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Crystal surfaces serve a crucial function as building blocks in small electronic

devices, especially for mobile communications technology and photovoltaics. In the

history of computing, for example, a crucial innovation that hastened the demise

of vacuum tube computers was the etching of patterns on surfaces of semiconduc-

tor materials, which led to the integrated circuit. These early procedures typically

worked with the materials at very high temperatures, where the thermally rough

surface could be modeled from the perspective of continuum thermodynamics. More

recently, with the drive towards smaller devices and the accompanying reduction of

the lifetime of surface features, manufacturing conditions for the shaping of crys-

tal surfaces have shifted to lower temperatures. At these lower temperatures the

surface is no longer rough. In order to describe an evolving surface under typical

experimental conditions today, we need to consider the processes that take place at

the nanoscale.

Nanoscale descriptions of surface evolution start with the motion of adsorbed

atoms (adatoms). Because of their large numbers, the concentration of adatoms is

a meaningful object to study. Restricted to certain bounded regions of the surface,

the adatom concentration satisfies a diffusion equation. At the boundaries between

these regions, the hopping of adatoms is governed by kinetic laws. Real-time obser-



vation of these nanoscale processes is difficult to achieve, and experimentalists have

had to devise creative methods for inferring the relevant energy barriers and kinetic

rates. In contrast, the real-time observation of macroscale surface evolution can be

achieved with simpler imaging techniques. Motivated by the possibility of experi-

mental validation, we derive an equation for the macroscale surface height, which

is consistent with the motion of adatoms. We hope to inspire future comparison

with experiments by reporting the novel results of simulating the evolution of the

macroscale surface height.

Many competing models have been proposed for the diffusion and kinetics

of adatoms. Due to the difficulty of observing adatom motion at the nanoscale,

few of the competing models can be dismissed outright for failure to capture the

observed behavior. This dissertation takes a few of the nanoscale models and sys-

tematically derives the corresponding macroscopic evolution laws, of which some

are implemented numerically to provide data sets for connection with experiments.

For the modeling component of this thesis, I study the effect of anisotropic adatom

diffusion at the nanoscale, the inclusion of an applied electric field, the desorption

of adatoms, and the extension of linear kinetics in the presence of step permeability.

Analytical conjectures based on the macroscale evolution equation are presented.

For the numerical component of this thesis, I select a few representative simulations

using the finite element method to illustrate the most salient features of the surface

evolution.
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Chapter 1

Introduction

1.1 Chapter overview

In this chapter, we will introduce the basic principles of the near-equilibrium

morphological evolution of crystal surfaces. Depending on the length scale under

consideration, these surfaces present different physical pictures to the viewer. To

capture the relevant physics of these experimental pictures, mathematical mod-

els make certain simplifying assumptions about the operative mechanisms at each

length scale. The different mathematical models are typically analyzed indepen-

dently of one another. In this chapter, we emphasize the connections between mod-

els at different length scales. These connections constitute the primary focus of the

next few chapters. Finally, we outline the main results of this thesis, indicating how

this work contributes to the ongoing effort to understand and exploit the physical

mechanisms that govern the evolution of crystal surfaces.

1.2 Physical description of surfaces at various length scales

There are three distinct scales for crystal surfaces: atomistic scale, nanoscale,

and macroscale. A typical picture on the atomistic scale has individually distin-

guishable atoms arranged periodically in a crystal lattice. The atomistic picture

1



of a surface has atoms with missing bonds at the solid-vapor interface. The more

missing bonds these surface atoms have, the rougher the resulting height profile

looks.

At the nanoscale, the viewer can identify not the individual atoms, but only the

extended surface features they form in aggregate. Just as a viewer from an airplane

can see the Great Wall of China but not its individual stones, the nanoscale viewer

of crystal surfaces can see the meandering lines formed by a large number of surface

atoms at one height, adjacent to a large number of surface atoms at a different height.

These line defects are called steps, since they appear at the boundary between two

regions whose heights differ by a lattice constant. From the perspective of the

nanoscale viewer, the steps resemble smooth curves. For this viewer, the fact that

steps can be counted individually is the only clue that the microscope is showing an

essentially discrete object.

At the macroscale, all clues of discreteness are taken away, and the viewer is

left with what looks like a smooth topography. Until the mid-20th century, this

resolution was the only one accessible to experimentalists. However, the mental

picture of a discrete lattice structure was always available, and it helped establish

a framework for thinking about crystal surfaces.

1.3 Mathematical models of various length scales

One possible mathematical approach to the atomistic scale is to seek approx-

imate solutions of the many-body Schroedinger equation for electrons and nuclei

2



[121]. These approximate solutions are valid over prohibitively short time scales,

which impedes most attempts to reconcile the motion of individual atoms with

coarser descriptions of the surface. By allowing for atomic motions governed by

classical mechanics, rather than quantum mechanics, Vvedensky and Haselwandter

[121] sought a connection between atomistic models and the nanoscale. This con-

nection lies outside our present scope.

In this thesis, we study analytical and numerical aspects of the connection

between nanoscale and macroscale. The nanoscale model assumes that steps move

in response to (i) adatom attachment/detachment at step edges, (ii) diffusion of

adatoms on terraces, and (iii) energetic interactions between steps. This description

of the microscopic physics, introduced in a simplified form by Burton, Cabrera,

and Frank (BCF) [10], serves as the basis for our present discussion of surface

morphological evolution. The BCF model and its generalizations support a rich

variety of step dynamics. The patterns that emerge during surface evolution have

motivated analytical and numerical attempts to understand what experimentalists

observe based on the behavior of steps.

The temperature below which the BCF model applies is called the rough-

ening temperature, TR. Thermal wandering of steps is allowed below TR, but the

steps themselves are stable objects, not momentary deviations from surface flatness.

Above TR, creation of a step has zero free energy cost, and steps are created and

destroyed spontaneously. Not only steps, but also point defects such as vacancies

can be present on the surface. This roughening indicates that a description of the

surface in terms of steps is not appropriate. A rough surface is more easily visualized

3



Figure 1.1: The stepped surface of Si(001) as seen through an STM, taken from [99].

at the atomistic scale, where bonds between atoms at the surface are broken and

formed at random.

The macroscopic theory of Herring and Mullins [34, 75], based on continuum

thermodynamics and mass conservation, accurately predicts the observed behavior

of surfaces above the roughening temperature. However, the fabrication of crys-

tal surface morphologies is no longer restricted to temperatures above TR, which

challenges the validity of the continuum theory of Herring and Mullins.

Following the trend toward miniaturization of semiconductor devices, the

length scales on which crystal surfaces are patterned have grown smaller, neces-

sitating lower temperatures so that the desired pattern is more stable. These lower

temperatures require a macroscale theory consistent with the flow of thermally sta-

ble steps.

Figure 1.1 shows the surface of Si(001) as seen through a Scanning Tunneling

Microscope (STM). We can identify terraces where the surface is locally flat, except

4



Figure 1.2: Schematic of curved crystal steps on a vicinal surface. The arrows

represent the different physical processes through which adatoms affect the flow of

steps.

for a few isolated bumps and vacancies of size about 3 Å(one lattice constant). The

line defects bounding the terraces are steps about one lattice constant high. The

widths of terraces range from one to a thousand lattice constants.

The presence of kinks and edge atoms, visible in Figure 1.3, reminds us that

continuum steps are only an approximation of a fundamentally discrete phenomenon.

To use an image with the same resolution as Figure 1.3 to generate initial conditions

for a simulation of continuum steps, one would have to smooth out the kinks and

edge atoms. Jeong and Williams [43] suggest the use of an integral mollifier for this

purpose. The result is a representation of the surface by smooth steps as in Figure

1.2.

In Figure 1.2, the relevant near-equilibrium physical processes are (i) adatom

diffusion on terraces, (ii) diffusion of edge adatoms along steps, and (iii) attach-

ment/detachment of adatoms at step edges. Diffusion processes such as (i) and (ii)

arise when each terrace or edge adatom is assumed to perform a random walk; the

5



Figure 1.3: Image of a silicon (100) surface, taken from [99], showing kinks and edge

atoms over many steps. Solid curves along the diagonal have been superimposed

to illustrate the approximation of smooth steps. Note two kinds of steps on this

surface.
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resulting step-continuum equations represent the homogenized (averaged) effect of a

large number of these adatoms moving stochastically throughout their domains. The

overall evolution of nanoscale averages, such as the adatom density, is predictable

according to the law of large numbers. The kinetic process (iii) is a manifestation

of a near-equilibrium law, whose forcing term is similar to those that appear in dif-

ferential equations for chemical reaction rates. In the case of surface steps, the rate

at which adatoms attach or detach at step edges is proportional to a difference of

concentrations. A step advances when adatoms attach to the step edge; it retreats

when adatoms detach from the step edge.

We now discuss a few of the atomic processes that change the shape of a step. A

curved step, such as those depicted by the solid diagonal paths in Figure 1.3, actually

features kinks that ‘zig-zag’ along the step edge. The expansion of kinks can result

from nucleation of terrace adatoms, if the difference of concentrations is favorable to

adatom attachment at the ends of a kink. The opposite effect, when concentration

differences favor adatom detachment, consists of a step emitting adatoms. This

change in the step shape reduces the free energy associated with unbonded edge

atoms. Such energy-minimizing mass transport can be interpreted as an effect of

step line tension. In general, a step can change its shape by adsorbing or emitting

adatoms. It remains to explain how the equilibrium shape of a step is communicated

to the adatoms.

Absorption and emission of adatoms depend on the differences between con-

centrations. One of these, the terrace adatom concentration, is in principle directly

observable. The other concentration is an equilibrium quantity that depends on the
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surface geometry via the step curvature and energetics of interacting steps. Intu-

itively, steps with high curvature and small separations from their nearest neighbors

have higher energy than straight steps widely separated from their nearest neigh-

bors. We expect a highly curved step to require more energy because a greater

number of broken bonds are associated with regions of high curvature, as one can

see in Figures 1.1 and 1.3. The effect of step separation is more subtle and involves

two different kinds of interaction, as we see shortly.

The energy of a step train is conveniently analyzed using the concept of step

chemical potential. The step chemical potential, reflecting the contribution of step

line tension and step-step interactions, measures the propensity of a step to incor-

porate adatoms. This physical interpretation follows from the monotone relation

between adatom equilibrium density and step chemical potential; see the discussion

around (3.10).

Interactions between steps of the same sign (both either step-up or step-down)

are of two types, entropic and elastic-dipole. Entropic repulsions enforce the non-

crossing of steps, by restricting how far each step at nonzero temperature can deviate

from its average position. This thermal wandering is an unavoidable consequence

of nonzero temperature. However, the presence of other steps imposes a penalty

for any wandering that brings a step into collision with one of its neighbors. This

penalty takes the form of a loss in entropy, making the step’s free energy greater

than it would be in the absence of neighboring steps. Elastic-dipole interactions

are mediated by the strain fields that steps produce in the crystal [63, 76]. Any

defect on the surface, including a step, induces a force distribution that in principle
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has a multipole expansion of all orders. Comparison between predictions of this

multipole expansion and data from classical atomistic simulations led Najafabadi

and Srolovitz [76] to conclude that the dipole-dipole interaction is dominant over

higher-order contributions for the typical range of terrace widths. The combination

of elastic-dipole and entropic interactions yields the step chemical potential as the

superposition of two terms, each term reflecting an inverse-square dependence on

the distance between the step and one of its neighbors. This superposition is not

linear, appearing in the equation for interaction energy as a renormalized parameter

for the strength of repulsions [43].

The approximation of continuum steps, as noted above, deliberately glosses

over the details of point defects on the steps themselves. Kinks and edge atoms,

always present to some extent on steps at nonzero temperature, are not directly

incorporated into the formula for step chemical potential. Some variations of the

BCF model account for kinks and edge atoms by introducing auxiliary fields, such

as kink density. Equations for these auxiliary fields are coupled with the other

equations for step motion in a way that respects mass conservation [3, 11, 68]. We

do not treat coupled field equations in this thesis, instead opting for the simplicity

of a semi-empirical formula for the step chemical potential. By “semi-empirical” we

mean that the scaling of the step chemical potential with nearest-neighbor distance

can be derived analytically, but in general the prefactor can only be approximated

by comparisons with data, numerical or experimental.
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1.4 Connecting step models to experiments

The feedback loop between step models and experiments began with an obser-

vation that puzzled the mid-20th century crystal growth community. According to

the accepted models of crystal nucleation and growth in solution, the concentration

of crystal atoms had to be sufficiently large in order for crystals to precipitate on

the growing surface. When the threshold concentration was observed to be much

lower than predicted, Burton, Cabrera, and Frank [10] hypothesized a new mech-

anism for crystal growth in solution to explain the discrepancy. This explanation

proposed the existence of steps, which serve as convenient nucleation sites for the

atoms adsorbed from solution. In the BCF model, step motion is governed by the

diffusion of adatoms across terraces and the attachment/detachment of adatoms at

step edges. Their formulation of equilibrium density differs from the one we adopt

following [37, 64, 113], in that the BCF model omits step interactions. The simple

picture inspired by the BCF model enabled many successful predictions of surface

phenomena, such as Spohn’s prediction of step density in the neighborhood of a

facet [109], and the inverse linear decay of peak-to-valley distances found by Rettori

and Villain [98] for certain biperiodic profiles.

More recently, the BCF model has been expanded to account for step-step in-

teractions and anisotropies in the material parameters. These extensions of the BCF

model are often introduced to provide better interpretations of the observations of

crystal surfaces. For example, the experimental determination of certain coefficients

in the formula for surface free energy leads to interesting analogies between the ter-
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race width distribution and other probabilistic phenomena. The successful interplay

between step models and experiments confirms that step-based models still hold a

valuable place among the various approaches to surface science.

1.5 Macroscale limit

Advances in imaging techniques since the early investigations of epitaxial phe-

nomena have expanded the range of time and length scales over which we can study

crystal surfaces. Today with Atomic-Force Microscopy (AFM) and other imaging

devices, it is common to observe samples with characteristic lengths of the order

of 100 µm or larger for durations of minutes, hours or more. Samples of this size

comprise hundreds or thousands of steps, and the AFM probe will not resolve all the

details fast enough to follow the individual steps as the surface relaxes. A meaning-

ful connection between observations at this scale and the predictions of a step-based

theory requires a systematic way to bridge the gap between the limited capabilities

of an AFM probe and the difficulties of understanding large-scale surface morpho-

logical evolution via the flow of steps. In applications it is also often desired to

control the evolution of crystal surfaces, and this control is more readily achieved at

larger scales. Because of the below-roughening temperatures under which modern

small devices are made, the presence of steps at the nanoscale must be taken into

account when attempting to control the surface evolution at the macroscale.

It turns out that we can bypass a complete simulation of step motion in 2+1

dimensions by using a formal procedure known as coarse-graining. This method
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regards the equations of step flow as a discrete scheme for some evolution law gov-

erning macroscale quantities, such as the surface height. In the same way that

decompilation of computer code reconstructs a plausible version of the higher-level

source code, coarse-graining takes the low-level “instructions” given by a nanoscale

model and determines a consistent macroscale “program” for which the nanoscale

equations are one implementation. This analogy fails in several ways, most impor-

tantly by suggesting that the output of a coarse-graining procedure is not unique (up

to isomorphism), since different computer code decompilers can yield structurally

different source code programs. In fact, coarse-graining is a well-defined operation,

producing a unique partial differential equation (PDE) given a deterministic system

for the finer-scale variables.

The PDE generated by a coarse-graining operation describes the relation be-

tween space and time derivatives of the surface height. This PDE is also known

as the full continuum limit (or macroscale limit) of the nanoscale equations. This

terminology reflects the facts that (i) a limit is taken when going to the coarser

scale, and (ii) the resulting PDE is a fully continuum equation, making no explicit

reference to the nanoscale variables from which it was derived. After verifying the

hypotheses that justify using the macroscale limit, one might make direct compar-

isons between the predictions of this PDE and the experimental results.

In the case of surface relaxation, the macroscale limit is a fourth-order parabolic

nonlinear PDE for the height decay in the region of space where ∇h 6= 0 [37, 64, 96].

If the complementary region {x : ∇h(x) = 0}—i.e., the set of macroscopically flat

facets—has positive measure, then we need to determine the appropriate bound-
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ary conditions at facet edges to obtain a well-posed problem from the macroscale

limit [31, 109]. The choice of boundary conditions must weigh the sometimes con-

flicting demands of easy numerical implementation on the one hand, and accurate

microscale physics on the other hand.

1.6 Overview of this thesis

The main results of this thesis are fully continuum equations for the surface

height based on step models, and investigation of these equations from numerical

and analytical perspectives. In Chapter 2, we introduce the basic ideas common

to all macroscopic theories, and we review the numerical method we apply later to

approximate the solutions of macroscale equations. In Chapter 3, we introduce the

assumptions of near-equilibrium step flow in the context of one-dimensional step

trains, to lay the groundwork for subsequent generalizations in 2+1 dimensions. In

Chapter 4, we take a brief detour to derive the formula for elastic interaction energy

between steps. The generalization of this formula is used in Chapter 5, where we

review the (2+1)-dimensional macroscopic limit of [66].

The modeling component of this thesis extends the (2+1)-dimensional setting

of [66] in several ways. First, the diffusion of adatoms on terraces is allowed to

be anisotropic, which allows for a more realistic representation of surfaces where

adatoms hop more readily perpendicular to steps than parallel to them, or vice

versa. Second, we include the effect of step edge diffusion, where mass transport

along the step edge is modeled as the result of longitudinal variations in the step
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chemical potential. The macroscale limit with anisotropic terrace diffusion and step

edge diffusion is presented in Chapter 6. Different scalings of approximate, separable

solutions of the PDE are made possible by the additional parameters corresponding

to step edge diffusion and anisotropic terrace diffusion.

In Chapter 7, we generalize the boundary conditions at step edges to address

the possibility of permeable steps. Adatoms approaching a permeable step are free to

hop directly to the next terrace. In principle, step permeability can lead to nonlocal

effects, as adatoms diffuse over many terraces before attaching to a step edge. The

macroscale limit, however, reflects step permeability only through a renormalized

kinetic rate. Our derivation in 2+1 dimensions generalizes the work of Pierre-Louis

[88] for straight steps.

Another extension of (2+1)-dimensional step models introduces a drift velocity

in the terrace diffusion equation, which corresponds physically to an applied elec-

tric field. The study of crystal surfaces evolving under the influence of an electric

field began with an experiment by Latyshev et al. [59], who reported the onset of

step bunching. This surface instability is characterized by wide terraces between

clusters of closely-spaced steps. Electromigration-induced step bunching has been

used as a practical method for fabricating quantum wires. More recently, the appli-

cation of an electric field parallel to step edges has been shown to produce a step

meandering instability. This phenomenon features the growth of harmonic pertur-

bations of straight steps, as predicted by Dufay et al. [15] and observed by Degawa

et al. [14]. Motivated by these possible applications, we introduce in Chapter 8 the

physics of electromigration at the nanoscale. Then we use the BCF-type model with
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electromigration to derive the corresponding macroscale equation.

In Chapter 9, we discuss the inclusion of facets in the macroscopic theory. A re-

laxing surface with a facet can be modeled as a free-boundary problem [64, 109]. The

influence of step-step interactions on the slope profile depends on the distance from

the facet edge. We apply boundary-layer ideas, similar to those employed in [64],

to determine how the slope profile behaves near a facet edge in 2+1 dimensions.

The boundary-layer solution is qualitatively different if we introduce an appreciably

large electric field. We study this effect analytically in the case of straight steps,

axisymmetry, and also more general step geometries with slowly varying curvature.

In Chapter 10, we use the finite element method to simulate the macroscopic

equations. Numerical simulations of the PDEs derived in Chapters 5–8 illustrate the

rich variety of relaxation phenomena predicted by the model. The first noteworthy

result, evident even in the case of isotropic terrace diffusion, is the morphological

transition exhibited by an initially biperiodic profile, which relaxes to become almost

one-dimensional [7]. We discuss the plausible mechanisms behind this transition.

To isolate the effect of longitudinal fluxes, we simulate the macroscopic equation

with electromigration for an initially biperiodic profile. In this case, the acceler-

ated transition to an almost one-dimensional profile offers insight into the driving

mechanism behind the observed morphological changes.
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Chapter 2

Macroscopic equations and numerical solutions

In this chapter, we provide the necessary background for the subsequent in-

vestigation of macroscale crystal surface evolution. Our research relies on PDEs for

the macroscale surface variables, as well as numerical simulations of these PDEs.

These components of our research program build on previous work in modeling and

numerics. In the following review of the relevant background material, we make

special note of the limitations of previous macroscopic theories and simulations, in

order to motivate the new topics of the following chapters.

2.1 Macroscopic theories of crystal surfaces

In a fully continuum picture of crystal surfaces, we smooth out the kinks and

approximate the discrete height by a continuous graph. The immediate advantage

of this approach is the reduced number of dependent variables. The height profile

in the macroscopic model is a single function of time and the two spatial variables.

The PDE satisfied by the macroscale height function lends itself more readily to

numerical simulations on modest hardware, whereas atomistic models require much

more memory to store the positions of all the atoms in a sample. Fully continuum

theories also have the advantage of enabling global predictions, such as scaling laws

and similarity solutions, more easily than discrete models. These global predictions

16



are better suited for comparisons with experimental results, because the time scale

of experimental observation is realized by macroscopic simulations but is typically

unattainable by atomistic methods.

