽
𝑝𝑗𝑗

where 𝑗 is a projector such that 𝑗𝜓𝑗 = 𝜓𝑗 .43
Consider particle motion under the perturbed Hamiltonian,𝐸 . The operator 𝜚 = 𝜚(𝑡; 𝜃) obeys

the Liouville-von Neumann evolution equation,22,43 in which the term containing 𝐸(⋅) is treated
as a perturbation. This evolution equation can be written as d

d𝑡
𝜚(𝑡; 𝜃) = −𝐸

(𝜚(𝑡; 𝜃)), where
𝐸

(𝜚) ∶= i[𝐸, 𝜚] defines the Liouville superoperator. Note that 𝜚(𝑡) is parameterized by the
𝜃 introduced in the periodic electric field.
The equation for 𝜚(𝑡; 𝜃) is solved under the following assumptions:

∙ The initial condition 𝜚(0+; 𝜃) = 𝑓() is imposed. Hence, at 𝑡 = 0 the electron is at the thermal
equilibrium corresponding to the unperturbed Hamiltonian,.

∙ The collisions of the electron with other particles (e.g., impurities and phonons) occur instantly
at random times {𝑡𝑛}∞𝑛=1 where 𝑡𝑛+1 > 𝑡𝑛 ≥ 0 ∀𝑛 ∈ ℕ. (Set 𝑡0 ∶= 0.)

∙ All differences 𝜏𝑛 ∶= 𝑡𝑛+1 − 𝑡𝑛 > 0 (∀𝑛 ∈ ℕ) are treated as independent and identically dis-
tributed random variables that follow the Poisson distribution law with parameter Γ𝑝 = 𝜏−1;
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hence,

Prob(𝜏𝑛 ≤ 𝑇) = ∫
𝑇

0

Γ𝑝 𝑒
−Γ𝑝𝜏

′
d𝜏′ (𝑇 > 0). (A2)

∙ Immediately after every collision event, the electron reaches its unperturbed equilibrium;
𝜚(𝑡+𝑛 ; 𝜃) = 𝑓(),∀𝑛 ∈ ℕ. Thus, 𝜚(𝑡; 𝜃) evolves by the Liouville-vonNeumann equation for times
𝑡 in (𝑡𝑛, 𝑡𝑛+1), ∀𝑛 ∈ ℕ.

∙ The system has vanishing equilibrium current, namely, Tr{ 𝑓()} = 0.

These assumptions suggest three types of averages. First, for fixed {𝑡𝑛}𝑛∈ℕ, one employs the
ensemble average of  , namely,

⟨ (𝑡; 𝜃)⟩ ∶= Tr{ 𝜚(𝑡; 𝜃)} 𝑡𝑛 < 𝑡 < 𝑡𝑛+1 (∀𝑛 ∈ ℕ) . (A3)

Second, by a Tauberian theorem,44 consider the combined average

⟨ ⟩𝜔 ∶=
1

2𝜋
lim
𝑡→+∞

1

𝑡 ∫
𝑡

0
∫

𝜋

−𝜋

𝑒i(𝜔𝑡
′+𝜃)⟨ (𝑡′; 𝜃)⟩ d𝜃 d𝑡′ = 1

2𝜋
lim
𝛿↓0

{
𝛿 lim
𝑁→∞

𝐽𝛿𝑁(𝜔)
}
;

𝐽𝛿𝑁(𝜔) =

𝑁−1∑
𝑛=0

∫
𝑡𝑛+1

𝑡𝑛
∫

𝜋

−𝜋

𝑒−𝛿𝑡
′
𝑒i(𝜔𝑡

′+𝜃)⟨ (𝑡′; 𝜃)⟩ d𝜃 d𝑡′. (A4)

Third, onemust account for the randomness of the differences {𝜏𝑛}𝑛∈ℕ. Let 𝜏𝑁 ∶= (𝜏0, 𝜏1, … , 𝜏𝑁),
and define

𝐽(𝜔) ∶= 𝔼𝑃
[⟨ ⟩𝜔] ∶= 1

2𝜋
lim
𝛿↓0

{
𝛿 lim
𝑁→∞

𝔼𝑃[𝐽
𝛿
𝑁(𝜔; 𝜏

𝑁)]
}
; (A5)

𝔼𝑃[𝐹(𝜏
𝑁)] is the expectation of 𝐹(𝜏𝑁) by the Poisson distribution law.

