RAPID COMMUNICATIONS

Continuum description of profile scaling in nanostructure decay

PHYSICAL REVIEW B 69, 041404R) (2004

Dionisios Margetis, Michael J. Aziz?> and Howard A. Storfe
!Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
2Division of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
(Received 5 November 2003; published 26 January 2004

The relaxation of axisymmetric crystal surfaces with a single facet below the roughening transition is studied
via a continuum approach that accounts for step energynd step-step interaction energy>0. For
diffusion-limited kinetics, free-boundary, and boundary-layer theories are used for self-similar shapes close to
the growing facet. For long times amd /g, <1, (a) a universal equation is derived for the shape proft,
the layer thickness varies ags(/g;)*?, (c) distinct solutions are found for differegt /g,, and(d) for conical
shapes, the profile peak scales gg/;) ~*®. These results compare favorably with kinetic simulations.
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The drive toward smaller features in devices has fuellecertheless, the kinetic simulations are generally limited in
much interest in low-temperature kinetic processes such dkeir ability to characterize universal features of the shape
growth, etching, and morphological relaxation. The con-evolution. Here we show that the shape profile, including the
stantly decreasing temperatures present increasing challengféset, can be treated using a continuum, thermodynamic de-
for treatment of thermodynamics, kinetics, and macroscopiscription that illuminates scaling aspects of the kinetic be-
evolution of surfaces. A crystal surface at equilibrium under-havior; for this purpose, we use an analytical framework that
goes a roughening transition at a surface orientationtranscends the limitations of continuum approaches previ-
dependent temperatufigs .12 In equilibrium at temperature ously recognized’

T, crystal facets(planar regions of the surfacéave Tg Our analytical approach treats facet evolution as a free-
>T, whereas orientations in continuously curved portions ofooundary problemi**® The surface height if(r,t), where

the surface hav@x<T. In numerous nonequilibrium situa- r=(X,y) =re is the position vector in the plane of reference;
tions belowTg, a crystal surface relaxes to its equilibrium see Fig. 1 for an axisymmetric shape. The step density is
shape via the lateral motion of steps at a rate limited mainlyVh|; Vh=(h,,h,) and subscripts denote partial derivatives.
by the diffusion of adatoms across terraces and attachmefenoting the atomic volume b§) and the surface current
and detachment at step edges. Here we report a continuut@toms per length per timéy j, the mass conservation equa-
treatment of this evolution using a partial differential equa-tion for atoms is

tion (PDE) and obtain scaling laws and universal aspects of

the solutions. ]

Morphological equilibration for surfaces aboVg is de- EJFQV'I =0. )
scribed by a continuum treatméftwhere the surface free
energy, which is an analytic function of the surface slope;The currentj=—c,D.Vu/ksT, Where D¢ and cg are the
and chemical potentiahre ingredients in a fourth-order PDE grface diffusivity and adatom concentration, i) is the
for the evolution of the surface profile. However, this analy-chemical potential of atoms at step edg®s;is in principle
sis is not applicable to surfaces beldy because the surface 3 tensor function oW h.
free energy is not analytic in the surface orientafiér;see We focus on diffusion-limitedDL) kinetics, where diffu-

Eq. (3) below. sion of adatoms across terraces is the rate-limiting process,

Efforts to describe morphological evolution beldw be-  and further assume that, is constant and; is a scalar
gan in the mid 1980s and include simulations of the motionconstant. Equatiofil) becomes

of monatomic crystalline steps and continuum thermody-
namic approaches. In the latter, to account for evolution due
to the motion of steps separating terraces below the basal
plane’s Tg, the step density, which is proportional to the
surface slope, is introduced as a variable within a coarse-
grained continuum description on a scale large compared to
the step separatioftypically, 1—-10 nm. Expressions have
been developed for the chemical potential of atoms at inter-
acting step edges, leading to a nonlinear PDE for evolution
of periodic surface modulatiofs’ progress has been made
toward solving the PDERefs. 10,11 but has been hindered
when evolution involves facet$:'® Kinetic simulations ~ FIG. 1. View of an axisymmetric surface profile, on both the
mimic nanoscale processes and so have been used to dfacroscale and the nanoscale where the atomic steps are evident.
scribe the detailed motion of many steps, as well as the evorhe evolution of surface morphology is caused by the motion of
lution of facets, via coupled differential equatios®Nev-  steps.
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oh  cD O ) that the main analytical and scaling ideas given below are
gt KeT M 2 independent of the detailed form of these conditions.
The boundary conditions described above retptég, to
Next, » andh are related via the surface free energy per unithe derivatives oF? atr=w™, the facet heighh(t) and the
projected areaG. A common expression foG of vicinal  facet radiusw(t). By differentiating h¢(t) =h(w* (t),t) in
surfaces folT <Tg assumes thab depends on the step den- time, we deduce that, at=w,
sity according t§*+*°