Macroscopic theories are not without their limitations, however. One should be

cautious in applying a fully continuum theory when detailed resolution of atomistic

or nanoscale processes is desired. The configuration of kinks and edge atoms, for

example, cannot be recovered from a macroscopic simulation. Moreover, kinetic

rates manifest themselves in macroscopic theories only through combinations of

material parameters. To determine any particular kinetic rate is outside the scope

of our fully continuum models.

2.1.1 Effect of different mass transport mechanisms

In total, four different physical mechanisms have been identified for mass trans-

port in a crystal material. In [33], Herring considers separately the processes of

(i) viscous flow, (ii) evaporation and condensation, (iii) volume diffusion, and (iv)

surface diffusion. Each of these processes leads to a different scaling between the

lifetime and size of a surface feature. For example, two geometrically similar sur-

face features with characteristic length scales L1 and L2 will change their shape by

evaporation/condensation with lifetimes τ1 and τ2, which satisfy τ2/τ1 = (L2/L1)
2.

The exponent 2 appears because evaporation/condensation works at the solid-vapor

interface, where total surface area (proportional to the square of the characteristic

length) is relevant. In general, a surface feature with characteristic length λL1 de-
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caying via one of the mechanisms (i)—(iv) has a lifetime τ given by τ = τ1λ
p, where

p ∈ {1, 2, 3, 4} is associated with the operative mechanism of mass transport. The

largest possible power, p = 4, is associated with surface diffusion.

At a given temperature, any of the four possible mass transport mechanisms

may be present in a crystal material. The lifetime of a structure varies most rapidly

with characteristic size when surface diffusion is present. The trend toward fabricat-

ing ever smaller surface features, as required for mobile electronic devices, would im-

pose severe time constraints at the temperatures commonly used in previous decades

for crystal surface patterning. For example, a miniaturized surface feature, half as

large as one produced currently, might decay 16 times faster at the same tem-

perature. To mitigate the difficulties of shorter lifetimes in structures subject to

surface diffusion, experimentalists and manufacturers have brought their equipment

to lower operating temperatures. At these lower temperatures, the continuum ther-

modynamic description of crystal surface evolution is challenged. The appropriate

theory, based on the motion of steps below roughening, is thus enjoying a resurgence

in the research community.

2.1.2 Macroscopic theory above the roughening temperature

Before describing the extension of macroscale theories to temperatures below

roughening, we review the ingredients of surface evolution models that first appeared

in descriptions above the roughening temperature. Macroscale descriptions of crystal

surfaces above roughening apply the ideas of continuum thermodynamics and mass
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conservation, obtaining PDEs or variational principles for the surface height. A

classic example is the fourth-order PDE,

∂th ∝ div∇(∆h), (2.1)

derived by Mullins and Herring. This result holds if

1. the chemical potential µ is proportional to the mean curvature, µ ∝ κ1 + κ2,

2. the surface flux is proportional to the gradient of chemical potential, J ∝ ∇µ,

and

3. mass conservation is enforced via ∂th ∝ − divJ.

In this derivation, Mullins introduces only one chemical potential, µ, which is associ-

ated with the surface geometry through the mean curvature. A second chemical po-

tential for the vapor phase would be needed in the case of evaporation/condensation,

but Mullins assumes only surface diffusion in his analysis. As noted in Chapter 1,

it is reasonable to expect the mean curvature to determine the likelihood of adatom

attachment/detachment on the surface. In the regime of small slope (|∇h| � 1),

the mean curvature definition of chemical potential yields

µ ∝ ∆h, (2.2)

where ∆ is the 2D Laplacian. An alternative formulation of the chemical potential

is in terms of the surface energy E, via the variational formula

µ =
δE

δh
, (2.3)
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where

E =

∫
R2

γ(|∇h|)dx, γ = g0 +
1

2
g2|∇h|2 + o(|∇h|2). (2.4)

We remark that the above-roughening free energy density γ is smooth for any surface

slope |∇h|.

The relation between surface flux and the gradient of chemical potential is the

macroscale analog of Fick’s law1. At the level of steps and terraces we have a flux

Jad defined by Jad = −Dad · ∇C, where C is the adatom concentration and Dad is

the adatom diffusivity. At the macroscale we have the similar relation

J ∝ −M · ∇µ, (2.5)

where M is the mobility. Both Dad and M are in principle tensor-valued functions

of the slope, restricted on physical grounds to be positive definite. The case of scalar

Dad and M is perhaps easiest to understand intuitively, but we shall soon encounter

regimes where this intuition is challenged.

Finally, the law of mass conservation is written so that a net flux of adatoms

across a level set for h is exactly balanced by the local time derivative of the height.

In the absence of deposition, the material derivative (or total derivative) of the level

set h = const. yields the mass conservation law,

∂th ∝ − divJ. (2.6)

When deposition is present, a forcing term must be added to the right hand side of

(2.6). This case is not studied in this thesis.

1See the discussion around (5.3).
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2.1.3 Macroscopic theory below the roughening temperature

The three ingredients of macroscale models of surface morphological evolu-

tion, first introduced in the study of materials above roughening, also carry over to

temperatures below TR. Care must be taken in writing the analogs of (2.2)–(2.6)

below roughening, in order to respect the presence of steps. For example, according

to the BCF model, there are N different step chemical potentials for an array of

N steps. It is not immediately obvious how one would obtain a fully continuum

chemical potential µ in this setting, much less a relation analogous to (2.2). Sim-

ilarly, the dependence of terrace flux Jad on adatom concentration is not readily

connected with the macroscale relation (2.5). In Chapter 5 we review the details

of this macroscale limit procedure for the simple case of isotropic terrace diffusion,

where Dad is a scalar constant.

The idea of a macroscale limit has a long history in the literature, producing

PDEs based on BCF models alone [2, 51, 86, 94, 119], BCF models coupled with

adatom density [16, 62, 104], or kinetic Monte Carlo models [120]. We follow the

first approach and consider BCF models alone, allowing for some interesting gen-

eralizations to account for different possible physics at the nanoscale. In Chapter

6 we include the effects of step edge diffusion and anisotropic terrace diffusion. In

Chapter 7 we derive the macroscale limit for permeable steps, which allow adatoms

to jump from one terrace to its neighbor without first attaching to the step between

them. In Chapter 8 we include the effects of a drift velocity caused by an applied

electric field, and desorption of adatoms from a terrace into the vapor phase. These
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effects are easily accommodated in the below-roughening analogs of (2.2)–(2.6) with-

out disrupting the structure of the macroscopic equations. In every case we study

here, the macroscale limit can be written in the form

∂th = div(M · ∇µ), (2.7)

µ =
δE

δh
(2.8)

for some appropriate mobility M and surface energy E.

Below roughening, the singular surface energy E can be expanded as a series

in |∇h|:

E = g0 + g1|∇h|+
g3

3
|∇h|3. (2.9)

By interpreting |∇h| as the macroscale analog of the discrete step density, the co-

efficients of the expansion for E reflect the relative contribution of energies (i) pro-

portional to the number of steps (g1 term), (ii) independent of the number of steps

(g0 term), or (iii) stemming from interactions that decay as the inverse square of

step separation (g3 term).

Because µ is not directly observable, but only serves as an auxiliary variable

in the fully continuum PDE, it will sometimes be convenient to change variables so

that the variational structure (2.7),(2.8) remains intact.

2.2 Numerical simulations

In this section, we discuss the numerical treatment of evolution equations for

the macroscale surface height. Our approach takes advantage of the variational

structure (2.7),(2.8) to implement a weak form of the macroscale PDE using finite
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elements. If the mobility M and surface energy E are chosen appropriately, we

expect the solution of the macroscale PDE to approximate the near-equilibrium

motion of steps. However, a full comparison between the predictions of nanoscale

and macroscale models is outside the scope of this research. Lacking a numerical

implementation of step flow equations in 2+1 dimensions, the only data available

for comparison come from simulations of the coupled differential equations for the

positions of straight or concentric circular steps [25, 45].

We now turn to the implementation of fully continuum models for the surface

height. To simulate these macroscale PDEs, we must decide on a discretization,

which introduces computable quantities to approximate the fully continuum data.

The vector of step positions is, of course, one such discretization. However, the

equations of step flow are in general too unwieldy to simulate directly. We take

advantage of the flexibility afforded by the fact that any given differential equation

has more than one possible discretization.

Among the possible discretization choices available to us, two in particular have

proven useful for the simulation of crystal surface relaxation. The first (Galerkin)

method approximates the surface height by an expansion in trigonometric basis

functions [108], which yields coupled differential equations for the coefficients after

substitution in (2.7),(2.8). This system of ordinary differential equations is then

integrated numerically. Due to its easy formulation and capacity to accommodate

higher-order discretizations in time, the Galerkin method is a natural choice for

simulating the evolution equation.

We adopt the finite element method, which partitions the domain into non-
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overlapping elements (e.g., triangles) and approximates at time n the surface height

hn and the macroscale chemical potential µn as a sum of basis functions φi (some-

times called hat functions), each of which is supported on a finite, contiguous cluster

of elements, viz.,

hn =
∑

i

Hn
i φi, (2.10)

µn =
∑

i

mn
i φi. (2.11)

The approximations (2.10),(2.11) can only resolve the spatial dependence of h and µ

over distances not less than the mesh size. By choosing the mesh size appropriately,

we can resolve all the physically meaningful spatial variations in h, without intro-

ducing unmanageably many degrees of freedom in the triangulation T . We denote

by VT the finite element space spanned by the hat functions φi for the triangula-

tion T . The weak formulation of the evolution law, expressed in the space VT , will

finally allow us to find approximate solutions of (2.7),(2.8). In order to write this

weak formulation, we must first choose a discretization for the time derivative.

The finite element method works by solving a linear system for the coefficients

Hn
i and mn

i in (2.10),(2.11). The exact definition of µ in terms of h is, in general,

nonlinear, so the first task of a time discretization is to find an approximate, linear

version of the relation (2.8). We choose a semi-implicit Euler time step [32, 77],

replacing (2.7) by

hn − hn−1

∆t
= divM(hn−1) · ∇µn, (2.12)

µn =
δE

δh

∣∣∣∣
hn−1

. (2.13)
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This discretization allows us to find the unknown coefficients at any time by

solving a matrix equation. To determine which linear system the coefficients Hn
i and

µn
i satisfy, we take the inner product of (2.12) with an arbitrary test function g ∈ VT ,

and also the inner product of (2.13) with an arbitrary test function ψ ∈ VT . Because

VT is spanned by the basis functions φj, it suffices to consider inner products with

each φj individually. The linear system that emerges is

∑
i

(Hn
i −Hn−1

i )

∫
B
φiφj = ∆t

∑
i

mn
i

∫
B
M(hn−1)∇φi · ∇φj, (2.14)

∑
i

mn
i

∫
B
φiφj =

∫
B

δE

δh

∣∣∣∣
hn

φj, ∀φj, (2.15)

where B is the domain over which the PDE (2.7),(2.8) is assumed to hold.

The integral on the right-hand side of (2.15) is more commonly rewritten using

integration by parts, as we shall see in Chapter 5 when considering the formula for

macroscale chemical potential in more detail. Integration by parts has already been

performed on the right-hand side of (2.14), with vanishing boundary terms2.

We alert the reader that the surface energy E has a singularity at |∇h| = 0. For

the integration in (2.15) to make sense, we add a regularization parameter ε � 1

to the denominator |∇h| that appears in the g1 term of δE/δh. The qualitative

behavior of the approximate solution is not significantly affected by ε [7].

Finally, the tensor mobility in the fixed coordinate system might also have a

singularity at |∇h| = 0. Different regularization schemes are possible to remove

this singularity. For mathematical consistency we might wish that the regularized

2Namely, ∂th and the flux J are both zero on the boundary of B; or, we apply periodic boundary

conditions (assuming steps lie on a torus in R2).
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mobility approaches a scalar as ∇h → 0. However, we find that the approximate

solution is rather robust with respect to the mobility regularization, as discussed in

Chapter 10.

A number of linear solvers are available to compute the coefficients Hn
i , µ

n
i

using (2.14),(2.15). Once a solution is obtained, we can quantify its usefulness by

estimating the size of the truncation errors and interpolation errors (due to dis-

cretization in time, the choice of mesh, and the choice of polynomial space for

the basis functions). In the present work, we do not focus on a posteriori analy-

sis in this vein. Our emphasis is on the global behavior of solutions to the PDE

(2.7),(2.8), which we expect to be well captured by any reasonable numerical solution

of (2.14),(2.15).

The preceding illustration of the finite element method gives only a flavor of

the mathematics behind this powerful tool. A much richer description appears in

[9]. Evans [24] serves as a good reference for the necessary background in Sobolev

spaces.
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Chapter 3

One-dimensional nanoscale models of interacting steps

In this chapter we review an extended version of the BCF step model. This

classical picture of step motion, updated to include entropic and elastic-dipole step

interactions, describes the relevant nanoscale physics of stepped surfaces. Here

nanoscale reminds us that the motion of steps, which we use to derive a macroscale

limit, is itself a coarse approximation of atomistic processes.

3.1 Geometry of straight steps

We consider a descending train of steps with atomic height a, separated by flat

regions called terraces; see Figure 3.1. The step positions xi are treated as moving

boundaries for the adatom diffusion of each terrace. To account for the fact that

no overhangs or step crossings are allowed, we require that at each time t, the step

position xi(t) increase monotonically with the step number i, xi+1(t) > xi(t). If

this condition is satisfied for the initial step positions xi(0), then the subsequent

evolution is expected to respect the monotonicity, due to the repulsive step-step

interactions introduced in the equations below. We regard the monotonicity of

step positions for t > 0 as a basic assumption, although an elementary proof is
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Figure 3.1: Geometry of straight steps.

possible for certain mass transport mechanisms.1 For each time t, the ith terrace

{x : xi < x < xi+1} is a well-defined domain on which we seek solutions of the

equation of motion for adatom diffusion. For the present case of one independent

spatial variable, the elliptic problem corresponding to adatom diffusion reduces to

an ordinary differential equation that admits an explicit solution.

3.2 BCF model for interacting straight steps

A quantitative discussion of the BCF theory begins with the adatom density,

Ci, on the ith terrace, xi < x < xi+1. This Ci satisfies the diffusion (or heat)

equation [10],

∂tCi = ∂x(D
ad · ∂xCi) , (3.1)

where Dad is the diffusivity for adsorbed atoms on the terrace. Note that we have

omitted from (3.1) terms that describe atom desorption, electromigration and ma-

terial deposition from above, considering only the effect of surface relaxation. Equa-

tion (3.1) can be simplified significantly by elimination of the time derivative, for the

following reason. The time scale for step motion is much larger than the time scale

1For instance, by considering mass transport dominated by evaporation-condensation, we obtain

a second-order PDE for the slope, to which the maximum principle applies.
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for terrace diffusion. Thus, we simplify (3.1) via the “quasi-steady approximation”,

∂tCi ≈ 0; the time dependence in Ci enters through the boundary conditions at step

edges. Solving the resulting differential equation for Ci by successive integrations

yields

Ci = Ai(x− xi) +Bi, xi < x < xi+1. (3.2)

The approximation ∂tCi ≈ 0 might break down in the case of fast-moving steps,

for example, in a surface grown by molecular beam epitaxy using a large deposition

flux [29]. Since we discuss only surface relaxation, material deposition from above

is not relevant, and the quasi-steady approximation can safely be invoked.

The adatom flux on the ith terrace is defined by

Jad
i = −Dad∂xCi, (3.3)

which is Fick’s law of diffusion.

Mixed (or Robin) boundary conditions at the step edges x = xi and x = xi+1

complement (3.1) to yield a unique solution for Ci. These conditions emerge from

linear kinetics [10, 37, 43]:

−Jad
i (xi, t) = ku[Ci(xi, t)− Ceq

i (t)] , (3.4)

Jad
i (xi+1, t) = kd[Ci(xi+1, t)− Ceq

i+1(t)] , (3.5)

where ku, kd are kinetic rates that account for the Ehrlich-Schwoebel barrier [17, 105],

and Ceq
i (t) is the equilibrium density at the ith step edge. Substituting for Ci and

Ji using (3.2) and (3.3), we find a linear system of equations for the integration
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constants.  Dad −ku

−Dad − kdδxi −kd

 ·
Ai

Bi

 = −

 kuC
eq
i

kdC
eq
i+1

 . (3.6)

This matrix equation is solved for Ai and Bi to obtainAi

Bi

 =
1

Dad(ku + kd) + kukdδxi

 kukd(C
eq
i+1 − Ceq

i )

Dad(kuC
eq
i + kdC

eq
i+1) + kukdδxiC

eq
i

 (3.7)

Knowing the explicit values of Ai and Bi, we write the formula for the mass

flux Ji on the ith terrace:

Jad
i = −DadAi

= −Dad kukd(C
eq
i+1 − Ceq

i )

Dad(kd + ku) + kukdδxi

, (3.8)

where δxi := xi+1 − xi is the terrace width.

We then compute the velocity of the ith step according to the law of mass

conservation:

ẋi =
dxi

dt
=

Ω

a
[Jad

i−1 − Jad
i ]. (3.9)

Together with the initial step positions and a formula for determining Ceq
i

based on the step geometry, the system (3.8),(3.9) governs the subsequent motion

of steps.

3.3 1D interaction energy and the step chemical potential

In order to render (3.8)–(3.9) a closed system of equations for the step po-

sitions, we need a formula for the equilibrium densities in terms of the xi. Our
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starting point is the near-equilibrium thermodynamics law [37, 43]

Ceq
i = Cs exp

µi

kBT
∼ Cs

[
1 +

µi

kBT

]
, (3.10)

where µi is the chemical potential of the ith step. We consider this µi to depend on

the energy of interactions with other steps [37, 43, 66], in contrast to the original

BCF model [10], which omitted step interactions. The linearization in (3.10) is

permissible under typical experimental conditions, where |µi| � kBT [114].

The usual interpretation of chemical potential refers to the change in a system’s

energy upon addition or removal of a single atom. In the case of a straight step,

we can only add or remove atoms one row at a time. The step chemical potential

accounts for this geometric restriction by appropriate scaling of the relevant energy

changes.

We denote by Vi,j the repulsive interaction energy between steps i and j. This

interaction is repulsive if the steps have the same sign, e.g., both are step-down. The

mechanisms underlying this repulsion between steps of the same sign deserve some

attention. We build towards an understanding of elastic interactions between one-

dimensional line defects (steps) by starting with the strain field of zero-dimensional

point defects (e.g., vacancies or impurities). Then we address entropic interactions

using ideas from statistical physics.

From the theory of crystal lattice mechanics [50], we know that a point defect

in the bulk (e.g., a vacancy or an impurity) creates an elastic strain field that acts

over distances far from the point defect. This elastic strain field can be modeled by
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a point distribution of forces

Fi = Aik
∂

∂xk

δ(r), i, k = 1, 2, 3; (3.11)

where r is a three-dimensional radius vector and the point defect is located at r = 0;

Aik is some symmetric tensor; the overall effect of such a distribution is zero total

force and zero moment.

The analogous point distribution formula in the case of a point defect located

on the surface is

fµ = Aµν
∂

∂xν

δ(ρ), µ, ν = 1, 2, (3.12)

where the indices µ, ν correspond to a coordinate system in the tangential plane; ρ

is a two-dimensional radius vector in the plane of the surface (the defect is located

at ρ = 0), and Aµν is some symmetric tensor. The calculation of elastic interaction

energy between two such point defects [58] uses the field of elastic strains resulting

from the force distribution (3.12). In an isotropic solid those defects with isotropic

force distributions (Aµν = Aδµν) exert on each other a mutual repulsive force F

given by [63]

F (ρ) =
1− ζ2

πY

A2

ρ3
, (3.13)

where Y is the Young modulus and ζ is the Poisson ratio. The ρ−3 decay is predicted

even in the case of an arbitrary symmetric tensor Aµν .

An isolated step differs from a point defect in that its associated force dis-

tribution has nonzero total moment. To analyze the step-step interactions using

continuum elasticity, we model the displacement field associated with an isolated

step by an array of force dipoles oriented normal to the step in the plane of the
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terrace [63]:

ux(x, z = 0) = fx
∂

∂x
δ(x), (3.14)

where fx is the strength of the dipole force and the step is identified with the y-

axis. This formula greatly oversimplifies the true force distribution, which in fact has

finite width, has components normal the surface plane, and has in-plane components

which are not pure dipoles [76]. Rather than include all these effects systematically,

Najafabadi and Srolovitz [76] take an empirical approach and invoke a multipole

expansion for the true force distribution due to an isolated step. The coefficients

of this multipole expansion are fit to data from simulations of interacting steps.

To compare the data with the theory, we need to know what repulsive forces are

predicted by the multipole expansions.

The interaction between two steps is calculated in a manner similar to the

calculation of repulsive forces between point defects. Using a multipole expansion

for the force distribution due to each step, Najafabadi and Srolovitz derived an

expansion for the total interaction energy in a one-dimensional step train. The

starting equation is a volume integral of the elastic interactions between the strain

fields ε due to individual steps.

Eint =
1

2

∫
C

[∑
i

εi(r)

][∑
j

εj(r)

]
dV (3.15)

By distributing the product over the sums inside the integral, Najafabadi and

Srolovitz expand (3.15) to separate the contributions from self-energy and inter-

action energy:
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Eint = N [γself(w) + γint], (3.16)

where the interaction energy is found by summing over all steps,

γint(w) =
∞∑

j=1

γs-s(jw) (3.17)

and the contribution from steps of separation jw is given by the multipole expansion

γs-s(w) =
∞∑

k=1

ζk

( a
w

)k

. (3.18)

The substitution of (3.18) into (3.17) yields

γint(w) =
∞∑

j=1

[
∞∑

k=1

ζk

(
a

jw

)k
]

=
∞∑

k=1

ζkβk

( a
w

)k

, (3.19)

where βk =
∑∞

j=1 j
−k are material independent and easily calculated. In this formula

for total interaction energy, series truncation and curve fitting suffice to determine

the coefficients in the multipole expansion of a typical step’s force distribution.