By linear response, the above steps are complemented with the linearization of 𝜚(𝑡; 𝜃) in the
electric field 𝐸. The 𝑙-th component of 𝐽 takes the form

𝐽𝑙(𝜔) = 𝜎𝑙𝑚(𝜔)𝐸̂𝑚 , 𝐸̂𝑚 ∶=
1

2𝜋 ∫
𝜋

−𝜋

𝐸𝑚(𝜃)𝑒
i𝜃 d𝜃 (𝑙, 𝑚 = 1, … , 𝑑),

where 𝐸𝑚(𝜃) is the𝑚-th component of 𝐸(𝜃) and 𝜎𝑙𝑚 = [𝝈]𝑙𝑚 is given by (1a). Then, the interband
conductivity, 𝜎𝐼

𝑙𝑚
(𝜔), can be obtained from (1c).

APPENDIX B: MELLIN TRANSFORM: A REVIEW

In this appendix, we formally review the 1D Mellin transform, and its multidimensional version;
see, for example, Refs. 30, 32. This technique is used in Section 3.
Let us recall the “two-sided” Laplace transform, 𝔏[𝑔], of 𝑔 ∶ ℝ → ℂ, namely,

𝔏[𝑔](𝜈) ∶= ∫
∞

−∞

𝑔(𝑡) 𝑒−𝜈𝑡 d𝑡 =∶ 𝑔(𝜈) , 𝑎̆ < ℜ𝜈 < 𝑏̆ . (B1)
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MARGETIS et al. 581

The restriction onℜ𝜈 results from the integral convergence requirement, for some real 𝑎̆, 𝑏̆. We
avoid prescribing any (sufficient) conditions on 𝑔. Typically, 𝑔(𝜈) is holomorphic in the strip
{𝜈 ∈ ℂ ∶ 𝑎̆ < ℜ𝜈 < 𝑏̆}; but 𝑔(𝜈) has singularities in {ℜ𝜈 < 𝑎̆} ∪ {ℜ𝜈 > 𝑏̆}. The inverse Laplace
transform is

𝔏−1[𝑔](𝑡) ∶=
1

2𝜋i

𝛾̆+i∞

∫
𝛾̆−i∞

𝑒𝜈𝑡 𝑔(𝜈) d𝜈 , 𝑎̆ < 𝛾̆ < 𝑏̆ . (B2)

Undermild conditions on 𝑔(𝑡),𝔏−1[𝑔](𝑡) = 𝑔(𝑡) almost everywhere.44,45 These considerations can
be extended to functions 𝑔 whose domain is ℂ.
The Laplace transform can of course be generalized to higher dimensions. Given 𝑔 ∶ ℝ𝑛 → ℂ,

one defines 𝔏[𝑔](𝜈) by the counterpart of (B1) where 𝑡 = (𝑡1, … , 𝑡𝑛) ∈ ℝ𝑛, 𝜈 = (𝜈1, … , 𝜈𝑛) ∈

ℂ𝑛 and 𝜈𝑡 is replaced by 𝜈 ⋅ 𝑡. The requirement of convergence for the integral implies
(ℜ𝜈1, … , ℜ𝜈𝑛) ∈ 𝔻 ⊂ ℝ𝑛 for some nonempty set 𝔻. The 𝑛-dimensional counterpart of (B2) is

𝔏−1[𝑔](𝑡) ∶=

𝑛∏
𝑗=1

⎛⎜⎜⎜⎝
1

2𝜋i

𝛾̆𝑗+i∞

∫
𝛾̆𝑗−i∞

d𝜈𝑗 𝑒
𝜈𝑗𝑡𝑗

⎞⎟⎟⎟⎠𝑔(𝜈) , (𝛾̆1, … , 𝛾̆𝑛) ∈ 𝔻 . (B3)

The 1D Mellin transform can now be introduced via a nonlinear mapping.30 In (B1), map
𝑡 ↦ ℘ ∶= 𝑒𝑡. Hence, with 𝐼(℘) ∶= 𝑔(𝑡(℘))∕℘we define the 1DMellin transform of 𝐼 ∶ ℝ+ → ℂ,
where ℝ+ ∶= [0,∞), by