g .
G(Vh)=go+0a|Vh[+ 395/ Vh[*. () B{ 1- g—3W[(F2)’—2W(F2)”—W2(F2)’”]| =hw?,
1
The g, term represents the surface free energy of the refer- (6)

ence planeg, is the step engrgy(lme_ tenslloh, and gs, .where the dot denotes the time derivative. Then, an exami-
which accounts for step-step interactions, includes entropic_,. . . :

. ; . " 'Hation of x and N and their continuous extensions on the
repulsions due to fluctuations at the step edges and pairwise

; - .24
energetic interactions between adjacent steps.gfll g, dcet gives two more conditions & w:
andgs are temperature dependent and we consider repulsive

interactions between stepg;>0. W[3(F2)’—WZ(FZ)W]=3%=W[3(F2)'—W(F2)"].
The surface chemical potential is derived fr@nby the 93
relatio?”1% u=—QV.[5G/5(Vh)], where &/5(Vh) @)
=t(d/ohy,9ldhy):%° We now treat Eq(5) with conditions(6) and (7) and F
h\ g =0 at the facet edge as a free-boundary probiéthere is a
u=-0g,V- (_ +=—=(|Vh|Vh)|. (4 moving facet forr <w(t), whereF=0, and this facet con-
[Vhl/ g nects smoothly to the rest of the profile forw(t). Note

sthat this problem statement is valid for arbitragy/g;. In

The surface evolution equation follows by combination o ) . > e )
general, there exist an “outer” region, where only the line-

Egs.(1)—(4). We use cylindrical coordinates to describe the : ; o .
relaxation of axisymmetric shapés-h(r,t) that are smooth tens“|_on te”rm p_ropo_rtlonal tg; Is Important in Eq/(5), and
along the surface outside the facet and have negative slop@? ‘Inner” region in the neighborhood of the facet edge,
ahlar<0 (Fig. 1). SinceVh=e,(dh/ar), it is convenient to where the step-step interaction term proportionatjjobe-

define the dimensionless step density or surface Slopgomes significant. Motivated by kinetic simulations with

F(r,t)=—oh/ar. The surface then evolves according to 203/91<1,"" we sete=ga/g, and treat Eq(5) analytically
fourth-order nonlinear PDE foF for the case with smalg, i.e., weak repulsive interactions.

Because the small parametemultiplies the highest-order

spatial derivative in Eq(5), the shape evolution can be
. (5)  treated with boundary-layer thedfyWe start with the solu-

tion for e=0 where the corresponding facet radw;e) is

The material parametdd=c,D02g, /kgT has dimensions denotedn(t;0)=wo(t). From Eq.(5), the zeroth-order outer

gF 3B g3 d_ 10 _,
o Bgary [?a_r(”: )

(length “time. solution F(r,t;0)=F(r,t) satisfiesdFo/dt=3B/r*, which
Equation (5) is supplemented with the initial condition 1S integrated subject to the initial conditioro(r,0)

F(r,0)=—H’(r), whereH(r)=h(r,0) is the initial surface =—H (r) to give

profile with the propertiedd’(r)=0 for r<W (the initial 4

facet radiug and H’(r)<0 for r>W. Also, there are four Fo(r,t)=3Btr "—H'(r), r>wo(t). ®)

boundary conditions applied at the facet edgew(t). In At the facet edgeFO(wo,t)=BBt/W3—H’(WJ)#O, so the

Fartlfulglr, th_(?hhe:g:‘n and tzi_currelnjt are ?tontlcr)luous a;the slope profile is discontinuous; this feature motivates a singu-
acet edge. The latter condition, along with—0 asr— o, Ia¥ perturbation analysis.