By fitting the coefficients of this expansion to the step simulation data, Na-

jafabadi and Srolovitz conclude that for step spacings w larger than 3a, the dominant

term is the dipole-dipole interaction energy. Truncating the series for interaction

energy at a higher power of a/w does not significantly improve the fit between (3.19)

and the simulation data [76]. Therefore, the repulsive interaction between steps is,

for all practical purposes, the same as if each step were viewed as an array of force

dipoles. Considering, for example, the pair of neighboring steps indexed by i and

i+ 1, we find an elastic interaction energy per unit length Vi,i+1 given by

Vi,i+1 =
g

3

(
a

xi − xi+1

)2

, (3.20)
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where g > 0 measures the strength of repulsive elastic interactions between steps.

Another reason for steps to repel each other is the fact that steps are thermally

rough. Just as steps are line defects on the surface, steps themselves can have point

defects (edge atoms) or kinks, which slightly perturb their straight shape. The

formation of an edge atom requires only the energy εκ associated with broken bonds,

while the creation of an entire step requires energy in proportion to its length. At

any nonzero temperature T , it is more energetically favorable for a step to wander

(due to formation of kinks and edge atoms) than to advance or retreat as a whole.

This thermal wandering does not proceed unimpeded. Invoking the non-crossing

condition for steps, Gruber and Mullins [30] observed that collisions with neighbors

would restrict the thermal wandering of a given step in an array of parallel steps.

This restriction leads to a smaller entropy for the step in question, which then has

larger free energy. The overall effect is that of entropic repulsion between steps.

To quantify the entropic interaction between steps, it is helpful to consider the

in-plane correlation function

〈|x(y)− x(y′)|2〉 =
kBT

δ̃
|y − y′|, (3.21)

where the angle brackets denote a thermal average with respect to the equilibrium

distribution, the steps are aligned with the y-axis, and δ̃ is the step stiffness derived

from the Ising lattice gas model [73],

δ̃ =
kBT

a
eεκ/kBT . (3.22)

Neighboring steps are assumed to have an average separation w (measured in

the x-direction), and the average distance between collisions is Lc (measured in the
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y-direction). Setting the left hand side of (3.21) equal to w2 and substituting Lc for

|y − y′|, we find Lc ≈ w2δ̃/(kBT ). If each collision decreases the entropy by a fixed

amount kBC, then the step’s free energy per unit length is increased by the amount

∆δ ≈ CkBT

Lc

=
C(kBT )2

w2δ̃
. (3.23)

To determine the coefficient C, it is useful to think of the steps as world lines of

non-interacting fermions, with the y-axis playing the role of time [42, 44]. This

representation yields C = π2/6.

The decay of entropic repulsion strength as w−2 is the same scaling we found for

elastic-dipole interactions. The combination of both forces is easily accommodated

in (3.20) by renormalizing the coefficient g.

Here we consider µi stemming from nearest-neighbor step interactions. Thus,

µi depends only on the distances |xi − xi±1|. (In the macroscopic limit, adding up

all the pairwise interactions has the same effect as renormalizing the parameter of

interaction strength when considering only nearest-neighbor forces [66].) To deter-

mine the chemical potential of the ith step, it suffices to compute the elastic-dipole

forces exerted by neighboring steps only, not taking into account any interactions

beyond nearest-neighbor.

Suppose the ith step advances by an amount ∆xi. This step advance requires

the attachment of an additional ∆N = a∆xi/Ω atoms per unit length, where Ω is

the atomic volume. By analogy with the usual definition of chemical potential, we

define the step chemical potential as the change in interaction energy upon addition
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or removal of ∆N atoms per unit length. Formally letting ∆xi → 0, we write

µi :=
Ω

a

d

dxi

[Vi,i+1 + Vi,i−1]. (3.24)

The formulas (3.20) and (3.24), together with (3.8) and (3.9), constitute a

system of ordinary differential equations governing the flow of straight steps.

A typical question of interest for this system is whether an equilibrium solution

(i.e., that for equally-spaced steps or constant surface slope) is stable. If not, we

try to characterize the types of instabilities that emerge as the surface relaxes.

Stability analysis of the step flow equations in this geometry employs techniques

from perturbation theory, such as the phase equation method [49], which studies the

evolution equation satisfied by the phase φ of a given initial pattern. Research in

this vein has led to general conclusions about the properties of steady state solutions

for a large class of nonlinear PDEs [95]. The focus of our work is on step systems

in 2+1 dimensions, where such a stability analysis is not practical. The reader is

directed to [15, 95] for more details about the dynamics of (1+1)-dimensional step

trains.

3.4 BCF model for interacting concentric circular steps

The restriction that step positions be expressible in terms of only one spa-

tial variable allows yet another geometry. Whereas the geometry of straight steps

emerges from translational invariance, we obtain the geometry of concentric circu-

lar steps (Figure 3.2) by requiring rotational invariance. Polar coordinates (r, θ)

are appropriate in this setting, where the dependence on the angular variable θ is
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Figure 3.2: Geometry of concentric circular steps.

eliminated due to the assumed axisymmetry.

The point r = 0 is singled out as the center of the mound or valley. To

establish some parallelism with the case of straight steps, we restrict our attention

to axisymmetric structures where the height is a decreasing function of r (mounds).

At any position inside the innermost step, in particular at r = 0, the height is a

constant; h(r, t) = hf (t) for 0 < r < r0, where r0 is the radius of the innermost step.

The subscript f recalls the picture of a facet, a macroscopically flat region about

r = 0 characterized by a length scale significantly larger than the typical terrace

width.

The analog of (3.1) for axisymmetric surface profiles reads

d2Ci

dr2
+

1

r

dCi

dr
= 0, (3.25)
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where again we have invoked the quasi-steady approximation, ∂tCi ≈ 0.

We solve (3.25) by successive integrations to find

Ci(r) = Bi + Ai ln(r/ri), ri < r < ri+1. (3.26)

The terrace adatom flux, directed radially outward to satisfy the symmetry

constraints, is calculated using Jad
i = −Dad∂rCi. In terms of the integration con-

stants, the adatom flux is

Jad
i = −D

adAi

r
, ri < r < ri+1. (3.27)

Boundary conditions analogous to (3.4) and (3.5) complement (3.25) to yield

the adatom density field on the ith terrace. Again assuming linear kinetics at step

edges, we have

−Jad
i (ri, t) = ku[Ci(ri, t)− Ceq

i (t)], (3.28)

Jad
i (ri+1, t) = kd[Ci(ri+1, t)− Ceq

i+1(t)], (3.29)

where Ceq
i is the equilibrium adatom density at the ith step edge.

Substituting (3.26),(3.27) for Ci and Ji, we find the integration constants by

solving the matrix equation −Dad

kuri
1

Dad

kdri+1
+ ln ri+1

ri
1


Ai

Bi

 =

Ceq
i

Ceq
i+1

 . (3.30)

Solving for Ai and Bi allows us to write the explicit solution of the requisite
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boundary value problem on each terrace.

Ai =
Ceq

i+1

Dad
(

1
kuri

+ 1
kdri+1

)
+ ln ri+1

ri

(3.31)

Bi =
Ceq

i+1 + Ceq
i

(
1 + kuri

kdri+1
+ kuri

Dad ln ri+1

ri

)
1 + kuri

kdri+1
+ kuri

Dad ln ri+1

ri

. (3.32)

In these coefficients for the solution of the diffusion equation, we identify

certain fractions that indicate the rate-limiting process. The kinetics are called

attachment-detachment limited (ADL) if Dad(k−1
u + k−1

d )/a � 1, i.e., adatoms dif-

fuse much faster than they attach and detach at step edges. The kinetics are called

diffusion limited (DL) if Dad(k−1
u + k−1

d )/a � 1, i.e., adatoms diffuse much slower

than they attach and detach at step edges. “Mixed kinetics” is the intermedi-

ate regime where Dad(k−1
u + k−1

d )/a = O(1). Simplifications of (3.31),(3.32) in the

regimes of DL or ADL kinetics will be useful when discussing scaling laws in Chapter

5.

The difference of fluxes from neighboring terraces at the ith step edge yields

the step velocity ṙi = dri

dt
according to the law of mass conservation:

ṙi =
Ω

a
[Jad

i−1(ri)− Jad
i (ri)]. (3.33)

3.5 Interaction energy and step chemical potential for circular steps

It remains to derive the dependence of Ceq
i on step positions. This calculation

reveals one key difference between the axisymmetric geometry and the straight-

step geometry. In the axisymmetric setting, the equilibrium density Ceq
i contains

information not only about the energetic interactions analogous to those of straight
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steps, but also the energetic cost of step curvature. For the circular step with radius

ri, the equilibrium density is given by (3.10) and the inclusion of curvature in the

formula for step chemical potential:

µi =
Ω

a

[
β

ri

+
1

ri

∂ri
(riU

int
i )

]
, (3.34)

U int
i = [V (ri, ri+1) + V (ri, ri−1)], (3.35)

V (r, r′) =
g

3

2r′

r + r′

(
a

r − r′

)2

, (3.36)

where β is the step line tension (energy/length) and U int
i is the interaction energy

per unit length of the ith step.

A geometric argument for the appearance of step curvature and line tension

(the term β/ri in (3.34)) is as follows. Again we measure the change in the system’s

energy ∆Ui and count the number ∆N of additional atoms that must attach to the

step at r = ri to accomplish this energy change. For circular steps, the length of

the ith step is 2πri, which imposes an energetic cost of 2πβri due to line tension.

To advance the ith step by a distance ∆ri will increase the line tension energy

by an amount ∆Ui = 2πβ∆ri. The number ∆N of additional atoms required to

advance this step is proportional to the area of an annulus, approximately 2πri∆ri

in the limit ∆ri → 0. To be precise, ∆N = 2πri∆ri/(Ω/a), where Ω/a is the cross-

sectional area of an atom. Taking the ratio ∆Ui/∆N , we find that the change in

line tension energy for each added atom is (Ω/a)(β/ri).

We remark that formula (3.36) for the interaction energy has the same de-

pendence on the local step density as in the case of straight steps, but with a

shape-dependent prefactor 2r′

r+r′
. This shape factor appears when we calculate the
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interaction energy between concentric arrays of dipoles by integrating along each

step. To our knowledge, (3.36) first appeared in [113], with little explanation of

its origin. An independent derivation of this formula, emphasizing the geometric

assumptions under which it holds, is given in Chapter 4. The presence of a shape

factor arising from integration of the dipole energy formula is characteristic of 2-

dimensional steps, as we see in section 4.3 when considering arbitrary step geometry.

Equations (3.10),(3.36),(3.31), and (3.33) suffice to determine the subsequent

evolution of the step positions in the axisymmetric setting.

Due to the inclusion of step curvature in the formula for the step chemical

potential, an axisymmetric surface profile can exhibit step bunching instabilities [26].

This phenomenon results from the competition between nearest-neighbor repulsions

and the tendency of an isolated circular step to minimize its line tension energy

by expanding. Step bunching has been proposed as a possible means of growing

nanowires, a setting in which the axisymmetric model applies.

42



Chapter 4

Elastic-dipole interactions between steps in 2 dimensions

In this chapter, we pause to examine the origin of formula (3.36) for the elastic-

dipole interaction energy between two steps. As noted above, equation (3.36) first

appeared in [113], accompanied only by a brief plausibility argument. Subsequent

uses of the formula in [25, 36, 37, 64, 118] offered neither a derivation nor a clear set

of assumptions under which (3.36) is expected to hold. The purpose of this chapter

is to derive equation (3.36) starting from an interaction energy formula based on

linear elasticity. In the course of this derivation it will become apparent to what

extent (3.36) is an approximation, and under which conditions we can expect it to

provide correct values for the interaction energy. Finally, this calculation is extended

to more general step configurations by appropriate local definitions of the relevant

geometric parameters. We use the result of this derivation when describing the fully

(2+1)-dimensional relaxation problem in the next chapter.

4.1 From electrostatics to linear elasticity

The presence of a line defect (step) in a crystal surface introduces an elastic

strain field, as noted in Chapter 3. This field can be understood as stemming from

a line of force dipoles normal to the step. In this section we appeal to knowledge

of electrostatics to motivate the expression for the field of an elastic force dipole.
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We caution the reader not to expect an exact analogy between the equations of

electrostatics and those of linear elasticity. In contrast to electric fields, an elas-

tic displacement field cannot exist without a medium. This medium introduces

material-dependent quantities, such as the Young modulus and the Poisson ratio,

which might lead to correction terms in the formula for dipole interaction energy.

It turns out that we find the same leading-order term as if the steps consisted of

electric dipoles, since the characteristic scaling of the field strength as the inverse

cube of separation is common to both types of dipoles. We begin by reviewing the

electrostatic equations required to describe interacting dipoles.

4.1.1 Field and potential of an electric dipole

A common calculation in electrostatics is the long-range behavior of the electric

potential due to a collection of point charges qα. The expression for this potential is

a series in negative powers of the distance r from the center of the distribution, which

is known as a multipole expansion [40]. This series is only expected to yield correct

values at distances r much greater than the finite extent R of the charge distribution.

Often only the first two terms in the series make a significant contribution to the

electric potential. The monopole term decays as r−1 and is proportional to the total

charge. The dipole term decays as r−2 and depends on the magnitude and direction

of the dipole moment p. This dipole moment is calculated by [40]

p =
∑

α

qαRα, (4.1)

where Rα is the position of charge qα in some appropriate coordinate system.
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At positions r far from the center of the dipole, the potential Φ can be written

as

Φ =
r · p
r3

. (4.2)

Note that we choose CGS units, where the usual SI prefactor (4πε0)
−1 is set to 1,

so that the eventual transition to elastic interactions is not hindered by lingering

dimensional constants.

To calculate the electric field E at position r, we apply the gradient operator

to (4.2).

E = −∇Φ =
1

r3
[3r̂(p · r̂)− p]. (4.3)

The analog of the electric field in the context of continuum mechanics is the

strain field, which exerts a force on point and line defects in the surface. We deter-

mine the energy associated with a given configuration of surface defects by comput-

ing a volume integral over a region where the potential Φ admits an expansion in

Taylor series.

4.1.2 Energy of a charge distribution in an electric field

Assembling a given collection of charges in an ambient electric field requires

an amount of work given by

W =

∫
Ω

ρΦd3x, (4.4)

where ρ is the charge density defined at each point in the domain Ω, Φ is the electric

potential, and d3x is the volume element.

We assume that the spatial variation of Φ within Ω is accurately captured by
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a Taylor series expansion about x0 ∈ Ω:

Φ(x) = Φ(x0) + (x− x0) · ∇Φ|x0 +O(|x− x0|2), x ∈ Ω. (4.5)

Because the energy of a charge configuration does not depend on the origin of

the coordinate system, we choose x0 = 0 for convenience. Substituting (4.5) into

(4.4), we find

W =

∫
Ω

d3xρΦ(0) + ρx · ∇Φ(0) +O(|x|2). (4.6)

The evaluation of the electric potential and its derivatives at 0 can now be

taken outside the integral.

W = qΦ(0) + p · ∇Φ(0) + . . . , (4.7)

where q =
∫

Ω
ρd3x is the total charge, p =

∫
Ω
ρxd3x is the dipole moment about the

origin of the given charge distribution, and the omitted terms account for energy

contributions from higher-order poles.

In combining formula (4.3) for the field of an electric dipole and (4.7) for the

work done to assemble a collection of charges, we need to distinguish the two dipole

moments, even though they play symmetric roles in the final formula for interaction

energy. We use pA for the dipole that creates the ambient electric field, and pB for

another dipole that we bring to a desired location within this field. Using (4.7), the

term accounting for dipole-dipole interactions is

Wdip =
1

r3
AB

[pA · pB − 3(pA · r̂AB)(r̂AB · pB)], (4.8)

where rAB is the separation vector between dipoles A and B.
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4.1.3 Interaction energy of two force dipoles

To check whether a direct adaptation of (4.8) would yield plausible results, we

consider first the special one-dimensional case of electric dipoles A and B aligned

with the separation vector rAB. If pA and pB are parallel and point in opposite

directions, then the force between them is repulsive, and we should expect that a

positive amount of work is needed to assemble this charge configuration. Indeed, the

overall sign of (4.11) is positive in this case. However, if pA and pB are parallel and

point in the same direction, then they experience an attractive force, so it should

take a negative amount of work to assemble this charge configuration. The sign

predicted by (4.8) is again consistent with this intuition.

The nature of elastic step-step interactions implies that two steps of the same

sign exert a repulsive force on each other. To illustrate this effect, it helps to think

of a stepped surface as a continuous elastic medium. In the absence of any other

steps, a single step on such a medium would decay to a smoother, flat profile,

just as an initial injection of dye into a clear solution would eventually diffuse to

uniform concentration. The relaxation of a single step is frustrated by the presence

of neighboring steps. Effectively, each pair of same-sign steps experiences a mutually

repulsive force. This repulsive interaction between steps of the same sign, in marked

contrast to the attractive interaction between parallel electric dipoles, indicates that

(4.8) needs to be replaced by its counterpart from linear elasticity before proceeding.

The reader who is already familiar with the theory of defect interactions in

linear elasticity should consult [21, 56, 93] to find a more thorough discussion of the
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correct formulas describing interacting line defects on a crystal surface. We appeal

to the calculation given by Pimpinelli and Villain [93] for the interaction energy

of two force dipoles. By analogy with (4.1), they define a force dipole moment m

resulting from a set of forces FR acting at points R:

mαγ =
∑

R

RαF
γ
R (α, γ = x, y, z). (4.9)

Two such force dipoles, m and m′, are calculated to have an interaction energy

Wint =
1− ζ2

πY r3

[
mm′ − ζ

1− ζ
(mm′

zz +mzzm
′) +

(
ζ

1− ζ

)2

mzzm
′
zz

]
, (4.10)

where Y is the Young modulus, ζ is the Poisson coefficient, and r is the separation

between the two dipoles. The dominant term in (4.10) is the product mm′, since

the Poisson coefficient is always smaller than 1/2 [93]. This inequality suggests that

(4.10) can be viewed as a series expansion in powers of the small material parameter

ζ/(1− ζ). For the purposes of calculating the total interaction energy between two

steps, we restrict our attention to the truncated version of (4.10), which reads

Wint =
1− ζ2

πY r3
mm′ +O[ζ/(1− ζ)]. (4.11)

In order to apply (4.11), the dipole moments m and m′ are measured with

respect to a fixed coordinate system. In particular, the interaction energy between

non-parallel step segments involves the projection (or inner product) of one dipole

moment onto the other.
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4.2 Integral for the energy of interacting steps

In light of the rotational symmetry (see Figure 3.2), it suffices to fix our

attention on the interaction between a line element on the inner step and the net

strain field induced by the outer step. By superposition, we can calculate the energy

per unit length of the inner step by applying (4.11) for each line element on the outer

step. We recall that the dipole moment is proportional to the length of the line

element, and its contribution to elastic interactions arises through the step-normal

component (radially outward). Using Cartesian coordinates, the interacting dipoles

are located at (r1, 0) and (r2 cos θ2, r2 sin θ2). Their respective xx dipole moments

are

m = Pr1dθ1

m′ = P cos θ2r2dθ2, (4.12)

where P is the dipole moment per unit length associated with an atomic-height step.

The squared distance between the two dipoles is

r2 = r2
1 + r2

2 − 2r1r2 cos θ2. (4.13)

We calculate the product required by (4.11) for step-step interactions:

mm′ = P 2 cos θ2r1dθ1r2dθ2. (4.14)

The interaction energy per unit length is given by the integral

dW

r1dθ1

= P 2

∫ π

−π

cos θ2 · r2dθ2

(r2
1 + r2

2 − 2r1r2 cos θ2)3/2
. (4.15)
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Motivated by the physically reasonable assumption that the step separation is

much less than the two individual step radii, we seek a simplified integral in which

the dependence on step separation becomes more obvious. We set r2 = r1 +ρ, where

the inner radius r1 = ε−1 defines a “large” length scale, and the step separation ρ is

considered only O(1). Our task now is to compute

I = 2

∫ π

0

cos θ2

(ε−2 + (ε−1 + ρ)2 − 2ε−1(ε−1 + ρ) cos θ2)3/2
r2dθ2. (4.16)

In the following calculation we omit the subscript of θ2 for brevity, keeping in

mind that the only varying angle refers to the position on the step of radius r2. We

expand the denominator of (4.16), arriving at the simplified formula

I =

∫ π

0

cos θ

[ρ2 + 2(ε−2 + ε−1ρ)(1− cos θ)]3/2
r2dθ. (4.17)

Note that this integral can be computed in terms of complete elliptic integrals, but

the resulting formulas are not instructive for our purposes.