𝐼̃(𝜈) ∶= ∫
∞

0

𝐼(℘)℘−𝜈 d℘ , 𝑎̆ < ℜ𝜈 < 𝑏̆ . (B4)

By use of (B2), the inverse Mellin transform of 𝐼̃ gives

𝐼(℘) =
1

2𝜋i

𝛾̆+i∞

∫
𝛾̆−i∞

℘𝜈−1 𝐼̃(𝜈) d𝜈 , 𝑎̆ < 𝛾̆ < 𝑏̆ . (B5)

Without further ado, the 𝑛-dimensional Mellin transform of 𝐼 ∶ (ℝ+)
𝑛 → ℂ is defined from

the 𝑛-dimensional Laplace transform of 𝑔 ∶ ℝ𝑛 → ℂ via the mapping 𝑡 ↦ ℘ = (℘1, … , ℘𝑛) ∶=

(𝑒𝑡1 , … , 𝑒𝑡𝑛 ). We have the pair

𝐼̃(𝜈) ∶=

𝑛∏
𝑗=1

(
∫

∞

0

d℘𝑗 ℘
−𝜈𝑗
𝑗

)
𝐼(℘) , (ℜ𝜈1, … , ℜ𝜈𝑛) ∈ 𝔻 ; (B6)

𝐼(℘) =

𝑛∏
𝑗=1

⎛⎜⎜⎜⎝
1

2𝜋i

𝛾̆𝑗+i∞

∫
𝛾̆𝑗−i∞

d𝜈𝑗 ℘
𝜈𝑗−1

⎞⎟⎟⎟⎠𝐼̃(𝜈) , (𝛾̆1, … , 𝛾̆𝑛) ∈ 𝔻 . (B7)

Note that in principle 𝔻 defines a polyhedron in ℝ𝑛.
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582 MARGETIS et al.

Next, we heuristically discuss via an example how the 1D Mellin transform can be used for the
extraction of asymptotic expansions.32 Consider the pair (𝐼, 𝐼̃) by (B4) and (B5). For some constant
𝐶0, the formula

𝐼(℘) ∼ 𝐶0 ℘
−1(ln℘)𝜅 as℘ → +∞

holds if and only if

𝐼̃(𝜈) ∼ 𝐶0 Γ(1 + 𝜅) 𝜈−1−𝜅 as 𝜈 → 0+ .

Here, 𝜅 > −1while 𝜈 → 𝜈+⋄ means that the complex variable 𝜈 approaches 𝜈⋄withℜ𝜈 > ℜ𝜈⋄, that
is, from the half-plane to the right of the line {ℜ𝜈 = ℜ𝜈⋄}. If the singularity 𝜈⋄ of 𝐼̃(𝜈) is shifted
from 0 to any point of the negative real axis then the asymptotic formula for 𝐼(℘) is multiplied by
a negative power of℘. In summary, the underlying idea is stated roughly as follows: Logarithmic
terms in the asymptotic expansion of 𝐼(℘) for large℘ correspond to algebraic singularities of 𝐼̃(𝜈)
lying to the left of the analyticity strip.
Thus, theMellin transform is appealing because a power law (in some prescribed limit) is plau-

sibly easier to describe in comparison to a logarithmic behavior.32 If some integral representation
is used for 𝐼(℘), the contributions of logarithmic terms as ℘ → ∞ may come from the whole
region of integration. In contrast, if 𝜅 ∈ ℕ then the singular point 𝜈⋄ is a pole of 𝐼̃(𝜈), which can
be studied with relative ease. This technique can be powerful for obtaining the full asymptotic
expansion made of terms of the form℘𝑠(ln℘)𝜅 for 𝐼(℘) as℘ → +∞. This expansion can be con-
structed from all the contributions of singularities of 𝐼̃(𝜈) by shift of the inversion path for 𝐼(℘) to
the left of the initial strip of analyticity.
The above argument can be extended to the study of the asymptotic behavior of 𝐼(℘) as ℘ →

