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Continuum description of profile scaling in nanostructure decay
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The relaxation of axisymmetric crystal surfaces with a single facet below the roughening transition is studied
via a continuum approach that accounts for step energyg1 and step-step interaction energyg3.0. For
diffusion-limited kinetics, free-boundary, and boundary-layer theories are used for self-similar shapes close to
the growing facet. For long times andg3 /g1,1, ~a! a universal equation is derived for the shape profile,~b!
the layer thickness varies as (g3 /g1)1/3, ~c! distinct solutions are found for differentg3 /g1, and~d! for conical
shapes, the profile peak scales as (g3 /g1)21/6. These results compare favorably with kinetic simulations.
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The drive toward smaller features in devices has fue
much interest in low-temperature kinetic processes suc
growth, etching, and morphological relaxation. The co
stantly decreasing temperatures present increasing challe
for treatment of thermodynamics, kinetics, and macrosco
evolution of surfaces. A crystal surface at equilibrium und
goes a roughening transition at a surface orientati
dependent temperatureTR .1,2 In equilibrium at temperature
T, crystal facets~planar regions of the surface! have TR
.T, whereas orientations in continuously curved portions
the surface haveTR,T. In numerous nonequilibrium situa
tions belowTR , a crystal surface relaxes to its equilibriu
shape via the lateral motion of steps at a rate limited ma
by the diffusion of adatoms across terraces and attachm
and detachment at step edges. Here we report a contin
treatment of this evolution using a partial differential equ
tion ~PDE! and obtain scaling laws and universal aspects
the solutions.

Morphological equilibration for surfaces aboveTR is de-
scribed by a continuum treatment3,4 where the surface free
energy, which is an analytic function of the surface slo
and chemical potential5 are ingredients in a fourth-order PD
for the evolution of the surface profile. However, this ana
sis is not applicable to surfaces belowTR because the surfac
free energy is not analytic in the surface orientation;2,6,7 see
Eq. ~3! below.

Efforts to describe morphological evolution belowTR be-
gan in the mid 1980s and include simulations of the mot
of monatomic crystalline steps and continuum thermo
namic approaches. In the latter, to account for evolution
to the motion of steps separating terraces below the b
plane’s TR , the step density, which is proportional to th
surface slope, is introduced as a variable within a coa
grained continuum description on a scale large compare
the step separation~typically, 1–10 nm!. Expressions have
been developed for the chemical potential of atoms at in
acting step edges, leading to a nonlinear PDE for evolu
of periodic surface modulations;8,9 progress has been mad
toward solving the PDE~Refs. 10,11! but has been hindere
when evolution involves facets.12,13 Kinetic simulations
mimic nanoscale processes and so have been used to
scribe the detailed motion of many steps, as well as the e
lution of facets, via coupled differential equations.14–16Nev-
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ertheless, the kinetic simulations are generally limited
their ability to characterize universal features of the sha
evolution. Here we show that the shape profile, including
facet, can be treated using a continuum, thermodynamic
scription that illuminates scaling aspects of the kinetic b
havior; for this purpose, we use an analytical framework t
transcends the limitations of continuum approaches pr
ously recognized.17

Our analytical approach treats facet evolution as a fr
boundary problem.12,18 The surface height ish(r ,t), where
r5(x,y)5rer is the position vector in the plane of referenc
see Fig. 1 for an axisymmetric shape. The step densit
u“hu;“h[(hx ,hy) and subscripts denote partial derivative
Denoting the atomic volume byV and the surface curren
~atoms per length per time! by j , the mass conservation equ
tion for atoms is

]h

]t
1V“• j50. ~1!

The currentj52csDs“m/kBT, where Ds and cs are the
surface diffusivity and adatom concentration, andm(r ) is the
chemical potential of atoms at step edges;Ds is in principle
a tensor function of“h.

We focus on diffusion-limited~DL! kinetics, where diffu-
sion of adatoms across terraces is the rate-limiting proc
and further assume thatcs is constant andDs is a scalar
constant. Equation~1! becomes

FIG. 1. View of an axisymmetric surface profile, on both th
macroscale and the nanoscale where the atomic steps are ev
The evolution of surface morphology is caused by the motion
steps.
©2004 The American Physical Society04-1
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]h

]t
5

csDsV

kBT
¹2m. ~2!