Now we use the substitution s := sin(θ/2), so that

cos θ = 1− 2s2, (4.18)

dθ =
2ds√
1− s2

. (4.19)

After this change of variables, the interaction energy is given by

I = 2r2

∫ 1

0

ds√
1− s2

1− 2s2

[4(ε−2 + ε−1ρ)s2 + ρ2]3/2
. (4.20)

We define the macroscopic length parameter λ by

λ2 := 4(ε−2 + ε−1ρ). (4.21)
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Notice that in the limit of small step separation (ερ � 1), applying the binomial

expansion to the square root of (4.21) yields

λ = 2ε−1(1 + ερ)1/2

≈ 2ε−1(1 + ερ/2)

= 2ε−1 + ρ = r1 + r2. (4.22)

Already we see a possible origin of the denominator r1 + r2 in the formula (3.36),

and the geometric condition under which the replacement for λ is valid. We proceed

with the calculation by substituting λ into (4.20).

I = 2r2

∫ 1

0

ds√
1− s2

1− 2s2

[λ2s2 + ρ2]3/2
(4.23)

= 2r2

∫ 1

0

ds√
1− s2

1− 2s2

λ3
[
s2 +

(
ρ
λ

)2]3/2
. (4.24)

Now we introduce the small parameter δ := ρ/λ. The integral becomes

I =
2r2
λ3

∫ 1

0

ds√
1− s2

1− 2s2

[s2 + δ2]3/2

=
2r2
λ3

∫ 1

0

ds√
1− s2

−2(s2 + δ2) + 2δ2 + 1

[s2 + δ2]3/2

=
2r2
λ3

∫ 1

0

ds√
1− s2

[
2δ2 + 1

(s2 + δ2)3/2
− 2

(s2 + δ2)1/2

]
. (4.25)

Notice that by regarding δ and s as independent, the partial fraction decom-

position (4.25) reduces our problem to that of calculating a single integral, namely,

Ic(δ
2) =

∫ 1

0

ds√
1− s2

1√
s2 + δ2

. (4.26)

The subscript c recalls the underlying circular geometry. The desired interaction

energy per unit length is then given by the identity

I =
2r2
λ3

[
−2(2δ2 + 1)

d

d(δ2)
− 2

]
Ic(δ

2). (4.27)
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Our motivation for writing I in this way stems from the method of asymptotic

expansion we want to use in the limit δ → 0. The integral for elastic interaction

between circular steps can actually be given in terms of complete elliptic integrals,

which have well-studied asymptotic expansions for small values of the parameter

δ [19]. Keeping in mind the eventual application of our method to settings without

axisymmetry, we opt to follow a more general procedure, using the Mellin transform

with respect to δ2. When we apply this technique, we must evaluate double integrals

with respect to s and δ2. The calculation of these double integrals using the Fubini

theorem (coming next) is greatly simplified if we omit at the very beginning any

trivial δ-dependence, such as multiplicative factors.

4.2.1 Mellin transform of the axisymmetric integral

To approximate the behavior of Ic(δ
2) for δ � 1, we resort to the Mellin

transform in δ2. This variant of the Laplace transform has proved useful in many

fields of applied mathematics since the 1980s, especially in asymptotic evaluation

of integrals; see [100] for a review. The Mellin transform f̂(ζ) of a function f(x) is

given by

f̂(ζ) =

∫ ∞

0

x−ζf(x)dx, a < Reζ < b, (4.28)

where the domain of f̂ is restricted to ensure convergence of the integral; see Ap-

pendix A for details.

The inversion formula is

f(x) =
1

2πı

∫ α+ı∞

α−ı∞
xζ−1f̂(ζ)dζ, (4.29)
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where a < α < b so that f̂ is defined for ζ along the integration path.

We apply these formulas to the function Ic as follows.

Îc(ζ) =

∫ ∞

0

dδ2Ic(δ
2)(δ2)−ζ (4.30)

=

∫ ∞

0

dδ2(δ2)−ζ

∫ 1

0

ds√
1− s2

1√
s2 + δ2

(4.31)

=

∫ 1

0

ds√
1− s2

(∫ ∞

0

dδ2 (δ2)−ζ

√
s2 + δ2

)
. (4.32)

For the inner integral, we pull out a factor of s from the denominator and let

ξ := δ2/s2, treating s2 as a fixed nonzero parameter. This change of variables leads

to

Îc(ζ) =

∫ 1

0

ds√
1− s2

(s2)1/2−ζ

∫ ∞

0

dξ
ξ−ζ

√
1 + ξ

, (4.33)

and the rightmost integral can be evaluated in terms of Gamma functions [1]. We

have the formula ∫ ∞

0

dξ
ξ−ζ

√
1 + ξ

= B(1− ζ, ζ − 1/2), (4.34)

where the Beta function B is more conveniently written as

B(z, w) =
Γ(z)Γ(w)

Γ(z + w)
, (4.35)

and Γ denotes the Gamma function.

Applying these formulas to the Mellin transform Îc yields

Îc(ζ) =
Γ(1− ζ)Γ(ζ − 1/2)

Γ(1/2)

∫ 1

0

ds
(s2)1/2−ζ

√
1− s2

(4.36)

=
Γ(1− ζ)Γ(ζ − 1/2)

Γ(1/2)

∫ 1

0

d(s2)

2s

(s2)1/2−ζ

√
1− s2

(4.37)

=
Γ(1− ζ)Γ(ζ − 1/2)

Γ(1/2)

∫ 1

0

d(s2)
(s2)−ζ

√
1− s2

, (4.38)
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and again the rightmost integral admits a representation in terms of the Beta func-

tion. From p. 258 of [1],

∫ 1

0

dt
t−ζ

√
1− t

= B(1− ζ, 1/2) =
Γ(1− ζ)Γ(1/2)

Γ(3/2− ζ)
. (4.39)

So the Mellin transform of Ic(δ
2) is concisely expressed as

Îc(ζ) =
1

2

Γ(1− ζ)2Γ(ζ − 1/2)

Γ(3/2− ζ)
, (4.40)

a meromorphic function of ζ. The fundamental strip where the integral (4.32)

converges is found to be 1
2
< Reζ < 1.

4.2.2 Asymptotic expansion using the inverse Mellin transform

Recall that the only singularities of Γ(z) are poles at the nonpositive integers.

Thus, the line integral prescribed by the inverse Mellin transform can be found by

applying the residue theorem. The sum of these residues is a power series in δ2,

with the possible presence of logarithmic terms.

The inverse Mellin transform applied to Îc reads

Ic(δ
2) =

1

2πı

∫ α+ı∞

α−ı∞
dζ(δ2)ζ−1Îc(ζ),

1

2
< α < 1. (4.41)

The leading-order term comes from the residue at the closest pole to the right

of the fundamental strip, or ζ = 1 in the present case. To approximate the Gamma

functions near ζ = 1, we make the substitution ε = 1− ζ ⇔ ζ = 1− ε. Then

Îc(ζ) =
Γ(ε)2Γ(1

2
− ε)

Γ(1
2

+ ε)
. (4.42)
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As ε→ 0, we have

(δ2)−εÎc(ζ) ∼ (1− ε ln δ2)

(
1

ε
− γ

)2 Γ(1
2
)[1− εΨ(1

2
)]

Γ(1
2
)[1 + εΨ(1

2
)]

(4.43)

∼ (1− ε ln δ2)

(
1

ε2
− 2γ

ε

)
[1− 2εΨ(

1

2
)] (4.44)

∼ (1− ε ln δ2)

[
1

ε2
− 2

Ψ(1
2
) + γ

ε

]
, (4.45)

where γ is Euler’s constant and Ψ denotes the logarithmic derivative of Γ, i.e.,

Ψ(z) = d/dz(ln Γ(z)) [1].

Reading off the coefficient of ε−1 in the Laurent series given by (4.45), we find

the residue contribution from ζ = 1 to be −2Ψ(1
2
) − 2γ − ln δ2 = 4 ln 2 − ln δ2 =

ln(16/δ2). To leading order, the original integral Ic behaves like ln(16/δ2) for small

values of δ.

Substituting ln(16/δ2) for Ic in (4.27), we find

I(δ2) ∼ −4r2
λ3

[
ln

16

δ2
− 1

δ2
− 2

]
∼ 4r2
λ3δ2

. (4.46)

In terms of the step radii, (4.46) reads

dW

r1dθ1

∼ 4P 2r2
(r2 + r1)(r2 − r1)2

, (4.47)

in agreement with the inverse-square dependence on r2 − r1 and the shape factor

r2/(r2 + r1) given in [113].

4.2.3 Corrections to the leading-order term under axisymmetry

It is of interest to note that corrections to the leading-order term (4.47) in

principle arise from several different places. First, the inverse Mellin transform
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could be better approximated by including the residues from poles beyond ζ = 1.

This direction is summarized below. Secondly, by retaining higher-order terms in

(4.10) or (4.46), we obtain other corrections, whose magnitude in relation to the

first correction is not known a priori. Finally, the superposition of strain fields from

different line elements on the two steps is justified only in the context of linear

elasticity. We have not addressed the validity of this linear regime in real crystal

surfaces.

The contribution from the pole ζ = 2 is found by writing expansions in ε :=

2− ζ, which parallel the derivation above. We find

Γ(1− ζ)2Γ(ζ − 1
2
)

Γ(3
2
− ζ)

∼
[

1

ε2
+

2(1− γ)

ε

]
Γ(3

2
)[1− εΨ(3

2
)]

Γ(−1
2
)[1 + εΨ(−1

2
)]

∼ −1

4

[
1

ε2
+

2(1− γ)

ε

]
(1− ε[Ψ(3/2) + Ψ(−1/2)])

∼ − 1

4ε2
− 2 ln 2− 1

2ε
. (4.48)

Multiplying (4.48) by (δ2)ζ−1 = (δ2)1−ε ∼ δ2 · (1− ε ln δ2) furnishes the residue

contribution from ζ = 2. This residue contribution,

1

4
δ2

(
ln
δ2

16
+ 2

)
, (4.49)

is added to the previous expansion for Ic, which upon substitution in (4.27) yields

I ∼ 4r2
λ3δ2

+
5r2
λ3

− 4r2δ
2

λ3
− 3r2δ

2

λ3
ln
δ2

16
+

3r2
λ3

ln
δ2

16
. (4.50)

We see that in addition to the inverse-square dependence on δ, algebraic and

logarithmic correction terms are needed to characterize the asymptotic behavior

of the integral for interaction energy between concentric circular steps. We alert
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the reader that pursuing further corrections may be inappropriate: higher-order

corrections may be comparable or smaller in magnitude than the terms omitted

from our starting point, (4.10). Thus we choose not to seek more corrections of the

integral I at this point.

4.3 Elastic interaction energy between steps without axisymmetry:

A brief discussion

Our Mellin transform manipulations of the axisymmetric integral (4.26) could

have been bypassed in favor of elliptic integrals and their asymptotic expansions, if

our only goal was to compare the result with the interaction energy formula given

in [113]. The worth of the Mellin transform is better demonstrated by indicating how

this transform can be applied to the integral for elastic dipole interactions between

steps of reasonably general shape, i.e., without axisymmetry. We still regard the

steps as small perturbations of a circle, which allows them to be described as polar

graphs r = r(sin(θ/2)), θ: polar angle. The substitution s := sin(θ/2) is used exactly

as above to simplify the integrand. In Figure 4.1 we illustrate two neighboring steps

restricted to a circular sector around θ = 0. The inner step admits the polar

representation r = r1(s), while the outer step is given by r = r2(s).

In order to quantify the deviation of these steps from circles, we let

r2(s) = r1(s) + ρr(s), (4.51)

r1(s) = ε−1ψ(s), (4.52)

where ρ = O(1) > 0, r(s) = O(1), ψ(s) = O(1), and ε � 1. Here ε−1 denotes
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Figure 4.1: Geometry of neighboring steps without axisymmetry, parametrized by

r1(s) and r2(s). We define s := sin(θ/2) to convert trigonometric functions of θ into

algebraic functions of s.
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the characteristic length scale, roughly analogous to the radius of circular steps. In

addition, we assume ψ(s), r(s) ∈ C1(−1, 1), so that the tangent vector at each point

on the two steps is well defined.

A crucial quantity to calculate is the distance R between points on the two

steps, which enters as R3 in the denominator of the elastic interaction energy inte-

grand. We have

R2 = r2(s)
2 + r1(0)2 − 2r1(0)r2(s) cos θ (4.53)

= ε−2{[ψ(s)− ψ(0)]2 + 4s2ψ(0)ψ(s)}+ 2ε−1ρr(s)[ψ(s)− ψ(0) + 2ψ(0)s2] + ρ2r(s)2.

(4.54)

Because ψ, r are assumed to be C1, using Taylor series about s = 0 we can

define the C0 functions ψ, r by

ψ(s)− ψ(0) =: sψ(s), (4.55)

r(s)− r(0) =: sr(s). (4.56)

After adding and subtracting ψ(0), r(0) as needed, we find

R2 = ε−24ψ(0)2s2 + 4ε−1ρr(0)ψ(0)s2 + ρ2r(0)2

+ ε−2[ψ(s)2 + 4sψ(s)ψ(0)]s2 + 2ε−1ρs{r(s)[sψ(s) + 2ψ(0)s2] + r(0)ψ(s)}

+ ρ2s[2r(0)r(s) + sr(s)2]. (4.57)

In order to factor out the coefficient of s2, we define

A(s) := {4[ε−2ψ(0) + ε−1ρr(0)]ψ(0)}−1×(
ε−2[ψ(s)2 + 4sψ(s)ψ(0)]s+ 2ε−1ρ{r(s)[sψ(s) + 2ψ(0)s2] + r(0)ψ(s)}

+ ρ2[2r(0) + sr(s)]r(s)
)
. (4.58)
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Then

R2 = 4[ε−2ψ(0)+ε−1ρr(0)]ψ(0)

{
s2 + sA(s) +

ρ2r(0)2

4ψ(0)[ε−2ψ(0) + ε−1ρr(0)]

}
, (4.59)

where A(s) ≤ O(1).

To follow as closely as possible the notation of the axisymmetric case, we define

the parameters

δ2 :=
ρ2r(0)2

4ψ(0)[ε−2ψ(0) + ε−1ρr(0)]
, (4.60)

λ2 := 4[ε−2ψ(0) + ε−1ρr(0)]ψ(0), (4.61)

which feature in the asymptotic expansion of the integral for elastic interaction en-

ergy. In terms of δ and λ, the squared distance between points with (s, r) coordinates

(0, r1(0)), (s, r2(s)) is

R2 = λ2{s2 + δ2 + sA(s)}. (4.62)

We note that the breaking of axisymmetry enters here through the term sA(s), which

accounts for the curvature variation when steps deviate from circles. The geometry

of Figure 4.1 is deceptive in its simplicity. We have chosen a coordinate system such

that the vector normal to step 1 at s = 0 is aligned with the x-axis. By following the

procedure of the axisymmetric case, we still obtain an elastic interaction energy per

unit length, but now we cannot immediately generalize the resulting formula to other

points along step 1. In principle, a different calculation with different definitions

of A(s), δ, and λ is required for each point on step 1. Despite this shortcoming,

we expect the qualitative features of our interaction energy formula, in particular

the inverse-square dependence on local step separation, to persist no matter which
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point on the inner step is used to orient the Cartesian coordinate system.

Below we outline the calculation for reasonably general 2D steps. A complete

exposition of all the details would distract from the main point of this thesis (and

chapter) and is hence omitted for the sake of clarity.

For simplicity, we write the integral over step 2 (which in principle requires s

to range over [−1, 1]) as two separate integrals,

dWint

r1dθ1

=
1− ζ2

πY
P 2

(∫ π

0

+

∫ 0

−π

)
sin θdr2/dθ + r2 cos θ

(r2
1 + r2

2 − 2r1r2 cos θ)3/2
dθ, (4.63)

where P is the dipole moment per unit length of an atomic-height step. The first

integral considers the energetic contributions given by (4.11) for θ ranging from 0 to

π. The evaluation of the second integral is essentially not different and is therefore

omitted. We now face the task of calculating

I2D =

∫ π

0

sin θdr2/dθ + r2 cos θ

(r2
1 + r2

2 − 2r1r2 cos θ)3/2
dθ, (4.64)

The numerator in (4.64) stems from the inner product of the two vectors normal to

step 1 at s = 0 and normal to step 2 at s = sin(θ/2).

We expand the numerator in (4.64), substituting the definitions of δ2,λ2, and

A(s) wherever possible. After grouping terms according to the highest power of s

they contain as a factor, we reduce our problem to calculating integrals of the form

Ik(ρ
2) := 2

∫ 1

0

skBk(s)

[A(s)s2 + ρ2r(s)2]3/2

ds√
1− s2

, (4.65)

where Bk(s ↓ 0) 6= 0 and A(s ↓ 0) 6= 0 and r(s ↓ 0) 6= 0.

We alert the reader that (4.65), unlike (4.26), in general cannot be evaluated in

terms of elliptic integrals, especially since we don’t know much about the behavior
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of A(s), r(s), or Bk(s). However, the Mellin transform with respect to ρ2 does not

need to know about these functions, since the main dependence on ρ2 is already

accounted for in (4.65). We apply (4.28) to (4.65), which yields

Îk(ζ) = 2

∫ ∞

0

d(ρ2)(ρ2)−ζ

∫ 1

0

skBk(s)

[A(s)s2 + ρ2r(s)2]3/2

ds√
1− s2

. (4.66)

We apply Fubini’s theorem to (4.66) in order to switch the order of integration.

The integral with respect to ρ2 can be evaluated in terms of Gamma functions, which

entails

Îk(ζ) = 2
Γ(1− ζ) · Γ(3

2
+ ζ)

Γ(5
2
)

∫ 1

0

ds√
1− s2

sk−2ζ−3Bk(s)A(s)−ζ−3/2

[r(s)2]−ζ+1
. (4.67)

This integral converges for

{ζ ∈ C : Re(−k + 2ζ + 3) < 1} = {ζ ∈ C : Reζ < −1 + k/2}, (4.68)

assuming that A(s), r(s) 6= 0 as s ↑ 1 and similarly for Bk, A, r as s ↓ 0. For each

integral Ik, the leading-order term comes from expanding the Mellin transform near

ζ = αk = k−2
2

. In the case where Îk has a simple pole at αk, we have to compute the

residue at the next pole on the right. This residue requires us to find an analytical

continuation of Îk outside the fundamental strip of convergence, which is achieved

via integration by parts.

After the required residues have been computed, we apply the inverse Mellin

transform to determine the expansion of Ik as an extended power series in ρ. We

find again that to leading order dWint/r1dθ1 depends on ρ−2, the inverse square of

nearest-neighbor separation between steps. The correction terms involve logarithms

and higher powers of ρ. We reiterate that the magnitude of these corrections in
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relation to the omitted terms in (4.10) involving the Poisson ratio is not known a

priori. Adding the corrections from the residues at more distant poles of Îk might not

be enough to ensure agreement of our formula with the elastic energy of a stepped

surface. The cross-terms of (4.10) might prove more important in the correction of

our leading-order result.

For the purposes of this thesis, it is sufficient to note that the elastic inter-

action energy between two neighboring steps decays as the inverse square of their

separation along the transverse direction. The prefactor of this leading-order term

depends only on the values of the local coordinates and their derivatives, e.g., the

factor B0(0)A(0)−1/2/r(0)4 which appears in the expansion of I0(ρ) [71]. This re-

sult is similar to the step interaction formula used by Margetis and Kohn [66], who

postulated a geometrical factor Φ(·, ·) to account for the possible variation of step

curvature. Here we do not attempt to make an explicit connection between the Φ

of [66] and the corresponding coefficient of our extended power series in ρ. This

coefficient in our extended power series depends in principle on which point of step

1 we use to orient our Cartesian coordinates. In contrast, the Φ of [66] depends only

on the transverse coordinates ηi, ηi±1. Compatibility conditions between these two

formulas are not pursued further, since the macroscopic limit eventually averages

out any microscopic discrepancies in the interaction energy.

In this section we have summarized a rather substantial calculation, which

derives the leading-order term of the elastic interaction energy between reasonably

arbitrary 2D steps. The macroscale limits we derive in the next three chapters are

not sensitive to the exact coefficient of this leading-order term. It suffices to note

63



that the calculations above offer a convincing demonstration of the step separation

dependence typically assumed for elastic interaction energy. This inverse-square

dependence is used in Chapter 5 to derive a formula for the macroscale chemical

potential, which remains invariant under changes in the kinetic processes operating

at the nanoscale.
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Chapter 5

Review of equations for interacting steps in 2+1 dimensions, and

macroscale limit1

In this chapter, we describe a model of interacting steps in 2+1 dimensions

when the adatom diffusion is isotropic on each terrace. Then, we review the deriva-

tion of a macroscale evolution equation for the relaxation of a stepped crystal sur-

face. A remarkable feature of the macroscopic description is that the effective sur-

face mobility (or diffusivity) is strictly a tensor. The step-normal and step-parallel

components of the macroscale surface flux scale differently as functions of the corre-

sponding components of the chemical potential gradient. This prediction of a tensor

mobility appears only as a result of coarse-graining the equations for step flow. Pro-

ceeding by analogy with the macroscale equation of 1-dimensional stepped surfaces

would suggest a scalar mobility instead [64, 108].

We note that the tensor character of the mobility only manifests itself in

the regimes of attachment-detachment limited (ADL) or mixed kinetics. Our pre-

dictions for surface relaxation subject to diffusion-limited (DL) kinetics would be

indistinguishable from the predictions of a theory with scalar mobility.

1Material in this chapter appeared previously in Quah and Margetis, J. Phys. A: Math. Theor.

41, 235004/1–18.
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Figure 5.1: Orthogonal projection of step edges.