ensures that the total mass is conserved. A consequence of to next step is to examine how the inclusion of a non-

Fq' (521 azd tthhe |n|t|aldgfnd|§|on7 is that rt1.o c?:hertf?rc]:et? ar‘:t"zerOe renders the slope continuous by retaining the highest
ormed. Another condition 15 siope confinuity at the Tacelye iy ative in Eq.(5). We therefore consider a region of width

—0 (i it 122 oo
edge.,F(w,t).—hOk_(l.e._, challequﬂ%bnurﬁ h andb|t||s also S(t;e)<w in the neighborhood of the moving facet edge,
consistent with kinetic simulatior3. It is shown below that and describe the solution in this region in terms of the local

; _ [oa—yy +
Eg. (5) furnishesF(r,t) =O( ﬁr%— W) asr—w <where the  yariable p=(r —w)/5. Thus, we seek a long-time similarity
coefficient is time dependefi. Finally, for r<w, where o4, ,ion that depends on the distance from the facet edge and

there is a facet, we extend continuously through Ebjs:(4) time, F(r t; €)= F(7,t;€). We anticipate that, to leading or-
the variableu, although it no longer represents the true yor in ¢

chemical potential, and the quantiy=e N=— §G/&(Vh)

whose divergence vyields./Q.12?* Hence the final two Fpt)~ag)fo(mie), n=[r—w(t:e)]/8(t:e), (9)
boundary conditions are continuity of and ofN. Although (7 oot 7 (Geliel

we now have a mathematically complete set of boundaryvheref, depends implicitly ore through the boundary con-
conditions for Eq.(5), the issue of the boundary conditions ditions. Substitution of Eq9) into Eq.(5) and balance of the
remains a topic of discussidi?® Nevertheless, we expect leading-order terms i gives
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FIG. 2. Numerical solutions of Eq11) with the boundary con step—step interaction strength, g

ditions fo(0)=0 and fy()=1. Curves a-e are parametrized by
(cq1,c3)=(1.5,-.8183548), (2-1.113031), (371.72107502),
(3.5-2.0302102), (3.6;2.09232155) and correspond te
=9.2x1073, 1.9x10°3, 1.7x10 ™4, 6.8x10°5, 5.7x10°°. Inset:
The dashed curves are described by B@) for a conical initial
shape and different, while the solid curve shows; as a function
of ¢; from the numerical solutions of Eq11).

FIG. 3. Log-log plot of the boundary-layer thicknes&; ) and
the maximum of step densitly ., as functions ofe. The crosses
represent the results of kinetic simulations given to us by Israeli and
Kandel* for the DL case. Herej(t; €) is estimated as the distance
Xpeak— Xo between the facet edge,=w(Bt) ~, whereF =0, and
the positionXx,eq Of the maximum off. The straight lines corre-
spond to thee*® and e~ 6 scaling laws predicted according to Eq.

5 & '553> (10).

wsd

BEaO

fo=(f§)"+0

W o €B (10

tions fo(#) for different values ot;;?° see Fig. 2. We next

Thus W§/85a0 must be time-independent and we take itShOW how th%SOMiO"O(h”) depc)ye)nds ore, which requires
X : . . o imposing conditions such as E(Y).

equal to unity without affecting observable quantities such as The substitution of Eq(9) into Eq. (7) and use of the

F or w. It follows that 8(t; €)= O(e*?), independent of the . AP, 2w )

(axisymmetrig initial conditions, which is a prediction for a relations (o) n=0"C1 a_nd (f? ’1_4%103 frlothq.(12) y|_eLd

scaling law for the boundary-layer width in the case of pL tWo parametric equations far; andcs. In the case with a

kinetics. The neglected terms in E(LO) are O(e¥?)<1 conical initial shape, discussed at length below, continuity of
. . . . . 4

Furthermore, the leading-order facet radius ve(t)* the variabley. implies’

~4Bfidt'w(t')%ae(t’), where w=w/A and A(t)