Next,m andh are related via the surface free energy per u
projected area,G. A common expression forG of vicinal
surfaces forT,TR assumes thatG depends on the step den
sity according to7,11,19

G~“h!5g01g1u“hu1 1
3 g3u“hu3. ~3!

The g0 term represents the surface free energy of the re
ence plane,g1 is the step energy~line tension!, and g3,
which accounts for step-step interactions, includes entro
repulsions due to fluctuations at the step edges and pair
energetic interactions between adjacent steps. Allg0 , g1,
andg3 are temperature dependent and we consider repu
interactions between steps,g3.0.

The surface chemical potential is derived fromG by the
relation5,7,10 m52V“•@dG/d(¹h)#, where d/d(¹h)
[t(]/]hx ,]/]hy):

20

m52Vg1“•F S “h

u“hu D1
g3

g1
~ u“hu“h!G . ~4!

The surface evolution equation follows by combination
Eqs.~1!–~4!. We use cylindrical coordinates to describe t
relaxation of axisymmetric shapesh5h(r ,t) that are smooth
along the surface outside the facet and have negative s
]h/]r ,0 ~Fig. 1!. Since“h5er(]h/]r ), it is convenient to
define the dimensionless step density or surface s
F(r ,t)52]h/]r . The surface then evolves according to
fourth-order nonlinear PDE forF,

]F

]t
5

3B

r 4
2B

g3

g1

]

]r
¹2F1

r

]

]r
~rF 2!G . ~5!

The material parameterB5csDsV
2g1 /kBT has dimensions

~length! 4/time.
Equation ~5! is supplemented with the initial conditio

F(r ,0)52H8(r ), whereH(r )5h(r ,0) is the initial surface
profile with the propertiesH8(r )50 for r ,W ~the initial
facet radius! and H8(r ),0 for r .W. Also, there are four
boundary conditions applied at the facet edge,r 5w(t). In
particular, the heighth and the currentj are continuous at the
facet edge. The latter condition, along withr j→0 as r→`,
ensures that the total mass is conserved. A consequen
Eq. ~5! and the initial conditions is that no other facets a
formed. Another condition is slope continuity at the fac
edge,F(w,t)50 ~i.e., local equilibrium21,22 and it is also
consistent with kinetic simulations14!. It is shown below that
Eq. ~5! furnishesF(r ,t)5O(Ar 2w) as r→w1 where the
coefficient is time dependent.23 Finally, for r<w, where
there is a facet, we extend continuously through Eqs.~1!–~4!
the variablem, although it no longer represents the tr
chemical potential, and the quantityN5erN[2dG/d(¹h)
whose divergence yieldsm/V.12,24 Hence the final two
boundary conditions are continuity ofm and ofN. Although
we now have a mathematically complete set of bound
conditions for Eq.~5!, the issue of the boundary condition
remains a topic of discussion.25,26 Nevertheless, we expec
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that the main analytical and scaling ideas given below
independent of the detailed form of these conditions.

The boundary conditions described above relateg3 /g1 to
the derivatives ofF2 at r 5w1, the facet heighthf(t) and the
facet radiusw(t). By differentiating hf(t)5h„w1(t),t… in
time, we deduce that, atr 5w,

BH 12
g3

g1
w@~F2!822w~F2!92w2~F2!-#uJ 5ḣfw

3,

~6!

where the dot denotes the time derivative. Then, an exa
nation of m and N and their continuous extensions on th
facet gives two more conditions atr 5w:24

w@3~F2!82w2~F2!-#53
g1

g3
5w@3~F2!82w~F2!9#.

~7!