5.1 Geometry of a step train in 2+1 dimensions

In the spirit of the BCF theory [10], the edges of steps are projected to closed,

noncrossing, and non-self-intersecting curves in a reference (basal) plane, where

positions are indicated using fixed coordinates (x, y); see Fig. 5.1. These curves

must possess x- and y-derivatives up to second order, so that the curvature, tangent

vector, and normal vector are well-defined at each point on a curve. We treat the

curves corresponding to step edges as moving boundaries for the adatom diffusion

of each terrace.

Numbering the steps i = 0, 1, 2, . . ., starting from the topmost step, we identify
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the ith step with the boundary of the compact set {(x, y) : h(x, y, t) ≥ hf (t)− ia}.

(Recall that hf (t) denotes the maximum height at time t, whether achieved at an

isolated point or on a facet.) The ith step is in general a one-dimensional level

set, and defining it in terms of fixed coordinates x and y is not always the most

convenient option. We introduce local coordinates (η, σ) associated with the steps

to describe the surface profile. The local coordinate η is roughly analogous to the

radius in polar coordinates and increases monotonically as we descend the step train.

In these new coordinates, the ith step corresponds to the set {η = ηi} in the basal

plane. The variable η serves as a continuous analog of the discrete step index i.

Positions between step i and step i + 1 can be assigned η-coordinates from the

set ηi < η < ηi+1, which is a local-coordinate description of the ith terrace. The

local coordinate σ, analogous to the polar angle θ, measures the distance along a

step edge; to be definite, we choose σ to increase counterclockwise (top view). By

construction, the level sets of η and σ intersect at right angles; the associated unit

vectors eη and eσ are orthogonal, eη · eσ = 0. The reader is referred to [66] for more

details.

For a fixed surface height profile, positions in the basal plane can be specified

by their η and σ coordinates. If the height profile evolves in time, the mapping

from local coordinates to fixed coordinates via r : (η, σ) 7→ (x, y) ∈ R2 can be

viewed as a function of the time t. From this coordinate transformation we obtain

two scale factors (metric coefficients) associated with the step coordinates. These

metric coefficients, which appear when we compute spatial derivatives in (η, σ), are
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[5]

ξη := |∂ηr|, ξσ := |∂σr|. (5.1)

A typical geometry of interest occurs when a mound or valley described by a given

collection of steps projects onto a bounded rectangular region B in the basal plane.

Periodically extending the height profile from B to all of R2 creates a mathemat-

ical representation of a regular surface corrugation. In this periodic setting, the

monotonicity of the step train is violated in certain regions. We expect on physical

grounds that solutions of the macroscale evolution law, known to be valid where

the step train is monotonic, can be connected continuously across regions where

monotonicity is violated. We consider periodic surface profiles in our subsequent

numerical investigations in Chapter 10. The step geometry outlined here remains

unaltered when we consider terrace anisotropy in Chapter 6.

5.2 BCF model with step interactions in 2+1 dimensions

Proceeding in the same vein as in the case of everywhere parallel steps, we

denote by Ci the adatom density on the ith terrace, ηi < η < ηi+1. This Ci satisfies

a diffusion equation, which under the quasi-steady approximation reads

0 = div(Dad · ∇Ci), (5.2)

where Dad is in principle a tensor (2 × 2 matrix) diffusivity and ∇ = eηξ
−1
η ∂η +

eσξ
−1
σ ∂σ) is the gradient on the basal plane. We define the adatom flux as

Jad
i = −Dad · ∇Ci, (5.3)
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which is Fick’s law of diffusion in the absence of drift.

Note that (5.2) amounts to the most elementary description of surface relax-

ation by adatom diffusion, leaving out the effects of atom desorption, electromigra-

tion, and material deposition from above. These effects can be modeled by additive

terms in (5.2), as we discuss in Chapter 8 (for desorption and electromigration). For

the purposes of this chapter, (5.2) along with requisite boundary conditions at step

edges are enough to illustrate the contrast between (1+1)- and (2+1)-dimensional

surface morphological evolution.

Robin boundary conditions at the boundaries (step edges) of the ith terrace

complement (5.2) to yield a unique solution for Ci. By analogy with the boundary

conditions for everywhere parallel steps, we expect that the flux normal to a step

edge is proportional to the difference between the actual adatom density and the

equilibrium adatom density. So, we consider only the component Jad
i,⊥ := eη · Jad

i

when writing the linear kinetic boundary conditions:

−Jad
i,⊥(ηi, σ, t) = ku[Ci(ηi, σ, t)− Ceq

i (σ, t)], (5.4)

Jad
i,⊥(ηi+1, σ

′, t) = kd[Ci(ηi+1, σ
′, t)− Ceq

i+1(σ
′, t)], (5.5)

where ku, kd are kinetic rates that account for the Ehrlich-Schwoebel barrier [17, 105]

and Ceq
i (σ, t) is the equilibrium density at the ith step edge.

The relation between Ceq
i and the chemical potential of the ith step is precisely

the same as in 1+1 dimensions, but now the chemical potential µi depends on the

coordinate σ as well:

Ceq
i (σ) = Cs exp

µi(σ)

kBT
∼ Cs

[
1 +

µi(σ)

kBT

]
. (5.6)
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The step chemical potential formula for arbitrary surface morphology, derived in

[66] by a differential geometry calculation, expresses in 2+1 dimensions the combi-

nation of interaction energy and step line tension, which we first saw together in the

axisymmetric setting. The result reads [66]

µi =
Ω

a

(
1

ξη
∂ηi
Ui + κiUi

)
, (5.7)

where Ω is the atomic volume, Ui is the total energy per length of the ith step edge

and κi is the step edge curvature. We identify two contributions to Ui [66]:

Ui = β + U int
i , (5.8)

where β is the step line tension, assumed here to be constant, and U int
i is the

interaction term which depends on σ and the step positions {ηj}. For a surface with

sufficiently small slope and nearest-neighbor interactions that decay as the inverse

square of the terrace width, U int
i is [66]

U int
i = Vi,i+1 + Vi,i−1, (5.9)

Vi,i+1 =
g

3
m2

i Φ(ρi, ρi+1), ρi :=

∫ ηi

η0

ξηdη, mi :=
a

ρi+1 − ρi

, (5.10)

where g > 0 is a constant quantifying the strength of step interactions, ρi corre-

sponds to the radial distance in polar coordinates, mi is the discrete step density,

and Φ is a shape factor; note that Φ(ρi, ρi) is a constant, independent of the distance

ρi [66]. The important feature of (5.10) is the inverse-square dependence on step

separation, which follows from the elastic interaction formulas of Chapter 4. As

we saw in Chapter 4, the calculation of a shape factor even in the special case of

axisymmetry requires a substantial amount of analysis. We alert the reader that
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(5.10) is an approximation, omitting the σ dependence of the prefactor to avoid

unwarranted complications in the subsequent coarse-graining.

An alternative definition of the step chemical potential invokes the total energy,

Esteps, of a step train in 2+1 dimensions. Each step contributes a line tension energy

in proportion to its total arclength, because it takes energy to create the line defect

of a step on a crystal surface. Moreover, the repulsive interaction between a step and

its same-sign neighbors also adds to the total energy Esteps. Recall from Chapter 3

that the existence of a step introduces a mechanical strain field in the crystal. This

strain field can be modeled as the result of a force dipole located at each point along

the step. Each pair of neighboring step segments contributes an elastic interaction

energy given by the energy of two interacting force dipoles, for example the dipoles

dsieη|i, dsi+1eη|i+1. In addition, neighboring steps exert an entropic repulsion on

each other. We consolidate these contributions into a single integral over the ith

step, and then sum over the step train to obtain

Esteps =
∑

i

∫
Li

(β + Vi,i+1)ds. (5.11)

To determine the step chemical potential µi, we need to know the number

of additional atoms required at the ith step to effect a given change in step train

energy. The normal displacement vi(σ)∆t at each position σ along the ith step will

require the addition of enough atoms to cover an area of
∫

Li
vi(σ)∆tds. The typical

cross-sectional area of an atom is Ω/a. According to the definition of step chemical

potential, these additional atoms at the ith step will change the total energy by an

amount 1
Ω/a

∫
Li
vi(σ)µi(σ)ds∆t. Summing up the contributions from every step to
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determine the change in total energy, ∆E = Ėsteps∆t, yields a weak formulation of

the step chemical potential, µi. We equate the sum over all steps with the direct

calculation of Ėsteps using (5.11). The result is

Ėsteps =
1

Ω/a

∑
i

∫
Li

viµi(σ)ds. (5.12)

We will use this weak formulation of the step chemical potential when deriving the

macroscale limit in Section 5.4.2.

Before giving the final equations connecting the chemical potential to the step

velocities, we take a moment to identify which of the preceding relations will carry

through unchanged when we consider extensions of the terrace adatom kinetics. The

definitions of local coordinates and metric coefficients, as noted above, will persist in

their present form. In addition, the definitions of Ceq
i and µi are independent of the

adatom kinetics on terraces, so their formulation here will carry through unaltered to

the study of anisotropic terrace diffusion (Chapter 6) and electromigration (Chapter

8).

Lastly, we present the step velocity law in 2+1 dimensions. By including

diffusion of atoms along the step edge with constant edge diffusivity Ded, the normal

velocity of the ith step edge is [82]

vi = eη ·
dri

dt
=

Ω

a
(Jad

i−1,⊥ − Jad
i,⊥) + a∂s

(
Ded∂s

µi

kBT

)
, (5.13)

where ∂s is the space derivative along a step edge; ∂s = ξ−1
σ ∂σ. The first term

in (5.13) is the contribution of terrace adatom fluxes. The second term is due to

step edge diffusion and stems from the variation of the step chemical potential, µi.

We reason that the same µi has to be used both in edge diffusion and in Ceq
i by
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virtue of the fact that µi controls the equilibrium shape of a step. This equilibrium

shape should be the same regardless of which kinetic pathway (edge diffusion or

attachment-detachment) is operative in the deformation of the step shape. So, if

mass exchange with the terrace is turned off and relaxation occurs via edge diffusion,

the step attains the same shape as in the case where edge diffusion is turned off and

relaxation is allowed only by attachment-detachment kinetics. This property implies

that the thermodynamic driving force has to be the same chemical potential, µi, in

both cases [54].

Equations (5.2)–(5.13) in principle constitute a system of coupled differential

equations for the step positions. As a discrete scheme of step flow, this system

has been implemented numerically only in the case of straight or axisymmetric step

trains. In this chapter we focus on (2+1)-dimensional settings where

Ded = 0 (5.14)

and Dad is a scalar constant.

5.3 Approximations for slowly varying step train

We see from (5.13) that the adatom flux Jad
i plays a pivotal role in connecting

the step normal velocity vi to the step chemical potential. By solving approxi-

mately the diffusion equation (5.2) following [66], we write an explicit formula for

the adatom flux.

We review the assumptions underlying the approximate solution of (5.2) sub-

ject to (5.4),(5.5). We assume that the boundary data Ceq
i varies more rapidly with
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the step index i than the longitudinal coordinate σ. The slow variation in σ should

also be expected of the solution for adatom density. We treat the derivative ∂σ as

O(ε) in comparison to the derivative ∂η, which is treated as O(1); ε� 1. A possible

geometric interpretation of ε is the ratio a/R where R = O(λ) is a typical radius of

curvature for steps and λ is a suitable macroscopic length [66]. Once the macroscale

surface flux is derived, the assumptions for the η and σ derivatives are relaxed: both

derivatives are allowed to be O(1).

By neglecting the σ derivatives in (5.2), for constant Dad the diffusion equation

for Ci reduces to

∂η

(
ξσ
ξη
∂ηCi

)
≈ 0 , (5.15)

which has the explicit solution

Ci ≈ Ai(σ, t)

∫ η

ηi

ξη
ξσ

dη′ +Bi(σ, t) ηi < η < ηi+1 , (5.16)

where Ai and Bi are integration constants to be determined via the boundary con-

ditions (5.4), (5.5). A more systematic description of this procedure is offered in

Chapter 8.

For isotropic adatom diffusion [66] with (scalar) diffusivity Dad the vector-

valued adatom flux is computed by

Jad
i = −Dad∇Ci . (5.17)
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By use of (5.4) and (5.5), the flux components evaluated at η = ηi are

Jad
i,⊥ = −D

adCs

kBT

1

ξσ|i
µi+1 − µi

Dad
(

1
kuξσ |i + 1

kdξσ |i+1

)
+
∫ ηi+1

ηi

ξη

ξσ
dη
, (5.18)

Jad
i,‖ = −D

ad

ξσ|i
∂σ

D
ad
(

Ceq
i+1

kuξσ |i +
Ceq

i

kdξσ |i+1

)
+ Ceq

i

∫ ηi+1

ηi

ξη

ξσ
dη

Dad
(

1
kdξσ |i+1

+ 1
kuξσ |i

)
+
∫ ηi+1

ηi

ξη

ξσ
dη

 , (5.19)

where Jad
i,‖ := eσ · Jad

i .

An alternative yet equivalent derivation of the approximate solution to (5.2),(5.4),(5.5),

based on Taylor expansions at adjacent step edges [67] is reviewed in Chapter 6.

5.4 Macroscale limit with isotropic diffusion in 2+1 dimensions

In this section we present the macroscale limit of the discrete model (5.2)–

(5.13) when the physics of each terrace is isotropic (Dad = Dad: scalar) and there

is no step edge diffusion (Ded = 0). This macroscale limit is a PDE for the surface

height, one of whose possible discretizations coincides with the equations of step

flow, (5.2)–(5.13). The surface height will be shown to obey a nonlinear fourth-

order PDE.

First, we summarize the main assumptions underlying the derivation in [66].

The macroscale limit corresponds formally to taking a/λ → 0 where λ is a macro-

scopic length. We note that it is a dimensionless ratio whose magnitude tends to

zero; the macroscale limit makes no claim about physical lengths in an absolute

sense, only in relation to other lengths relevant to the crystal surface. The metric

coefficients ξσ and ξη are O(λ), while the terrace width δρi is O(a). Therefore, we

have δηi = ηi+1 − ηi ∼ δρiξ
−1
η = O(a/λ) → 0. In this limit, we must keep as fixed,
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O(1) quantities the step density mi = a/δρi and the kinetic parameters Dad/(kla)

where l = u or d.

To obtain the macroscale limit, we must identify any discrete variable Qi

defined at a step edge (η = ηi) with the evaluation of a continuous, sufficiently

differentiable function Q̃(η) at η = ηi. Thus, Qi+1 − Qi ≈ (δηi) ∂ηQ̃|i where A|i is

used in place of A(ηi) throughout. The following geometric limits made in [66] carry

through for the macroscale limit of Chapters 6, 7, and 8 as well.

(i) The step density approaches the surface slope,

mi → m = |∇h||i = O(1).

(ii) The unit vector normal to the ith step edge becomes

eη|i → eη = − ∇h
|∇h|

.

(iii) The step curvature, κi = ∇ · eη|i, approaches

κi → κ = −∇ ·
(
∇h
|∇h|

)
.

(iv) The step normal velocity, vi = eη · dri/dt, becomes

vi → v(r, t) =
∂th

|∇h|
,

the velocity of the level set with height h.

Just as in the case of relaxation above the roughening temperature, the macroscale

evolution equation consistent with the behavior of steps has three ingredients. We

consider separately (i) the macroscopic analog of Fick’s law, (ii) the formula for
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macroscale step chemical potential, and (iii) the macroscopic law of mass conser-

vation. Combining these three ingredients yields the desired PDE for the surface

height h.

5.4.1 Adatom flux

We derive the macroscale limit of the flux components (5.18) and (5.19). The

terms on the right-hand sides of these equations are replaced by series expansions

as δηi → 0. In particular, we use the expansions∫ ηi+1

ηi

ξη
ξσ

dη =
ξη|i
ξσ|i

δηi +O[(δηi)
2], (5.20)

µi+1(σ)− µi(σ) = ξη|iδηi∂ηµ|i +O(δη2
i ), (5.21)

1

ku

1

ξσ|i
+

1

kd

1

ξσ|i+1

=

(
1

ku

+
1

kd

)
1

ξσ|i
[1 +O(δηi)], δηi = ηi+1 − ηi → 0. (5.22)

The resulting macroscale limit has the form of a matrix equation involving the

adatom mobility Mad,

Jad
i |i → Jad(r, t) =

 Jad
⊥

Jad
‖

 = −CsM
ad ·

 ∂⊥µ

∂‖µ

 , (5.23)

where

Mad =
Dad

kBT

 1
1 + q|∇h| 0

0 1

 , (5.24)

∂⊥ = ξ−1
η ∂η, ∂‖ = ξ−1

σ ∂σ and the kinetic parameter q is defined by

q :=
2Dad

ka
, k−1 := (k−1

u + k−1
d )/2. (5.25)

Evidently, normal and longitudinal variations in the chemical potential contribute

with unequal weight to the respective components of the surface flux. The tensor
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mobility M reflects the fact that adatom flux normal to steps is inhibited by the

attachment-detachment process, whereas longitudinal fluxes face no such barrier.

The mobility M in (5.24) has dimensions ((length)2(time)−1(energy)−1), and the

macroscale step chemical potential µ has dimensions (energy/length).

In the basal plane’s Cartesian coordinate system, the matrix elements Mij are

found by applying the change-of-basis matrix [66, 67]

S = (eηeσ) =
1

|∇h|

−∂xh ∂yh

−∂yh −∂xh

 , (5.26)

which yields

Mxx =
Dad

kBT

(∂xh)
2

|∇h|2

[
1

1 + q|∇h|
+ α2

]
, (5.27)

Mxy = Myx = −Dad

kBT

q|∇h|
1 + q|∇h|

(∂xh)
2

|∇h|2
α, (5.28)

Myy =
Dad

kBT

(∂xh)
2

|∇h|2

[
α2

1 + q|∇h|
+ 1

]
, (5.29)

where α := ∂yh

∂xh
.

Equation (5.23) is complemented by a mass conservation statement for the

height profile h and a formula for the macroscale step chemical potential µ.

5.4.2 Macroscale step chemical potential

Next, we invoke (5.11)–(5.12) for the step chemical potential µi. First we

multiply both sides of (5.11) by the step height a:

aEsteps =
∑

i

a

∫
Li

ds
[
β +

g

3
m2

i Φ(ρi, ρi+1)
]
. (5.30)
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The sum over all steps in (5.30) can be interpreted as a quadrature scheme for the

following integral with respect to the surface height h:

lim
a→0

aEsteps =

∫
dh

∫
h=const.

ds
[
β +

g

3
Φ0|∇h|2

]
. (5.31)

Notice that the integrand in (5.31) is a function of the step index i and position

σ along the step. Because h depends monotonically on the step index, we could

consider the integrand in (5.31) as a function of h and σ. The sum over all steps

in (5.30) formally approaches the Riemann integral with respect to h as a→ 0. In

addition, the integrand of (5.11) is recast into its macroscale height counterpart,

with |∇h| in place of mi and Φ0 in place of Φ(ρi, ρi+1).

The integral in (5.31) can be evaluated more easily by a change of variables.

We apply the “coarea formula” [24], which allows us to integrate with respect to the

area element dA in the basal plane.

For any integrable function ψ(r), we have

∫
dh

∫
h=const.

dsψ(r) =

∫ ∫
dA|∇h|ψ(r). (5.32)

Using (5.32) and (5.31), we find

lim
a→0

aEsteps =

∫ ∫
dA[β|∇h|+ g

3
Φ0|∇h|3]. (5.33)

Similarly, the sum over all steps in (5.12) can be interpreted as a quadrature

scheme for the following integral with respect to surface height:
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Ėsteps =
1

Ω

∑
i

a

∫
Li

dsviµi(σ) (5.34)

lim
a→0

Ėsteps =
1

Ω

∫
h=const.

dh

∫
Li

ds
∂th

|∇h|
µ (5.35)

=
1

Ω

∫ ∫
dA|∇h| ∂th

|∇h|
µ, (5.36)

where the last equality follows from the coarea formula.

An alternative formula for Ėsteps is obtained by differentiating (5.33) with

respect to time.

lim
a→0

Ėsteps =

∫ ∫
dA

∂

∂t
[β|∇h|+ g

3
Φ0|∇h|3]

=
1

a

∫ ∫
dA

∂

∂m
[βm+

g

3
Φ0m

3]
∂m

∂t
, m := |∇h|

=
1

a

∫ ∫
dA

∂

∂m
[βm+

g

3
Φ0m

3]
∇h
|∇h|

· ∇∂th. (5.37)

We integrate (5.37) by parts to separate space and time derivatives of h. The

integration region extends to the far-field where ∂th = 0; hence, boundary terms

vanish and (5.37) reduces to

lim
a→0

aĖsteps = −
∫ ∫

dA div

{
∂m[βm+

g

3
Φ0m

3]
∇h
|∇h|

}
∂th. (5.38)

Now we compare (5.36) and (5.38), which must agree for any ∂th. We can

view ∂th as an arbitrary test function in L2(B) that vanishes on the boundary ∂B.

In none of these calculations did we assume that h solved a particular PDE. As far

as the energetic formulas are concerned, ∂th can vary independently of ∇h. In order
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for the two formulas to agree, the macroscale chemical potential must be given by

µ = −Ω

a
div

{
β
∇h
|∇h|

+ gΦ0|∇h|∇h
}
. (5.39)

For ease of notation we define g1 := β/a and g3 := gΦ0/a. An alternative derivation

of (5.39) using differential geometry on the basis of (5.7) appears in [66].