℘+
⋄ , say, ℘⋄ = 0 (for 0 < ℘ ≪ 1). The idea is to shift the inversion path for 𝐼(℘) to the right of

the original strip of analyticity of 𝐼̃(𝜈), and pick the relevant contributions, for example, residues
from poles.
Now let us discuss how these considerations can be transferred to a higher dimension 𝑛, for

functions 𝐼 ∶ (ℝ+)
𝑛 → ℂwhere 𝑛 ≥ 2. A plausible procedure is suggested by the iterated integrals

in (B7): By making a particular choice of the order of integrations, one may carry out each of
the 𝑛 1D inverse Mellin transforms successively via truncation of the corresponding expansion.
There are at least two possible difficulties in this task. First, one must remain consistent with
the restriction 𝛾̆ ∈ 𝔻. This is achieved via the successive projections of the region 𝔻 by means of
multivariable calculus.
The second difficulty is that the asymptotic expansion for 𝐼(℘)may depend on the chosen order

of the iterated integrals in (B7). This issue is expected: Asymptotic expansions can be divergent
series; thus, rearrangements of their termsmay alter the outcome. Our “rule of thumb” is to carry
out first the integration with respect to the dual variable, 𝜈𝑗∗ for some 𝑗∗, that corresponds to the
largest parameter,℘𝑗∗ . For the SSHmodel,℘𝑗∗ = 𝜖3. We carry out last the integration in the dual
variable that corresponds to an unrestricted parameter. For the SSH model, this parameter is 𝜖2.

APPENDIX C: ON THE GENERALIZED ZETA FUNCTION

In this appendix, we discuss the generalized (Hurwitz) zeta function 𝜁(𝜗, 1∕2), which enters the
result of Proposition 1. In particular, we show (11) regarding the connection of 𝜁(𝜗, 1∕2) to the
Riemann zeta function, 𝜁(𝜗).
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MARGETIS et al. 583

We start with the standard definition of 𝜁(𝜗, 𝜍), namely,34

𝜁(𝜗, 𝜍) ∶=

∞∑
𝑛=0

(𝜍 + 𝑛)−𝜗 , ℜ𝜗 > 1 , −𝜍 ∉ ℕ = {0, 1, … } .

First, 𝜁(𝜗, 1∕2) has a simple pole at 𝜗 = 1. This is deduced from34

lim
𝜗→1

{
𝜁(𝜗, 𝜍) −

1

𝜗 − 1

}
= −Γ′(𝜍) ; Γ′(𝜍) ∶=

d

d𝜍
Γ(𝜍) , ℜ𝜍 > 0 .

For 𝜍 = 1∕2, the right-hand side becomes 𝛾 + 2 ln 2where 𝛾 = 0.577215… is Euler’s constant. Note
that 𝜗 = 1 is the only pole of 𝜁(𝜗, 𝜍).34
In addition, ifℜ𝜗 < 0 the function 𝜁(𝜗, 𝜍) with 𝜍 = 1∕2 has the same zeros as sin(𝜋𝜗∕2). This

can be seen from the Hurwitz formula,34 namely,

𝜁(𝜗, 𝜍) = 2(2𝜋)𝜗−1Γ(1 − 𝜗)

∞∑
𝑚=1

𝑚𝜗−1 sin(2𝜋𝑚𝜍 + 𝜋𝜗∕2) ; ℜ𝜗 < 0, 0 < 𝜍 ≤ 1 .

The above properties suggest an intimate connection between the functions 𝜁(𝜗, 1∕2) and 𝜁(𝜗).
To show their relation, thus recovering (11), we use the definition of 𝜁(𝜗, 𝜍) at 𝜍 = 1∕2 to write

𝜁(𝜗, 1∕2) =

∞∑
𝑚=0

(
𝑚 +

1

2

)−𝜗
= 2𝜗

∞∑
𝑚=0

(2𝑚 + 1)−𝜗

= 2𝜗

{
∞∑

𝑚=0

(1 + 𝑚)−𝜗 −

∞∑
𝑚=0

(2 + 2𝑚)−𝜗

}

= 2𝜗(1 − 2−𝜗)

∞∑
𝑚=0

(𝑚 + 1)−𝜗 = (2𝜗 − 1) 𝜁(𝜗) , ℜ𝜗 > 1 .