We now treat Eq.~5! with conditions~6! and ~7! and F
50 at the facet edge as a free-boundary problem:12 there is a
moving facet forr ,w(t), whereF50, and this facet con-
nects smoothly to the rest of the profile forr .w(t). Note
that this problem statement is valid for arbitraryg3 /g1. In
general, there exist an ‘‘outer’’ region, where only the lin
tension term proportional tog1 is important in Eq.~5!, and
an ‘‘inner’’ region in the neighborhood of the facet edg
where the step-step interaction term proportional tog3 be-
comes significant. Motivated by kinetic simulations wi
g3 /g1,1,14 we sete[g3 /g1 and treat Eq.~5! analytically
for the case with smalle, i.e., weak repulsive interactions
Because the small parametere multiplies the highest-orde
spatial derivative in Eq.~5!, the shape evolution can b
treated with boundary-layer theory27. We start with the solu-
tion for e50 where the corresponding facet radiusw(t;e) is
denotedw(t;0)5w0(t). From Eq.~5!, the zeroth-order oute
solutionF(r ,t;0)[F0(r ,t) satisfies]F0 /]t53B/r 4, which
is integrated subject to the initial conditionF0(r ,0)
52H8(r ) to give

F0~r ,t !53Btr242H8~r !, r .w0~ t !. ~8!

At the facet edge,F0(w0 ,t)53Bt/w0
42H8(w0

1)Þ0, so the
slope profile is discontinuous; this feature motivates a sin
lar perturbation analysis.

The next step is to examine how the inclusion of a no
zeroe renders the slope continuous by retaining the high
derivative in Eq.~5!. We therefore consider a region of widt
d(t;e)!w in the neighborhood of the moving facet edg
and describe the solution in this region in terms of the lo
variableh[(r 2w)/d. Thus, we seek a long-time similarit
solution that depends on the distance from the facet edge
time, F(r ,t;e)5F(h,t;e). We anticipate that, to leading or
der in e,

F~h,t !;a0~ t ! f 0~h;e!, h5@r 2w~ t;e!#/d~ t;e!, ~9!

wheref 0 depends implicitly one through the boundary con
ditions. Substitution of Eq.~9! into Eq.~5! and balance of the
leading-order terms ine gives
4-2
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ẇd3

Bea0
f 085~ f 0

2!991OS d

w
,

d4

ew4
,
ḋd3

eB D . ~10!

Thus, ẇd3/Bea0 must be time-independent and we take
equal to unity without affecting observable quantities such
F or w. It follows that d(t;e)5O(e1/3), independent of the
~axisymmetric! initial conditions, which is a prediction for a
scaling law for the boundary-layer width in the case of D
kinetics. The neglected terms in Eq.~10! are O(e1/3)!1.
Furthermore, the leading-order facet radius isw(t)4

;4B*0
t dt8w̃(t8)3a0(t8), where w̃5w/D and D(t)

[e21/3d(t;e).
We next examine solutions of Eq.~10! along with the

prescribed boundary conditions. First, this equation is in
grated once via matchingF(h,t) with the outer solution~8!,
i.e., takingh@1 andr→w1 simultaneously. We finda0(t)
53Btw242H8(w1), which by Eq.~9! determines the ex
plicit time dependence of the surface slope. Because at
point we have imposed no restrictions other than axisy
metry on the initial shape, we have in fact obtained a univ
sal equation forf 0(h), i.e.,

~ f 0
2!-5 f 021, ~11!

which is to be solved withf 0(0)50 and f 0(h→`)51.
Near the origin,f 0(h) has the behavior28

f 0~h!;c1h1/21c3h3/21c5h5/21c6h31•••, ~12!

where all coefficientscn with n>5 are known in terms ofc1
and c3. Equation~11! has a growing mode inh for h@1,
which must be suppressed in order to satisfy the conditio
`; thus,c3 is found numerically in terms ofc1. We solve Eq.
~11! numerically and so obtain a family of similarity solu

FIG. 2. Numerical solutions of Eq.~11! with the boundary con-
ditions f 0(0)50 and f 0(`)51. Curves a-e are parametrized b
(c1 ,c3)5(1.5,2.818 354 8), (2,21.113 031), (3,21.721 075 02),
(3.5,22.030 210 2), (3.6,22.092 321 55) and correspond toe
59.231023, 1.931023, 1.731024, 6.831025, 5.731025. Inset:
The dashed curves are described by Eq.~13! for a conical initial
shape and differente, while the solid curve showsc3 as a function
of c1 from the numerical solutions of Eq.~11!.
04140
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tions f 0(h) for different values ofc1;29 see Fig. 2. We next
show how the solutionf 0(h) depends one, which requires
imposing conditions such as Eq.~7!.