3 1 2 3 -1711/3
=e 1B5(t;€). (ciCz) = — T/B{ 032( ci— —) 2+ — }
We next examine solutions of Eq10) along with the 4 16 16
prescribed boundary conditions. First, this equation is inte- (13

grated once via matching( »,t) with the outer solutiont8),  The intersection of the curvéld) with the set of points
i.e., taking7>1 andr—w" simultaneously. We findy(t)  (c,,c5) that result from numerically solving Eq(11) is
=3Btw ™ *—H’(w"), which by Eq.(9) determines the ex- shown in the inset of Fig. 2, and determines a value dr
plicit time dependence of the surface slope. Because at thisach of the solution curves of the main part of the figure.

point we have imposed no restrictions other than axisymThys, we have determined a family eddependent similarity
metry on the initial shape, we have in fact obtained a universo|utionsf( 7; €).

sal equation forfo(7), i.e., There is one more scaling law that comes from the analy-
2o sis. Each of the curvegy(#) in Fig. 2 has a well-defined
(fo)"=fo—1, (1D absolute maximum. Using E¢12) each maximum may be

estimated to beO(c¥dc;| Y9 and to occur atzmay

=0(cy/|c5]), which is independent oé to leading order.

Thus, according to Eq13), ¢; andc; areO(e %) and so
fol 7)~C 2+ Can®2+ comP2+ cgn+---, (12  the maximum slope is predicted to e ™).

We now compare the predictions from this continuum ap-
where all coefficientg,, with n=5 are known in terms of; proach based on Eg5) with the kinetic simulations for the
andcs. Equation(11) has a growing mode iy for »>1, DL case reported by Israeli and Kantfdfor a conical initial
which must be suppressed in order to satisfy the condition athape. In their simulations these authors vary a parameter,
o; thus,c; is found numerically in terms af;. We solve Eq. g=(constgs, holding g; fixed, which in our analysis is
(11) numerically and so obtain a family of similarity solu- equivalent to changing. Their simulations furnished g

which is to be solved withfy(0)=0 and fo(p—x)=1.
Near the originfy(7) has the behavié?
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dependent family of solutiongsee their Figs. &) and §, As shown above, qualitative predictions, such as the form
which correspond to ow-dependent curvely(7;€). Israeli  of the multiple solution curves, and quantitative predictions,
and Kandel also derived a complicategdependent differ- such as the”® scaling of the boundary-layer width and the
ential equation in the scaling variabte=r/(Bt)"* (notto be ¢~/ scaling of the maximum of the slope, can be deduced
confused with the cartesian coordinaterhich, in the limit  from a continuum approach based on E%).with the use of
of smallg, effectively reduces to our Eq11). However, on  free-boundary and boundary-layer theofEurther, simple
the basis of their equation they found multiple solutionsanajytical arguments show that, for any admissible initial
whereas we provide a unique solutibg( 7; €) for eache. slope F(r,0)=«r?”, for a wide range ofv including O< v
Next, we consider scaling behavior with First, we ex- <1, the facet radius isv:o(tl/(v+4)) at sufficiently long
amine the scaling of the boundary layer near the facet ed9gmes. |n addition, we expect that, for a class of nonaxisym-
We define the boundary-layer thickness as the distance from,etric initial shapes, the near-facet boundary layer width still
the facet edge to the position of the peakeaOf the Step e iaing theo(e9) scaling for the isotropic surface free en-
densityF pear. In Fig. 3 we show the results of kinetic simu- ergy of Eq.(3).
|31t/|30n5 (Symbol3 for Xpea—Xo VS g and compare with our The continuum approach and the free-boundary viewpoint
€ scaling prediction(solid line). Second, in Fig. 3 we ex-  cantyre the essential physics of crystal surface evolution be-
amine howF e, varies withg, for which the results Qfl/'é" low Tg. This development should give further impetus to
netic simulations(symbolg are compared with the _ continuum approaches to morphological evolution even at
scaling predictior{solid ling). In both cases the agreement is {ha nanoscale for structures far beld.
very good. With regard to the deviations in the boundary-
layer width forg<10 ©, ase decreases in the simulations  This research was supported by the Harvard NSEC. We
Xpeak @PProaches the facet edge so that the boundary-layé¢hank M. Z. Bazant and R. R. Rosales for useful discussions,
width is relatively small on the scale of the step spacing andind also thank N. Israeli and D. Kandel for valuable feed-
is consequently poorly defined; its evaluation in discreteback and for sharing with us details of their simulation
simulations thus becomes prone to errors. results.
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