5.4.3 Mass conservation for adatoms

For Ded = 0 the step velocity law (5.13) reduces to the usual mass conservation

statement for adatoms [66]. As noted above, the step velocity vi approaches ∂th/|∇h|

in the macroscale limit. To derive the mass conservation law in the limit a/λ→ 0,

we first define a functional I[φ] which integrates the test function φ against the

normal velocity vi and sums over all steps:

I[φ] :=
∑

i

∫
Li

dsviφ|i. (5.40)

Viewing the sum (5.40) as a quadrature scheme for an integral with respect

to h, we apply the coarea formula (5.32) to obtain

I[φ] ∼ 1

a

∫ ∫
dA|∇h|vφ =

1

a

∫ ∫
dA∂thφ, a/λ→ 0. (5.41)

On the other hand, if in (5.40) we replace vi by a difference of normal fluxes

according to (5.13), the result is

I[φ] = −Ω

a

∑
i

∫
Li

ds[J · eη]|iφ|i, (5.42)

where [J · eη]|i denotes the jump (Ji(ηi, σ) − Ji−1(ηi, σ)) · eη|i,σ. Recalling that the

adatom surface current J(r, t) on the basal plane interpolates the nodal values Jad
i |i,

and divJad
i = 0 on each terrace, we have
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I[φ] = −Ω

a

∫ ∫
dA divJφ. (5.43)

Equating (5.41) and (5.43) for arbitrary test functions φ, we find the weak

formulation of adatom mass conservation:

∂th = −Ω divJ. (5.44)

An alternative derivation of (5.44) proceeds by successive integration of divJad
i−1 =

0 over a path in the (i− 1)th terrace from (ηi−1, σ + δσ) to (ηi, σ), in order to sub-

stitute for Ji−1,⊥|i,σ in terms of Ji−1,⊥|i−1,σ+δσ. The resulting formula for the jump

in the normal flux is easily recognized as a discrete scheme for calculating the di-

vergence of Jad in local coordinates, and the limit (5.44) follows in the strong sense

[66].

5.4.4 Evolution equation for surface height

By combining the equations (5.23), (5.39), and (5.44), we find a PDE for the

surface height h(r, t) [66, 67]:

∂th = −B div

{
Λad · ∇

[
div

(
∇h
|∇h|

+
g3

g1

|∇h|∇h
)]}

, (5.45)

where

Λad :=
kBT

Dad
Mad, g1 := β/a, g3 := 3gΦ0/a, B :=

DadCsg1Ω
2

kBT
. (5.46)

The consolidation of constants is chosen so thatB has dimensions (length)4/time

and Λad is dimensionless.
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5.5 Scaling ansatz for the height profile

One of the motivations for deriving the macroscale limit (5.45) is its suitabil-

ity for answering questions about the global surface morphological evolution under

certain initial data for the surface height profile. In particular, we seek to classify

the possible scaling laws permitted by the PDE for h. Here, the term “scaling law”

describes the time-dependent part A(t) of a separable solution,

h(r, t) ≈ H(r)A(t). (5.47)

This variable separation, called a “scaling ansatz”, is consistent with step simula-

tions in 1D and kinetic Monte Carlo simulations in 2D , both for initial sinusoidal

profiles. However, the scaling ansatz satisfies the PDE only approximately; we find

a consistent equation by regarding as negligible some of the terms in µ and Mad.

It is not obvious that a single power of A will remain dominant in the equation for

long times. Indeed, a given initial-boundary value problem with (5.45) need not

have a separable solution. This property relies crucially on the initial data.

In order to extract a dominant power of A from the mobility matrix, we

must compare the kinetic term (1 + qν)−1 with the square of the aspect ratio α;

here ν = 〈|∇h|〉 is a typical slope. Depending on the relative magnitudes of these

kinetic-geometric parameters, the elements of the mobility matrix might scale as A0

or A−1.

The macroscale step chemical potential µ scales with amplitude A according

to which contribution to the energy dominates. If line tension (g1 term) is dominant,

then µ scales as A0. If step interactions dominate, then µ scales as A2. Combin-
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Table 5.1: Decay laws for the amplitude A(t) in ADL kinetics, taken from [67]. Top

row: kinetic-geometric conditions on mobility. Leftmost column: dominant effects

in µ. The constants C, c, and t∗(t∗ > t) depend on A(0) = A0 and H. The constant

B3 is defined by B3 := DadCsg3Ω2

kBT
.

α2 � (1 + qν)−1 � 1 (1 + qν)−1 � α2 < 1

Step interaction A0e
−CB3t A0(1 + cB3A0t)

−1

Line tension A0

√
1− t/t∗ A0(1− t/t∗)

ing these two possibilities with the kinetic-geometric conditions on the mobility,

Margetis [67] obtained the possible scaling laws listed in Table 5.1.

We do not address analytically the spatial part of the approximate separable

solution, H(r), which solves a nonlinear PDE. Numerical solutions of the PDE,

such as those given in Chapter 10, remain our most viable option for visualizing the

spatial dependence of a separable solution.

5.6 Presence of facets in the variational formulation

The surface evolution law derived here conforms more closely to the behav-

ior of steps than the PDEs obtained phenomenologically or by analogy with 1D

macroscale models. However, the behavior of steps near a facet edge, where the sur-

face energy has a singularity, is not respected by the PDE derived in this chapter.

The variational formulation imposes its own natural boundary conditions at the facet

edge, which in general are not identical to the boundary conditions stemming from
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a microscale drop in height when the top step collapses [38]. We outline the natural

boundary conditions in Chapter 9, in order to interpret the results of simulating the

variational formulation in terms of strong PDE solutions informed by conditions at

the free boundary. Only in the limiting case g1 → 0 can we expect the variational

formulation to respect the flow of steps near |∇h| = 0. A hybrid approach, which

informs the variational equations of the discrete height drop when the topmost step

collapses, is beyond our scope in 2+1 dimensions, where an implementation of the

step flow model is lacking. Comparison of the variational and hybrid approaches

in the axisymmetric case [65] suggests that the discrepancy in boundary conditions

is not likely to affect the observed scaling laws. To be cautious, however, we focus

mainly on the case g1 = 0 in our subsequent numerical simulations.
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Chapter 6

Macroscale equation with terrace anisotropy and step edge diffusion1

In this chapter we extend the theory of chapter 5 to cases with a tensor-

valued terrace diffusivity Dad and a nonzero edge diffusivity Ded. These extensions

offer a more realistic description of diffusion processes on terraces and steps, while

remaining firmly based in the framework of continuum steps. Again we seek a PDE

for the surface height. The main contribution of this chapter is the surface mobility

M, which extends (5.24) by allowing for off-diagonal elements even in the local

coordinate representation.

For convenience we rewrite the quasi-steady equation (5.2) describing adatom

diffusion on the ith terrace:

div(Dad · ∇Ci) = 0 . (6.1)

Equation (6.1) is complemented by the mixed boundary conditions dictated

by linear kinetics:

−Jad
i (ηi, t) = ku[Ci(ηi, t)− Ceq

i (t)] , (6.2)

Jad
i (ηi+1, t) = kd[Ci(ηi+1, t)− Ceq

i+1(t)] . (6.3)

In this chapter the terrace diffusivity Dad is assumed to have the tensor form

Dad = D11eηeη + D12eηeσ + D21eσeη + D22eσeσ. For the sake of some generality,

1Material in this chapter appeared previously in Quah and Margetis, J. Phys. A: Math. Theor.

41, 235004/1–18.
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we do not impose the symmetry condition D12 = D21, although in most physical

settings this equality holds. The surface flux Jad
i depends on the adatom density Ci

through the linear relationJad
i,⊥

Jad
i,‖

 = −

D11 D12

D21 D22

 ·

ξ−1
η ∂ηCi

ξ−1
σ ∂σCi

 ηi < η < ηi+1, (6.4)

which is Fick’s law of diffusion in two spatial dimensions. This definition of surface

flux is chosen so that the continuity relation

∮
L

Jad
i · νds =

d

dt

∫
intL

CidA (6.5)

holds for every closed loop L lying in the ith terrace.

6.1 Approximations for fast and slow step variables

In this subsection we provide relations for the adatom flux components at step

edges for slowly varying step trains. The starting point is the boundary value prob-

lem for terrace adatom concentration Ci, which satisfies (6.1) subject to boundary

conditions (6.2),(6.3). We note that the boundary conditions involve only the equi-

librium concentrations at neighboring step edges, allowing us to solve the diffusion

equation on each terrace independently. In local coordinates, the diffusion equation

(6.1) becomes

∂

∂η

(
ξσD11

ξη

∂Ci

∂η

)
+

∂

∂η

(
D12

∂Ci

∂σ

)
+

∂

∂σ

(
D21

∂Ci

∂η

)
+

∂

∂σ

(
ξηD22

ξσ

∂Ci

∂σ

)
= 0 , (6.6)

where ηi < η < ηi+1.
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For a slowly varying step train we invoke the separation of the variables (η, σ)

into fast and slow as outlined in Chapter 5. A more rigorous justification of this

procedure is postponed until Chapter 8, after we have developed some intuition

about the solutions we obtain. Dropping σ derivatives in accordance with slow/fast

variable separation, (6.6) reduces to

∂η

(
ξσ
ξη
∂ηCi

)
≈ 0 , (6.7)

which is solved by

Ci ≈ Ai(σ, t)

∫ η

ηi

ξη
ξσ

dη′ +Bi(σ, t) ηi < η < ηi+1 , (6.8)

for some η-independent functions Ai, Bi. In order to determine the integration con-

stants Ai and Bi, we evaluate the flux components at the step edges and apply the

boundary conditions (6.2),(6.3). The integration constants have a natural interpre-

tation in terms of the adatom concentration and its gradient at the step edge. We

eliminate Ai and Bi in favor of the more physical quantities Ci|i, J|i by applying

Fick’s law, (6.4).

Using (6.4), the corresponding flux components are

Jad
i,⊥ ≈ −D11

ξσ
Ai(σ, t)−

D12

ξσ
∂σ

[
Bi(σ, t) + Ai(σ, t)

∫ η

ηi

ξη
ξσ

dη′
]
, (6.9)

Jad
i,‖ ≈ −D21

ξσ
Ai(σ, t)−

D22

ξσ
∂σ

[
Bi(σ, t) + Ai(σ, t)

∫ η

ηi

ξη
ξσ

dη′
]
. (6.10)

Equations (6.9) and (6.10) are simplified when we evaluate Jad
i at η = ηi. The

resulting matrix equation is

−ξσ|i

 Jad
i,⊥|i

Jad
i,‖ |i

 =

 D11 D12

D21 D22


 Ai

∂σBi

 . (6.11)
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By inspection of (6.11), the term ∂σBi must be treated on equal footing with

Ai, since both terms make comparable contributions to the surface flux. We proceed

to invert the matrix equation (6.11), viewing Ai and ∂σBi as integration constants

that we have to eliminate from the boundary conditions (6.2) and (6.3). Thus, we

obtain the formula Ai

∂σBi

 = − ξσ|i
|Dad|

 D22 −D12

−D21 D11


 Jad

i,⊥|i

Jad
i,‖ |i

 , (6.12)

where |Dad| := D11D22 −D12D21 denotes the determinant of Dad.

Next, we apply the boundary conditions (6.2) and (6.3) for atom attachment-

detachment at step edges. By substituting the solution for the adatom density Ci

into these conditions, we find the relations

−Jad
i,⊥(ηi, σ, t) = ku[Bi(σ, t)− Ceq

i (σ, t)] (6.13)

Jad
i,‖(ηi+1, σ

′, t) = kd

[
Bi(σ

′, t) + Ai(σ
′, t)

∫ ηi+1

ηi

ξη
ξσ

dη − Ceq
i+1(σ

′, t)

]
. (6.14)

We eliminate Bi by setting σ′ = σ in equation (6.14), multiplying (6.13) by

kd/ku and subtracting the resulting equation from (6.14). Substituting for Ai from

(6.12), we arrive at the first desired relation between the surface flux components:

(
1

ku

+
ξσ|iD22

|Dad|

∫ ηi+1

ηi

ξη
ξσ

dη

)
Jad

i,⊥|i +
1

kd

Jad
i,⊥|i+1

− ξσ|iD12

|Dad|

(∫ ηi+1

ηi

ξη
ξσ

dη

)
Jad

i,‖ |i = Ceq
i − Ceq

i+1 . (6.15)

We obtain a second relation by exploiting variations in σ, which can be taken to

be arbitrarily small; in contrast, changes in η are restricted by a and the requirement

of finite slope. Therefore, we differentiate (6.13) with respect to σ and substitute for
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∂σBi from (6.12). Subsequently, we neglect ∂σJ
ad
i,⊥, consistent with the hypothesis

of slowly varying step edge curvature. Thus, the second desired relation of the flux

components reads

ξσ|i
|Dad|

(D21J
ad
i,⊥|i −D11J

ad
i,‖ |i)− ∂σC

eq
i = 0 ,

which in turn becomes

D21J
ad
i,⊥|i −D11J

ad
i,‖ |i =

Cs|Dad|
ξσ|i

∂σµi

kBT
=
Cs|Dad|
kBT

∂‖µi . (6.16)

Equations (6.15) and (6.16) suffice for the purpose of taking the macroscale limit.

6.2 Macroscale adatom flux

In this section we derive the analogue of (5.23) and (5.24), the relation between

macroscale adatom flux and step chemical potential. The resulting mobility tensor,

Mad, accounts for the macroscale flux arising from adatom diffusion on terraces. An

additional term, derived in Section 6.4, provides the mobility element corresponding

to step edge diffusion.

First, we simplify relations (6.15) and (6.16) for Jad
i . Considering δηi = ηi+1−ηi

as small, we make the approximations

1

ku

Jad
i,⊥|i +

1

kd

Jad
i,⊥|i+1 =

(
1

ku

+
1

kd

)
Jad

i,⊥|i
[
1 +O(δηi)

]
, (6.17)∫ ηi+1

ηi

ξη
ξσ

dη =
ξη|i
ξσ|i

δηi

[
1 +O(δηi)

]
. (6.18)

We consolidate the kinetic rates ku, kd into the parameter k = 2/(k−1
u + k−1

d ) of

(5.25). Thus, (6.15) reduces to[(
2

k
+
ξη|iD22

|Dad|
δηi

)
Jad

i,⊥|i −
ξη|iD12

|Dad|
δηiJ

ad
i,‖ |i
] [

1 +O(δηi)
]

= Ceq
i − Ceq

i+1 . (6.19)
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We multiply (6.19) by |Dad|/(ξη|iδηi) and thereby obtain(
D22 +

2|Dad|
kξη|iδηi

)
Jad

i,⊥|i −D12J
ad
i,‖ |i = |Dad|

Ceq
i − Ceq

i+1

ξη|iδηi

. (6.20)

As δηi → 0, the right-hand side of (6.20) approaches Cs|Dad|∂⊥µ/kBT. On the

other hand, the ratio of parameters in the prefactor of Jad
i,⊥|i has the limiting value

2|Dad|
kξη|iδηi

→ 2|Dad|
ka

|∇h| = Dad |∇h| , Dad :=
2|Dad|
ka

, (6.21)

where Dad has dimensions of diffusivity [(length)2/time].

A matrix equation for the macroscale surface flux Jad = (Jad
⊥ , J

ad
‖ )T in terms

of the step chemical potential µ comes from combining (6.16), (6.20) and (6.21): D22 +Dad|∇h| −D12

−D21 D11


 Jad

⊥

Jad
‖

 = −Cs|Dad|
kBT

 ∂⊥µ

∂‖µ

 . (6.22)

By solving (6.22) for Jad we obtain

Jad
i |i → Jad(r, t) =

 Jad
⊥

Jad
‖

 = −CsM
ad ·

 ∂⊥µ

∂‖µ

 , (6.23)

where the macroscale adatom mobility is

Mad =
1

kBT (1 + q|∇h|)

 D11 D12

D21 D22 +Dad|∇h|

 , q :=
2D11

ka
. (6.24)

This formula reduces to the equation with diagonal Mad found in [66] when

D11 = D22 = Dad and D12 = D21 = 0; cf (5.24). In contrast to the case with scalar

diffusivity, all matrix elements of the mobility in (6.24) depend on the slope. This

dependence is quite pronounced in the kinetic regime of attachment-detachment

limited (ADL) kinetics, which we discuss in Section 6.6.
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6.3 Alternative approach to macroscale limit: Taylor expansions

For the sake of completeness, we re-derive (6.23) and (6.24) via an alternative

yet equivalent route. This is based on expansions of the boundary conditions (6.2)

and (6.3) for atom attachment-detachment in appropriate Taylor series when δηi =

ηi+1 − ηi → 0 and δσ = σ′ − σ → 0. Instead of finding the general solution of (6.7)

and imposing boundary conditions, we proceed directly to the physical variables

Ci|i and Jad|i. By assuming sufficient differentiability, the values of Ci and Jad at

ηi+1, σ
′ can be approximated using Taylor series about ηi, σ, as outlined in [67].

We first expand Ci|i+1 and Jad
i,⊥|i+1 in (3.5) to first order in δσ and δηi:

ku

(
Jad

i,⊥|i + ∂ηJ
ad
i,⊥|iδηi + ∂σJ

ad
i,⊥|iδσ

)
= kukd

[
Ci|i + ∂ηCi|iδηi

+∂σCi|iδσ − Ceq
i (σ + δσ, t)

]
. (6.25)

Second, we multiply (6.2) by kd and subtract the resulting equation from (6.25), so

as to eliminate Ci. By neglecting the η- and σ-derivatives of Jad
i,⊥, we find

(ku + kd)J
ad
i,⊥|i = kukd

{
∂ηCi|iδηi + ∂σCi|iδσ

− Cs

kBT
[µ(ηi+1, σ + δσ)− µ(ηi, σ)]

}
. (6.26)

Next, we solve for ∂ηCi and ∂σCi by applying the matrix equation (6.4). The

substitution of ∂ηCi and ∂σCi into (6.26) and subsequent expansion of the difference

µ(ηi+1, σ+δσ)−µ(ηi, σ) about (ηi, σ) yields a relation between Jad
i and the gradient

of the macroscale step chemical potential µ(r, t) :(
1

ku

+
1

kd

+
D22 ξηδηi

|Dad|

)
Jad

i,⊥|i −
ξηD12δηi

|Dad|
Jad

i,‖ |i +
Cs

kBT
∂ηµ|iδηi

=

[
ξσ
|Dad|

(
D12J

ad
i,⊥ −D11J

ad
i,‖
)
|i −

Cs

kBT
∂σµ|i

]
δσ . (6.27)
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Setting δσ = 0 in (6.27) and taking the macroscale limit provides our first

equation for the components of the surface flux in terms of µ :(
1 +

2|Dad|
kaD22

|∇h|
)
Jad
⊥ − D12

D22

Jad
‖ = −Cs|Dad|

kBTD22

∂⊥µ . (6.28)

The macroscale limit of (6.27) still applies when δσ 6= 0. By (6.28), we know

that the left-hand side of (6.27) tends to zero in that limit. Therefore, the term

proportional to δσ must also vanish as δηi → 0. Thus, we have

D21J
ad
⊥ −D11J

ad
‖ =

Cs|Dad|
kBT

∂‖µ . (6.29)

By solving simultaneously (6.28) and (6.29) for the components of the macroscale

surface flux, we find Jad
⊥

Jad
‖

 =
−Cs

kBT (1 + q|∇h|)

 D11 D12

D21 D22 +Dad |∇h|

 ·

 ∂⊥µ

∂‖µ

 , (6.30)

which is directly identified with the combination of (6.23) and (6.24).

6.4 Mass conservation law and total surface flux

In this subsection we define the total surface flux J so that the mass conser-

vation law for atoms is satisfied in the presence of step edge diffusion. The surface

mobility is defined accordingly through the relation of J and µ.

At a given location σ on the ith step edge, the step normal velocity vi must

respect conservation of mass, taking into account all possible sources and sinks of

atoms; see (5.13). By Section 5.4.3, in the macroscale limit (5.13) reduces to

∂th = −Ω∇ · Jad +
a|∇h|
ξσ

∂σ

{
Ded

ξσ
∂σ

(
µ

kBT

)}
, (6.31)
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where the adatom flux Jad is described by (6.23) and (6.24).

Since the terrace is a level set for the height, we have h = H(η, t); in other

words, h does not vary in the step-longitudinal (σ-) direction. Thus, |∇h| =

ξ−1
η |∂ηH| and the factor |∂ηH| can be passed through the σ derivative in (6.31).

It follows that

∂th = −Ω∇ · Jad +
1

ξηξσ
∂σ

{
aDed|∇h|ξη

ξσ
∂σ

(
µ

kBT

)}
. (6.32)

We recognize the second term on the right-hand side of (6.32) as the divergence of

aDed|∇h|∂‖(µ/kBT )eσ. (Recall ∂‖ = ξ−1
σ ∂σ as in Chapter 5.) Hence, we refer to the

term −aDed

Ω
|∇h|∂‖(µ/kBT )eσ as the edge atom flux, denoted by Jed. Combining the

two divergence terms into one term, we obtain the mass conservation law

∂th = −Ω∇ · (Jad + Jed) = −Ω∇ · J , (6.33)

where

J = Jad + Jed , Jed := −aD
ed

Ω
|∇h| ∂‖

(
µ

kBT

)
eσ . (6.34)

Recall that µ here is the same macroscale chemical potential derived in Chap-

ter 5, a function of the local slope according to the formula

µ = −Ω div

{
g1
∇h
|∇h|

+ g3|∇h|∇h
}
, (6.35)

which remains unchanged in the presence of terrace anisotropy and step edge diffu-

sion.