The substitution of Eq.~9! into Eq. ~7! and use of the
relations (f 0

2)h508 5c1
2 and (f 0

2)h954c1c3 from Eq. ~12! yield
two parametric equations forc1 and c3. In the case with a
conical initial shape, discussed at length below, continuity
the variablem implies24

~c1c3!e1/352
3

45/3Fc3
22S c3

22
1

16D
2S c3

21
3

16D
21G1/3

.

~13!

The intersection of the curve~13! with the set of points
(c1 ,c3) that result from numerically solving Eq.~11! is
shown in the inset of Fig. 2, and determines a value ofe for
each of the solution curves of the main part of the figu
Thus, we have determined a family ofe-dependent similarity
solutionsf 0(h;e).

There is one more scaling law that comes from the ana
sis. Each of the curvesf 0(h) in Fig. 2 has a well-defined
absolute maximum. Using Eq.~12! each maximum may be
estimated to beO(c1

3/2uc3u21/2) and to occur athmax

5O(c1 /uc3u), which is independent ofe to leading order.
Thus, according to Eq.~13!, c1 andc3 areO(e21/6) and so
the maximum slope is predicted to beO(e21/6).

We now compare the predictions from this continuum a
proach based on Eq.~5! with the kinetic simulations for the
DL case reported by Israeli and Kandel14 for a conical initial
shape. In their simulations these authors vary a param
g5(const)g3, holding g1 fixed, which in our analysis is
equivalent to changinge. Their simulations furnished ag

FIG. 3. Log-log plot of the boundary-layer thicknessd(t;e) and
the maximum of step densityFpeak as functions ofe. The crosses
represent the results of kinetic simulations given to us by Israeli
Kandel14 for the DL case. Here,d(t;e) is estimated as the distanc
xpeak2x0 between the facet edge,x05w(Bt)21/4, whereF50, and
the positionxpeak of the maximum ofF. The straight lines corre-
spond to thee1/3 ande21/6 scaling laws predicted according to Eq
~10!.
4-3
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dependent family of solutions@see their Figs. 4~b! and 6#,
which correspond to oure-dependent curvesf 0(h;e). Israeli
and Kandel also derived a complicated,g-dependent differ-
ential equation in the scaling variablex5r /(Bt)1/4 ~not to be
confused with the cartesian coordinate!, which, in the limit
of small g, effectively reduces to our Eq.~11!. However, on
the basis of their equation they found multiple solutio
whereas we provide a unique solutionf 0(h;e) for eache.

Next, we consider scaling behavior withe. First, we ex-
amine the scaling of the boundary layer near the facet e
We define the boundary-layer thickness as the distance f
the facet edgex0 to the position of the peakxpeakof the step
densityFpeak. In Fig. 3 we show the results of kinetic simu
lations ~symbols! for xpeak2x0 vs g and compare with our
e1/3 scaling prediction~solid line!. Second, in Fig. 3 we ex
amine howFpeak varies withg, for which the results of ki-
netic simulations~symbols! are compared with thee21/6

scaling prediction~solid line!. In both cases the agreement
very good. With regard to the deviations in the bounda
layer width for g,1026, as e decreases in the simulation
xpeak approaches the facet edge so that the boundary-l
width is relatively small on the scale of the step spacing a
is consequently poorly defined; its evaluation in discr
simulations thus becomes prone to errors.
I

t

v.
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As shown above, qualitative predictions, such as the fo
of the multiple solution curves, and quantitative predictio
such as thee1/3 scaling of the boundary-layer width and th
e21/6 scaling of the maximum of the slope, can be deduc
from a continuum approach based on Eq.~5! with the use of
free-boundary and boundary-layer theories.30 Further, simple
analytical arguments show that, for any admissible init
slope F(r ,0)5kr n, for a wide range ofn including 0<n
<1, the facet radius isw5O(t1/(n14)) at sufficiently long
times. In addition, we expect that, for a class of nonaxisy
metric initial shapes, the near-facet boundary layer width s
retains theO(e1/3) scaling for the isotropic surface free en
ergy of Eq.~3!.

The continuum approach and the free-boundary viewpo
capture the essential physics of crystal surface evolution
low TR . This development should give further impetus
continuum approaches to morphological evolution even
the nanoscale for structures far belowTR .

This research was supported by the Harvard NSEC.
thank M. Z. Bazant and R. R. Rosales for useful discussio
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