These steps yield (11), which is analytically continued to all 𝜗 ∈ ℂ.

APPENDIX D: EVALUATION OF CERTAIN HYPERGEOMETRIC SERIES

In this appendix, we compute two cases of the hypergeometric function, 2𝐹1, in terms of elemen-
tary functions. The results are invoked in the proof of Proposition 2 (Section 3.3). Recall that the
hypergeometric function 2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) is defined by the series (if 𝑐 ≠ −𝑛, ∀ 𝑛 ∈ ℕ)

2𝐹1(𝑎, 𝑏; 𝑐; 𝑧) ∶=

∞∑
𝑛=0

𝑧𝑛

𝑛!

(𝑎)𝑛 (𝑏)𝑛
(𝑐)𝑛

, |𝑧| < 1 ; (𝑎)𝑛 ∶=
Γ(𝑎 + 𝑛)

Γ(𝑎)
. (D1)

First, we show relation (19b), which is needed in the computation of 𝐼(0) and 𝐼(1) (Section 3.3).
Note the identity34

2𝐹1(𝑎, 𝑏; 𝑎 + 𝑏; 1 − 𝑧) =
Γ(𝑎 + 𝑏)

Γ(𝑎) Γ(𝑏)

∞∑
𝑛=0

𝑧𝑛

𝑛!

(𝑎)𝑛(𝑏)𝑛
(1)𝑛

{
2Γ′(1 + 𝑛) − Γ′(𝑎 + 𝑛)
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−Γ′(𝑏 + 𝑛) − ln(𝑧)
}
,

which, for 𝑎 = 3∕2 and 𝑏 = 1, we used in order to write the initial series for 𝐼(0) in terms
of 2𝐹1(

3

2
, 1;

5

2
, 1 − 𝜖1∕𝜖2); cf. (19a). Now consider a particular Gauss’ linear relation among

contiguous hypergeometric functions,34 namely,

𝑐(1 − 𝑧){2𝐹1(𝑎, 𝑏; 𝑐; 𝑧)} − 𝑐{2𝐹1(𝑎 − 1, 𝑏; 𝑐; 𝑧)} + (𝑐 − 𝑏)𝑧{2𝐹1(𝑎, 𝑏; 𝑐 + 1; 𝑧)} = 0,

and set 𝑎 = 3∕2, 𝑏 = 1 and 𝑐 = 3∕2. Thus, we obtain

2𝐹1
( 3
2
, 1;

5

2
; 𝑧
)
=

3

𝑧

{
2𝐹1
( 1
2
, 1;

3

2
; 𝑧
)
− (1 − 𝑧) 2𝐹1

( 3
2
, 1;

3

2
; 𝑧
)}

. (D2)

The hypergeometric functions of the right-hand side can be computed by

2𝐹1
( 3
2
, 1;

3

2
; 𝑧
)
=

∞∑
𝑛=0

𝑧𝑛

𝑛!
(1)𝑛 =

1

1 − 𝑧
, (D3)

2𝐹1
( 1
2
, 1;

3

2
; 𝑤2
)
=

1

2𝑤
ln

(
1 + 𝑤

1 − 𝑤

)
. (D4)

In the last equation, we must set 𝑤2 = 𝑧, in view of (D2). Then, the desired relation (19b) is
recovered from (D2)–(D4).
Next, let us show formula (21b). To this end, we apply the identity34

2𝐹1
(
1 +

𝜂

2
, 1 −

𝜂

2
;
3

2
; (sin𝑤)2

)
=

2 sin(𝜂𝑤)

𝜂 sin(2𝑤)
.

In the limit 𝜂 → 0, with fixed 𝑤, this relation yields

2𝐹1
(
1, 1;

3

2
; (sin𝑤)2

)
=

2𝑤

sin(2𝑤)
=

𝑤

(sin𝑤) (cos𝑤)
. (D5)

Now map 𝑤 ↦ 𝑧 with 𝑧 = (sin𝑤)2, which entails 𝑤 = sin
−1
(
√
𝑧), in a suitable branch of the

function sin−1(
√
𝑧). By this replacement, (D5) leads to (21b).
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