The matrix equation (6.30) involving the mobility tensor can be updated to
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reflect the additional source term in the overall surface flux:

J(r, t) =

 J⊥

J‖

 = −Cs

 Mηη Mησ

Mση Mσσ

 ·

 ∂⊥µ

∂‖µ

 = −CsM · ∇µ, (6.36)

where

M =

 Mηη Mησ

Mση Mσσ

 , (6.37)

Mηη =
D11/(kBT )

1 + 2
D11

ka
|∇h|

, Mησ =
D12/(kBT )

1 + 2
D11

ka
|∇h|

,

Mση =
D21/(kBT )

1 + 2
D11

ka
|∇h|

, Mσσ =
1

kBT

D22 +
2|Dad|
ka

|∇h|

1 + 2
D11

ka
|∇h|

+
aDed

ΩCs

|∇h|

 .(6.38)

This total mobility tensor expresses the geometric dependence of the macroscale

surface flux on the chemical potential via (6.36), the continuum analog of Fick’s law

when step edge diffusion is present. In the above formulation, we assume that

D11

ka
= O(1),

|Dad|
D22ka

= O(1),
a

ΩCs

Ded

D22

= O(1). (6.39)

6.5 Evolution equation for the surface height

We now combine the mass conservation law (6.33) with the effective surface

flux (6.36) and the formula for the macroscale step chemical potential (5.39) in order

to derive a PDE analogous to (5.45) for the surface height profile, h(r, t). With the

substitutions for µ and J by (5.39) and (6.36), the mass conservation law (6.33)

becomes

∂th = −Ω2Cs

a
div

{
M · ∇

(
div

[
(β + 3gΦ0|∇h|2)

∇h
|∇h|

])}
. (6.40)
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To consolidate the physical parameters, we again use the definitions g1 = β/a,

g3 = 3gΦ0/a, and B = Ω2Csg1; see (5.46). Accordingly, we obtain (5.45) with Mad

replaced by the effective total mobility M.

6.6 New scaling laws with terrace anisotropy and edge diffusion

In this section we derive approximate, separable solutions of PDE (6.40). Our

goal is to find plausible connections between macroscale solutions and decay laws

observed in biperiodic profiles, e.g. observations reported in [4, 20, 48, 83]. Our

discussion is heuristic; the relation of PDE solutions to experiments is not well un-

derstood at the moment. Questions to consider when comparing PDE solutions to

experimental observations include (i) whether the experimental conditions satisfy

the assumptions under which the PDE was derived, (ii) what values of the material

parameters are appropriate for a given material and temperature, and (iii) what

time scale is common to the PDE solution and the decay of the observed material.

When seeking separable PDE solutions, the issue of material parameters is partic-

ularly relevant, as we see in the following argument when deciding which terms are

negligible in the free energy formula and the mobility matrix elements.

We start with the scaling ansatz h(r, t) ≈ A(t)H(r). This separation of vari-

ables is consistent with previously reported step flow simulations in 1D [38] and

kinetic Monte Carlo simulations in 2D [108], both with initial sinusoidal profiles.

The amplitude A(t) can be obtained formally from an ordinary differential equation

(ODE) by direct substitution in (6.40). We alert the reader that conditions on the
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initial data and material parameters for having separable solutions and recovering

an ODE for A(t) are currently elusive, requiring detailed numerical studies. Such

studies are not addressed in this thesis.

Additive terms in the driving force ∇µ and in the total mobility M scale

differently with A. We need to retain in the right-hand side of the PDE terms

proportional to the same power of A and thus resort to approximations. It should

be borne in mind that the nonlinearities in M and µ lead to spatial-frequency

coupling for biperiodic height profiles; accordingly, evolution is in principle more

complicated than the one implied here by our simple scaling scenario.

Depending on the powers of A that possibly prevail in the evolution equation,

we find several plausible behaviors of h with time, including the exponential decay

and inverse linear decay reported in related experiments [4, 20, 48, 83]. By (6.35)

the driving force ∇µ scales as A0 if the dominant term is step line tension. If

step interactions are dominant, then ∇µ scales as A2. To determine the scaling of

the mobility tensor, it is convenient to introduce the “aspect ratio” α := ∂yh/∂xh;

it is plausible yet not compelling to estimate α by λx/λy where λx and λy are

wavelengths in the x and y directions. We also define the slope-dependent quantity

b := (1 + 2D11

ka
|∇h|)−1. Note that α scales as A0. When step edge diffusion is absent

(Ded = 0), the possible scalings found for A with nonzero D12 and D21 are not

different from those for isotropic adatom diffusion (where D12 = D21 = 0) [67].

With these definitions, the elements Mij = (kBT )−1|∇h|−2bM̃ij (i, j = x, y)
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from the Cartesian representation (5.27)–(5.29) of M read

Mxx =
b (∂xh)

2

kBT |∇h|2
[
D11 − α(D12 +D21) + α2D22

+
2|Dad|
ka

α2|∇h|+ aDedα2|∇h|
bΩCs

]
,

Mxy =
b (∂xh)

2

kBT |∇h|2
[
D12 + α(D11 −D22)− α2D21

−2|Dad|
ka

α|∇h| − aDedα|∇h|
bΩCs

]
,

Myx =
b (∂xh)

2

kBT |∇h|2
[
D21 + α(D11 −D22)− α2D12

−2|Dad|
ka

α|∇h| − aDedα|∇h|
bΩCs

]
,

Myy =
b (∂xh)

2

kBT |∇h|2
[
D22 + α(D12 +D21) + α2D11

+
2|Dad|
ka

|∇h|+ aDed|∇h|
bΩCs

]
. (6.41)

We restrict attention to ADL kinetics which closely correspond to relevant

experimental situations [4, 20, 48, 83]. It follows that b� 1 where b scales as A−1;

by the scaling ansatz for h, the prefactor b(∂xh)2

kBT |∇h|2 also scales as A−1. For the sake

of simplicity we consider weak anisotropy, |Dad| ≈ D11D22 (i.e., if the off-diagonal

diffusivity elements D12, D21 are small in comparison to the diagonal elements) and

|Dad|/(ka) � aDed/(bΩCs). The dominant terms in M scale as:

(i) A0 if b� min{(D22/D11)α
2, (D22/D11)α

−2, D22/D11}; and

(ii) A−1 if b� max{(D22/D11)α
2, (D22/D11)α

−2, D22/D11}.

In the presence of step edge diffusion with |Dad|/(ka) � aDed/(bΩCs), the dominant

terms in the mobility tensor scale as A1. Note that in all these cases the matrix M

tends to become singular since the lowest eigenvalue acquires a small value. Hence,

correction terms in M, which strictly spoil the scalings reported here, are physically
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important; solutions of the form A(t)H(r) should be thought of as leading-order

terms of appropriate asymptotic expansions for h.

Next, we combine the three possible scalings of M with the two possible scal-

ings of∇µ. Each combination yields an ODE of the form Ȧ ∝ −Ap for some exponent

p; the minus sign here is assumed for achieving profile decay. In the case of ADL

kinetics, outlined above, we have p ∈ {−1, 0, 1} ∪ {1, 2, 3}, where the first set cor-

responds to dominant step line tension and the second set corresponds to dominant

step interactions in ∇µ. Since p = 1 is common to both sets, the associated scaling

law A = A0 exp(−t/τ) could perhaps be observed in a wide range of experimental

situations. On the other hand, the scaling law A = A0/
√

1 + t/τ associated with

p = 3 and dominance of step edge diffusion may not be physical; to our knowledge,

this last decay law has not been observed.

We illustrate the procedure of finding A for weak anisotropy under condition

(ii) above and dominant step interactions; thus, p = 1. The PDE has the form

Ȧ(t)H(r) ∝ −A(t) div

{
(∂xH)2

|∇H|3

 mxx mxy

myx myy

 · ∇
[
div
(
|∇H|∇H

)]}
, (6.42)

where the prefactor is positive and the elements {mij}y
i,j=x are constants that stem

from M(x,y) after factoring out A (but not H); the precise definition of mij is omitted

here.

To satisfy (6.42) for all t and r, we require that the time-dependent part A(t)

solve Ȧ(t) = −CA for some positive constant C (C > 0). The height profile H(r)
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Table 6.1: Decay laws for height amplitude A(t) in ADL kinetics. Leftmost column

indicates plausible conditions. Next two columns list decay laws for line tension and

step interaction dominated ∇µ. The time constant τ depends on A(0) and H.

Line tension Step interaction

|Dad| ≈ D11D22

b� max{(D22/D11)α
2, D22/D11, (D22/D11)α

−2} A0

√
1− t/τ A0 exp(−t/τ)

b� min{D22/D11)α
2, D22/D11, (D22/D11)α

−2} A0(1− t/τ) A0/(1 + t/τ)

|Dad|/(ka) � aDed/(bΩCs) A0 exp(−t/τ) A0/
√

1 + t/τ

solves a nonlinear PDE of the form

CH ∝ div

{
(∂xH)2

|∇H|3

 mxx mxy

myx myy

 · ∇
[
div
(
|∇H|∇H

)]}
. (6.43)

The solution for A(t) is given in terms of the separation constant C and the initial

amplitude A0: A(t) = A0e
−Ct. Using a similar procedure, we derive other possible

scaling laws for ADL kinetics under different restrictions. Our results are summa-

rized in Table 6.1.

We do not address the issue of solving (6.43) in this analysis. Particularly in-

teresting is the case with facets. The macroscale limit breaks down near facet edges,

and associated boundary conditions for H must take into account the discrete step

flow equations [65]. A numerical scheme to implement these boundary conditions

within a macroscopic simulation is a worthy subject of future research.

A similar analysis can be carried out if terrace diffusion is the slowest process,

i.e., q|∇h| = |∇h|D11/(ka) � 1. Then, b is approximately a constant, b ≈ 1. The
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dominant terms in the mobility tensor scale as A0 or A1. Thus, we obtain Ȧ ∝ −Ap

for p ∈ {0, 1, 2, 3}, which yields four of the five decay laws already found for ADL

kinetics.

6.7 Conclusion

By interpreting a (2+1)-dimensional step flow model for a relaxing surface as

a discretization of a macroscale evolution equation, we derived the relevant PDE for

the surface height profile. The starting point is a step velocity law that accounts

for anisotropic adatom diffusion on terraces, diffusion of atoms along step edges

and atom attachment-detachment at steps. In the macroscale limit we obtained

a relation between the surface flux and the step chemical potential. This relation

involves a tensor surface mobility with nonzero off-diagonal elements even in the

local coordinate representation.

Combining the step velocity law with the constitutive relation between the sur-

face flux and the step chemical potential resulted in a fourth-order nonlinear PDE

for the surface height. Transforming the mobility tensor from local step coordinates

to fixed coordinates introduced a dependence on the height partial derivatives. This

dependence offers a plausible scenario of how an epitaxial surface can exhibit dif-

ferent decay laws. We found separable solutions for the height that approximately

satisfy the evolution equation under certain conditions. These separable solutions

exhibit different decay and may be used as a guide in interpreting experimental

observations from a macroscale perspective.
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Our PDE only accounts for a part of the possible microscopic physics. In

Chapters 7–8 we discuss the macroscale consequences of additional effects, such as

step permeability, adatom drift under the influence of an electric field, and desorp-

tion of adatoms. The calculations of this chapter serve as a prototypical example

for later macroscale limits.
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Chapter 7

Step permeability and macroscale limit 1

In this chapter, we extend the model of continuum steps in 2+1 dimensions

to include the possibility of permeable steps. Also known as step transparency,

this phenomenological mechanism allows adatoms to jump from one terrace to a

neighboring terrace without first attaching and detaching at the intervening step.

In principle, step permeability can lead to long-range interactions, since an adatom

might cross many terraces before attaching to a step and influencing the step motion.

If such an effect is realized in the equations of step flow, we might naturally wonder

whether the macroscopic limit also shows evidence of long-distance interactions. The

main achievement of this chapter is the derivation of a macroscale limit consistent

with permeable steps in 2+1 dimensions.

The macroscale PDE we derive here leaves unchanged the local character of

step interactions, finding only a renormalized kinetic parameter as the result of

including step permeability. This renormalized kinetic parameter generalizes to

(2+1)-dimensions a formula in [88], which can be interpreted via an electric-circuit

analog of the paths by which adatoms can jump between terraces.

In this chapter we continue to assume that mass transport on terraces is due

to diffusion only. We omit from the diffusion equation terms corresponding to de-

1Material in this chapter appeared previously in Quah, Young and Margetis, Phys. Rev. E 78,

042602/1–4.
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position flux, electromigration current, and desorption of adatoms. The latter two

effects will be addressed in Chapter 8. Here we discuss only the changed boundary

conditions in the case of permeable steps.

7.1 Step permeability

According to the original BCF framework for studying step motion, mass

transport of adatoms between adjacent terraces requires the intermediate processes

of attaching and detaching at the common step edge. By decomposing the mass

transport mechanism in this way and allowing for an Ehrlich-Schwoebel barrier,

we have the freedom to choose two kinetic rates ku and kd, which in principle can

explain such phenomena as the appearance of different island sizes during multilayer

growth [23]. Motivated more by intellectual curiosity than by discrepancies between

theory and experiment, Ozdemir and Zangwill imagined the possibility of direct

exchange of adatoms and vacancies from one terrace to another with kinetic rate

p [81]. This exchange mechanism is called step permeability or step transparency.

Pierre-Louis used this theoretical construct in his attempt to resolve the question of

temperature-dependent conditions for electromigration-induced step bunching [88].

The effect of step permeability is to change the linear kinetic boundary con-

ditions (3.4) and (3.5) to

−Ji,⊥ = ku(Ci − Ceq
i ) + p(Ci − Ci−1), η = ηi, (7.1)

Ji,⊥ = kd(Ci − Ceq
i+1) + p(Ci − Ci+1), η = ηi+1, (7.2)

where p is the permeability rate and Ji,⊥ is the adatom flux component in the step-
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normal direction; see Chapter 5 to review the geometry and notation. The same p

appears in both boundary conditions by Onsager reciprocity relations [89].

7.2 Macroscale limit

In order to derive a macroscale limit from (7.1),(7.2), and the terrace diffusion

equation, we impose the same geometric conditions as in chapter 6, along with the

conditions on the kinetic rates given in the preceding sections. The terrace widths

are assumed to be much smaller than [66]: (i) the length λ over which the step

density varies; and (ii) the step radius of curvature, if applicable. The discrete

step density a/δρi with δρi = ξη|ηi
δηi is assumed to remain fixed while we formally

let δηi → 0. Recall that η is a dimensionless coordinate with discrete isolines

corresponding to steps.

The restriction on the kinetic rates is that D/(νa) = O(1) for ν = ku, kd, p.

We used a similar assumption in Chapter 5 to derive our first macroscale limit.

Here the condition D/(νa) = O(1) plays the same role, allowing us to keep fixed

the dimensionless parameters D/(νa) as various limits are taken.

If we wanted to proceed in the same vein as our first macroscale limit in Chap-

ter 5, we would begin by solving the diffusion equation ∇2Ci = 0 on the ith terrace,

subject to the boundary conditions (7.1),(7.2). Immediately we notice that step per-

meability explicitly couples the resulting adatom concentration Ci with that of other

terraces. For a step train with a finite number of terraces, the system of boundary

conditions can be solved simultaneously by inverting a circulant matrix [43]. This
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coupling at the step level suggests that the macroscopic limit of Ci must also be

incorporated into the macroscale equation. A similar approach was taken in [16],

although the authors provide only a brief discussion of the connection to the per-

meability rate p.

A direct solution of the terrace diffusion equation, in any case, would yield two

integration constants that have to be found by applying the boundary conditions.

We can bypass some tedious algebra by letting the values of adatom concentration

and its normal derivative play the role of integration constants, for which the bound-

ary conditions will serve as a linear system of equations. Accordingly, we assume

the existence of the interpolating functions C and J for adatom concentration and

transverse flux, respectively, which agree with Ci and Ji,⊥ when evaluated at the

ith step edge. We take C and J as our primary variables. Whether we evaluate the

terrace concentration and its derivative at the upper step edge (ηi) or the lower step

edge (ηi+1) is irrelevant in the macroscale limit, since ηi and ηi+1 approach the same

value, corresponding to the transverse coordinate of a single level set. Our final goal

is a system of equations for C and J⊥, which emerge as the macroscale limits of C

and J , respectively.

106



7.2.1 Straight steps

In the straight step setting with no Ehrlich-Schwoebel barrier, the boundary

conditions (7.1),(7.2) reduce to

−Ji = k(Ci − Ceq
i ) + p(Ci − Ci−1), x = xi (7.3)

Ji = k(Ci − Ceq
i+1) + p(Ci − Ci+1), x = xi+1. (7.4)

We now identify Ci, Ci+1, Ci−1 with values of a continuous adatom concentra-

tion function at the left step edge of the corresponding terrace. In particular, we

define the interpolant C by Ci|xi
=: C(i). As usual, the subscript xi to the right

of the vertical bar denotes the point of evaluation. Similarly, the flux Ji|xi
at the

left step edge is identified with the value J (i) of an interpolating flux function. If

a value of the terrace adatom concentration Ci at a point other than the left step

edge is desired, then an approximation in terms of the concentration C(i) and flux

J (i) can be found by applying a Taylor expansion along with Fick’s law:

Ci|x = C(i)−D−1J (i)(x− xi) +O[(x− xi)
2]. (7.5)

For the purposes of the macroscale limit, only the first-order term in the

expansion (7.5) needs to be retained. Using (7.5) at x = xi+1 and a similar expansion

for Ci−1|xi
, the boundary conditions now read

−J (i) = k[C(i)− Ceq
i ] + p[C(i)− C(i− 1) +D−1(xi − xi−1)J (i− 1)] (7.6)

J (i) = k[C(i)−D−1(xi+1 − xi)J (i)− Ceq
i+1]

+ p[C(i)−D−1(xi+1 − xi)J (i)− C(i+ 1)]. (7.7)
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In the absence of an Ehrlich-Schwoebel barrier, direct subtraction of (7.6) and

(7.7) leads immediately to

− 2J (i) = k[Ceq
i+1 − Ceq

i +D−1(xi+1 − xi)J (i)]

+ p[C(i+ 1)− C(i− 1) +D−1(xi+1 − xi)J (i) +D−1(xi − xi−1)J (i− 1)]. (7.8)

Bringing all the flux terms to the left side, we find

J (i)

[
2 +

k

D
(xi+1 − xi) +

p

D
(xi+1 − xi−1)

]
+
p

D
(xi − xi−1)J (i− 1) = −k[Ceq

i+1 − Ceq
i ]− p[C(i+ 1)− C(i− 1)]. (7.9)

Assuming that C and the macroscale equilibrium concentration Ceq both admit

Taylor series expansions about xi, we can replace the differences Ceq
i+1 − Ceq

i and

C(i+ 1)− C(i− 1) according to

Ceq
i+1 − Ceq

i = (xi+1 − xi)
∂Ceq

∂x

∣∣∣∣
xi

+ o(xi+1 − xi), (7.10)

C(i+ 1)− C(i− 1) = (xi+1 − xi−1)
∂C
∂x

∣∣∣∣
xi

+ o(xi+1 − xi−1). (7.11)

Since the macroscale height profile is required to be differentiable, the mean-

value theorem allows us to substitute 2a/|∂xh| for xi+1−xi−1 and a/|∂xh| for xi+1−xi,

where the evaluation point of the x-derivative is left unspecified for now. The

constitutive relation (7.9) then becomes

J (i)

[
2 +

ka

D|∂xh|
+

2pa

D|∂xh|

]
+

pa

D|∂xh|
J (i− 1) = − ka

|∂xh|
∂xC

eq− 2pa

|∂xh|
∂xC. (7.12)

In the limit as a/λ→ 0, the positions of steps i and i− 1 are assumed to tend

to a common point x, so the equation for the macroscale flux J is

J(x)

[
2 +

(k + 2p)a

D|∂xh|

]
=

ka

|∂xh|
∂xC

eq +
2pa

|∂xh|
∂xC. (7.13)
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To eliminate the explicit dependence on C, we take the macroscale limit of the

boundary condition (7.6) directly and then substitute for J(x) using (7.13). The

macroscale limit of (7.6) reads

−J(x) = k(C − Ceq) + p

[
∂xC

a

|∂xh|
+

J(x)a

D|∂xh|

]
. (7.14)

Combined with the macroscale flux from (7.13), we find an equation for C −

Ceq.

k(C − Ceq) +
pa

|∂xh|
∂xC =

ka
|∂xh|∂xC

eq + 2pa
|∂xh|∂xC

2 + (k+2p)a
D|∂xh|

[
1 +

pa

D|∂xh|

]
(

1 +
(k + 2p)a

2D|∂xh|

)
(C − Ceq) =

a

2|∂xh|

(
1 +

pa

D|∂xh|

)
∂xC

eq +
p2a2

kD|∂xh|2
∂xC.

(7.15)

In principle, we regard (7.15) as a series in powers of a, which holds identically

as a/λ→ 0. By equating the coefficients of like powers of a, we obtain conditions on

the coefficients. The dominant balance of terms in (7.15) indicates that we can take

C = Ceq in the macroscopic limit. The factor multiplying C −Ceq on the left-hand

side of (7.15) remains O(1) as a/λ → 0, while the right-hand side vanishes since

p/k = O(1) does not scale with a. Replacing C by Ceq in (7.13), we find

J(x) = − D∂xC

1 + 2D
(k+2p)a

|∂xh|
= −DCs

kBT

∂xµ

1 + qeff|∂xh|
, (7.16)

where qeff := 2D/(keffa) and keff := k+2p. Thus, the effective attachment-detachment

rate keff appears as an additive renormalization of k to k + 2p.

We pause to mention a few previous derivations of this result in the literature.

The unifying theme of these derivations is a replacement of the step-terrace system

by a simpler mass transport mechanism with renormalized parameters. In this vein,
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Figure 7.1: Electric circuit analogous to a terrace and a permeable step, adapted

from [88].

Nozières proceeds by analogy with an electric circuit [78], where the attachment

and detachment processes are regarded as a series of resistors, and the effect of

step transparency is to provide a parallel resistor through which an adatom current

can flow across the step. The simplest illustration of this analogy appears in the

subsequent paper by O. Pierre-Louis [88], adapted here as Figure 7.1. A more

complicated electric circuit analogy, incorporating several steps and terraces, is given

by Jeong and Williams [43].

7.2.2 Circular steps with axisymmetry

We use the familiar setting of axisymmetry to introduce the additional algebra

needed to deal with an Ehrlich-Schwoebel barrier. This bias of adatom flux toward

a preferred direction appears in the boundary conditions as an inequality in the

kinetic rates: kd > ku if downhill drift is preferred, or ku > kd if uphill drift is
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preferred. The boundary conditions (7.1),(7.2) read

−Ji = ku(Ci − Ceq
i ) + p(Ci − Ci−1), r = ri (7.17)

Ji = kd(Ci − Ceq
i+1) + p(Ci − Ci+1), r = ri+1. (7.18)

Again we identify Ci, Ci+1, Ci−1 with values of a continuous interpolating

function C at the inner step edge of the corresponding terrace. This convention

says C(i) := Ci|ri
. Similarly, we define an interpolating flux function J (i) by

J (i) := Ji|ri
. An approximation of the adatom concentration at the outer step

edge can be found in terms of the concentration C(i) and flux J (i) by applying

Fick’s law:

Ci|ri+1
= C(i)− J (i)

D
(ri+1 − ri) + o(ri+1 − ri). (7.19)

Retaining only the terms of the expansion (7.19) that are linear in ri+1 − ri,

the boundary conditions (7.17),(7.18) become

−J (i) = ku[C(i)− Ceq
i ] (7.20)

+ p[C(i)− C(i− 1) +
J (i− 1)

D
(ri − ri−1)], (7.21)

J (i) + ∂rJi|ri
(ri+1 − ri) = kd[C(i)−

J (i)

D
(ri+1 − ri)− Ceq

i+1]

+ p

[
C(i)− J (i)

D
(ri+1 − ri)− C(i+ 1)

]
. (7.22)

Eventually we plan to take a macroscale limit from these equations, which

allows us to consider a/ri � 1. The nondimensional parameter kda/D, however,

remains O(1) in the macroscale limit. Hence we have the inequality

a

ri

� kda

D
. (7.23)

111



Multiplying (7.23) by |J (i)/a| and identifying the left-hand side as
∣∣∣∂rJi|ri

∣∣∣ by use

of the diffusion equation, we find

∣∣∣∂rJi|ri

∣∣∣� ∣∣∣∣kd
J (i)

D

∣∣∣∣ . (7.24)

Therefore it is justified to neglect ∂rJi|ri
from (7.22), since our final goal is a

macroscale limit relating the variables J and C. These macroscale variables sat-

isfy

C(i)− C(i− 1) = (ri − ri−1)∂rC|ri
+ o(ri − ri−1), (7.25)

C(i+ 1)− C(i) = (ri+1 − ri)∂rC|ri
+ o(ri+1 − ri), (7.26)

J (i)− J (i− 1) = o(1). (7.27)

The discrete step density a/(ri+1− ri) is assumed to approach the macroscale

surface slope |∇h|. In fact, replacement of ri+1−ri (or ri−ri−1) by a/|∂rh| evaluated

somewhere on [ri, ri+1] (or [ri−1, ri]) is justified by the mean value theorem and the

assumed smoothness of the macroscale surface height h. The desired system of

equations for the macroscale variables is

−J
(

1 +
p

D

a

|∂rh|

)
= ku(C − Ceq) +

pa

|∂rh|
∂rC, (7.28)

J

(
1 +

p+ kd

D

a

|∂rh|

)
= kd(C − Ceq)− kda

|∂rh|
∂rC

eq − pa

|∂rh|
∂rC, (7.29)

where Ceq is the macroscale limit of Ceq
i . To solve for the radial flux J , we divide

(7.28) by ku and (7.29) by kd; the difference of the two resulting equations retains

only the concentration gradients, not their pointwise values. We obtain the formula

J = −D (2p/k)∂rC + ∂rC
eq

1 + 2p/k + q|∂rh|
, (7.30)
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where k := 2(k−1
u + k−1

d )−1 and q := 2D/(ka); see section 5.4.1.

Unlike [16], we do not treat the macroscopic limit of adatom concentration

as a variable in its own right. Indeed, we have seen above in the case of straight

steps that the macroscale limit renders such a treatment unnecessary. A similar

argument in the axisymmetric setting allows us to replace C by Ceq in (7.30). With

this substitution, (7.30) becomes the desired relation between flux and chemical

potential:

J = −D ∂rC
eq

1 + qeff|∂rh|
= −DCs

kBT

∂rµ

1 + qeff|∂rh|
, (7.31)

where qeff = D/(keffa) and keff = k + 2p. Evidently, the effect of step permeability

in the axisymmetric setting is precisely the same renormalization of the kinetic pa-

rameter that we saw in the straight step case. The additional mass transport mech-

anism of adatoms hopping directly between terraces is reflected in the macroscale

equations by a modified attachment-detachment coefficient. Under the conventional

interpretation of step permeability, where p > 0, the new attachment-detachment

coefficient is greater than k. However, no physical principle is violated if p < 0.

This generalization has been suggested as a means of introducing different kinetic

regimes as the temperature or the supersaturation is varied [90]. We discuss below

the implications of negative p in relation to a two-region model of step dynamics by

Weeks et al. [125].
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7.2.3 Steps in 2+1 dimensions

The geometry considered here is identical to that of Chapter 5, where η is used

as the transverse coordinate and σ is used as the longitudinal coordinate. Starting

with the boundary conditions (7.1),(7.2), we replace the adatom concentrations

and the normal flux components with either the macroscale interpolants, e.g., C(i),

J⊥(i), or series expansions about the upper step edge of the appropriate terrace. For

example, the domain of the adatom concentration Ci−1 is ηi−1 < η < ηi, and in (7.1)

we want to express this concentration at ηi in terms of the macroscale interpolant

C(i− 1). We use the expansion

Ci−1|ηi
= C(i− 1) + δηi−1∂ηCi−1|ηi−1

+ o(δηi−1), (7.32)

which now forces us to find an expression for ∂ηCi−1|ηi−1
in terms of the primary

variables. Fortunately, Fick’s law allows us to write this normal derivative as a

multiple of the corresponding flux component. The resulting microscale expansion

is

Ci−1|ηi
= C(i− 1)− ξη

D
J⊥(i− 1)δηi + o(δηi−1). (7.33)

In the case of tensor diffusivity, we could still replace the normal derivative of

Ci−1 by a linear combination of flux components evaluated at the upper step edge.

The flexibility of this series method offers a streamlined procedure to derive the

macroscale limit even when an explicit solution of the terrace diffusion problem is

inaccessible.

Similar series expansions apply to the other quantities that do not correspond
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immediately to the macroscale interpolants. We have

Ci|ηi+1
= C(i) + δηi∂ηCi|ηi

+ o(δηi), (7.34)

Ji,⊥|ηi+1
= J⊥(i) + δηi∂ηJi,⊥|ηi

+ o(δηi). (7.35)

Again, Fick’s law allows us to replace the normal derivative in (7.34) by a multiple

of the normal flux component. For the normal derivative in (7.35), appeal to the

diffusion equation itself, along with the separation of variables into slow and fast; see

Chapter 5. Keeping in mind these considerations and the eventual macroscale limit,

we may safely neglect ∂ηJi,⊥ from (7.35). After substituting the primary variables,

the boundary conditions now read:

−J⊥(i) = ku[C(i)− Ceq
i ] + p[C(i)− C(i− 1) +

ξηδηi−1

D
J⊥(i− 1)], (7.36)

J⊥(i) = kd[C(i)− Ceq
i+1 −

ξηδηi

D
J⊥(i)] + p[C(i)− C(i+ 1)− ξηδηi

D
J⊥(i)]. (7.37)

Next, we introduce the (macroscale) variables C and J⊥ via the expansions

C(i)− C(i− 1) = δηi−1∂ηC|ηi
+ o(δηi−1), (7.38)

C(i+ 1)− C(i) = δηi∂ηC|ηi
+ o(δηi), (7.39)

J⊥(i)− J⊥(i− 1) = o(1). (7.40)

The discrete step density a/(ξηδη) is assumed to approach the macroscale surface

slope |∇h|, independent of the evaluation point (ηi or ηi−1). We therefore replace

ξηδηi and ξηδηi−1 by a/|∇h|. The desired system of equations for the macroscale
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variables is

−J⊥
(

1 +
p

D

a

|∇h|

)
= ku(C − Ceq) +

pa

|∇h|
∂⊥C, (7.41)

J⊥

(
1 +

p+ kd

D

a

|∇h|

)
= kd(C − Ceq)− kda

|∇h|
∂⊥C

eq − pa

|∇h|
∂⊥C, (7.42)

where ∂⊥ = ξ−1
η ∂η and Ceq(r) is the macroscale limit of Ceq

i . We solve this system

of equations for J⊥ to obtain the formula

J⊥ = −D (2p/k)∂⊥C + ∂⊥C
eq

1 + 2p/k + q|∇h|
, (7.43)

where k := 2(k−1
u + k−1

d )−1 and q := 2D/(ka) as before.

We now need a relation between C and Ceq. First, the sum of the boundary

conditions (7.41),(7.42) yields

kda

D|∇h|
J⊥ = (ku + kd)(C − Ceq)− ka

|∇h|
∂⊥C

eq. (7.44)

By substituting for J⊥ according to (7.43), we find

0 =

(
1 +

2p

k
+

2D

ka
|∇h|

)
(C − Ceq) +

2pa

k|∇h|
kd

ku + kd

∂⊥C. (7.45)

In order to isolate the dominant terms, it helps to multiply by the O(1) quantity

ka/(2D|∇h|). The resulting equation,

0 =

(
1 +

(k + 2p)a

2D|∇h|

)
(C − Ceq) +

a

|∇h|2
pa

D

kd

ku + kd

∂⊥C, (7.46)

can be viewed as an expansion in powers of a. For this equality to hold in the

macroscale limit a/λ → 0, the zeroth-order term must vanish, which implies C =

Ceq. Returning to (7.43), we have

J⊥ = − D∂⊥C
eq

1 + qeff|∇h|
= −DCs

kBT

∂⊥µ

1 + qeff|∇h|
, (7.47)
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where qeff := 2D/(keffa) and keff = k+2p. Again, as far as the macroscale limit of the

normal flux is concerned, the kinetic rate undergoes only an additive renormalization

in the presence of permeability.

The parallel flux J‖ is not expected to require modification in the case of

permeable steps, which reduces the barrier only for the motion of adatoms across

terrace boundaries. Motion of adatoms parallel to a step edge is an independent

process, subject to the same fully continuum treatment as in Chapter 5. Accordingly,

we differentiate the boundary condition (7.36) with respect to σ:

a∂‖J⊥(i) =
kua

D
[J‖(i)+D∂‖Ceq

i ]+
pa

D
[J‖(i)−J‖(i−1)−∂‖(ξηδηi−1J⊥(i−1))], (7.48)

where ∂‖ := ξ−1
σ ∂σ. Here we have used Fick’s law to write ∂‖C(i) in terms of the

parallel flux component. From here we let a/λ→ 0 to obtain

J‖ = −D∂‖Ceq = −DCs

kBT
∂‖µ, (7.49)

which is identical to the macroscale longitudinal flux derived for p = 0 in Chapter

5. Again we emphasize the following

Result 7.2.1. Step permeability affects only the transverse flux component, via the

boundary conditions (7.1),(7.2), while the longitudinal flux remains unchanged for

nonzero p.

The relations (7.47), (7.49) can be combined into the matrix equation J =

−CsM · ∇µ, where M = M(∇h) is the same surface mobility tensor derived in

Chapter 5 (diagonal when expressed in local coordinates). Writing M = mηηeηeη +

mσσeσeσ, we observe that only the matrix element mηη is affected by the perme-

ability rate p, which enters through the nondimensional parameter qeff. We obtain
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a PDE for h by combining (7.47), (7.49) with the mass conservation law (5.44) and

formula (5.39) for the macroscale step chemical potential. The resulting evolution

law is essentially (5.45), with M modified to account for step permeability through

the renormalized kinetic parameter k.

7.3 Discussion and interpretation

In this chapter, we found the macroscale limit of the step flow equations in the

case of transparent steps with permeability coefficient p. For each of the step geome-

tries studied, only the transverse flux experiences the effect of step transparency,

through a renormalized kinetic parameter in the macroscale analog of Fick’s law.

Unchanged in this chapter are the relation between chemical potential and

local slope, Eq. (5.39), and the mass conservation law, Eq. (9.11). These two in-

gredients, along with an appropriate macroscale analog of Fick’s law, constitute a

closed set of equations for the macroscale surface relaxation. Here we observe that

only the macroscale analog of Fick’s law needs to be modified, just as in Chapter

6 with the introduction of anisotropic diffusivity on terraces. This modification of

Fick’s law in the macroscale limit is required whenever the adatom concentration

satisfies a different boundary value problem. In Chapter 6 we assumed a tensor diffu-

sivity and retained the usual linear kinetic boundary conditions; here we considered

a scalar diffusivity and extended the boundary conditions to include a dependence

on neighboring terrace adatom concentrations. In general we can modify both the

terrace diffusion equation and the boundary conditions at step edges, which leads
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to an extension of the mobility M in the resulting macroscale analog of Fick’s law.

The simple result of this chapter has possible limitations. Negative values of

p have been suggested to explain electromigration-induced step pairing on Si(111).

The case p < −k/2 challenges our macroscale limit by allowing qeff to take on

negative values, leading to a singularity in the equations at slopes |∇h| = −1/qeff.

Since the slope smoothly approaches zero near facet edges or local height extrema,

the singularity where |∇h| = −1/qeff can only be avoided by imposing unwarranted

restrictions on the magnitude of the slope. However, if the permeability rate p is

large and positive, we expect the adatoms to jump without difficulty from one terrace

to the next, being limited in their motion only by the finite terrace diffusivity. The

macroscale limit derived here ought to hold in this case of diffusion-limited kinetics.

We might also interpret the renormalized kinetic rate in the macroscale equa-

tions as a result of homogenization. Instead of seeing a crystal surface as terraces sep-

arated by sharp steps, the two-region model treats the surface as a layered medium,

with two types of regions distinguished by their diffusivities and their widths [125].

Since surface reconstruction might take place more readily near a line defect, it is

natural to postulate the existence of a tubular region around each step, in which

the adatom diffusivity differs from that of terraces. The effective rate of adatom

transport over a mesoscale consisting of many terraces is now seen to depend on the

different diffusivity Da due to reconstruction in the tubular region corresponding to

a step, and the width la of this region relative to the typical terrace width l; see

Figure 7.2. We appeal to the calculation of [70] to find the averaged (or effective)

diffusivity Dav for a train of N terraces spanning a total transverse distance L. This

119



Figure 7.2: Illustration of the two-region model in contrast to the sharp step picture

it replaces (adapted from [125]).

120



Dav is given by

Dav =
1

1
L

(
la
Da

+ l
D

) =
D

1 +
(

D
Da
− 1
)

la
a
m0

, (7.50)

where m0 is the local slope in the mesoscale region. In hindsight, the same result

can be derived by mapping the two-region model to an electric circuit consisting of

resistors in series. The effective conductance σeff = 1/Reff of a two-resistor unit is

given by the harmonic average of the two conductances, i.e.,

1

σeff

=
1

σ
+

1

σa

. (7.51)

We identify the conductance σ with the terrace diffusivity per unit length, D/l, while

σa corresponds to the “step region” diffusivity per unit length, Da/la. Equation

(7.50) ensues.

Zhao, Weeks and Kandel [125] obtained (7.50) without recourse to homoge-

nization theory or electric circuit analogies. Their interpretation allows for different

sign of the coefficient (D/Da− 1)la/a depending on which inequality holds between

the diffusivities in the two regions. Faster diffusion in the step region (Da > D)

leads to a negative coefficient of m0. Similarly, a permeability coefficient p sat-

isfying p < −k/2 leads to a negative q in the macroscale limit of this chapter.

Evidently, the two-region model and the picture of permeable sharp steps both have

enough flexibility in the choice of parameters to match a range of coefficients in

the slope-dependent mobility. The agreement between these two nanoscale models

at the level of macroscale equations is noteworthy, in view of the strikingly differ-

ent pictures they present at the nanoscale. The persistence of a slope-dependent

mobility with (possibly negative) material parameter q indicates just how robust
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the macroscale limit is, emerging in the same form out of two conceptually distinct

nanoscale models.

Our interpretation of permeability, as an additive renormalization of the ki-

netic rate in the macroscale equations, is simple enough to allow meaningful compar-

isons between predictions of the macroscale PDE (chapter 10) and Monte-Carlo sim-

ulations of stepped surfaces. An alternative interpretation by O. Pierre-Louis [89],

in which the equilibrium concentration of the step flow equations is renormalized

through a suitable combination of the boundary conditions, also admits direct com-

parison with atomistic simulations. The question of whether step transparency itself

is exhibited by realistic surfaces cannot be addressed without a further understand-

ing of the physical mechanisms which combine with permeability to produce different

morphological changes. Our discussion of electromigration in Chapter 8 helps com-

plete the picture of possible nanoscale physics, in order to categorize the kinetic

regimes under which a stepped surface can evolve. By studying those regimes where

permeability would couple with electromigration to yield a qualitatively different

evolution, we might in principle be able to detect the presence and strength of step

transparency for realistic materials.
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Chapter 8

Electromigration and desorption1

In this chapter, we consider another set of extensions to the BCF picture

of terrace adatom diffusion. First we introduce an electric field, which biases the

motion of adatoms in a prescribed direction. Next we allow desorption of adatoms

into the vapor phase. Combined with our results for anisotropic terrace diffusion

and step edge diffusion, the inclusion of electromigration and desorption provides a

comprehensive model of the mass transport processes over terraces and steps.

Our analysis aims to complement previous works in surface electromigration;

see, e.g., [12, 15, 27, 28, 35, 52, 53, 55, 59, 60, 61, 72, 74, 88, 90, 92, 101, 102,

103, 111, 112, 124, 125]. These focus on the development of instabilities (e.g. step

meandering and bunching) across scales, often from a dynamical system viewpoint.

We, on the other hand, place electromigration in the context of connecting discrete

schemes for interacting steps to global PDE laws and variational principles in 2+1

dimensions [16, 64, 66, 78, 80, 96, 98, 106, 109, 123]. The PDE we derive can be

studied using local analysis, to see the possible control that an electric field might

have on the spatial dependence of the slope profile near a facet. Investigating the

possible global control of the surface evolution by an electric field is within the scope

of our numerical method, as we discuss in Chapter 10.

1Parts of this chapter appeared previously in Quah and Margetis, Macroscopic Electromigration

on Stepped Surfaces, submitted to SIAM Multiscale Modeling and Simulation.
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The study of electromigration began with the observation by Latyshev et

al. [59] that direct current heating of stepped Si(111) resulted in a step bunching

instability. The appearance of step bunches depends both on the direction of the

applied current and on the surface temperature. An early model by Stoyanov [111]

offered a possible explanation for the link between electromigration current and step

bunching. Stoyanov’s model works only up to 850 ◦C, above which temperature the

direction of electric current required for step bunching undergoes two distinct rever-

sals. In particular, direct current in the step-down direction produces step bunching

at temperatures around 935 ◦C and 1275 ◦C, but at 1190 ◦C step bunching requires

current in the step-up direction.

More recent proposals to address the relation between electromigration and

step bunching (although not directly relevant to our focus here) include but are not

limited to the work by Pierre-Louis and Métois [88, 90], and by Zhao, Weeks, and

Kandel [124, 125]. Experimental studies found the bias in adatom motion—the drift

velocity—to be always parallel to the imposed electric field E. This drift velocity v

is related to E by [15, 28]:

v =
D (Z∗e)E

T
, (8.1)

where D is the adatom diffusivity, Z∗e is the effective adatom charge,2 and T is the

Boltzmann energy3. At the level of steps, the electric field amounts to the addition

of a convective (linear in the density gradient) term in the diffusion equation for the

2Here, we follow the notation of [15]. The symbol Z∗ (with an asterisk) should not be confused

with the usual symbol for the conjugate of a complex number.
3In this chapter only we use units where kB = 1, thus replacing by T the kBT of other chapters.
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adatom density; see (8.35). Regarding (8.1), |Z∗| is larger than unity for metals but

can be much smaller than unity for semiconductors [15]. We note in passing that E

influences the temperature in an experimental setup, since it directly controls the

electric current that flows through and eventually heats up the sample.

In addition to electromigration, we will allow adatoms to desorb into the vapor

with characteristic time τ. So, the term C/τ is added in the adatom diffusion equa-

tion where C is the adatom density. We study if and how this addition at the BCF

level influences the macroscopic limit. Note that a phenomenological approach to

desorption in crystal morphological evolution is offered by Villain [119]. We derive

τ -dependent corrections of the large-scale flux, and describe how large τ needs to

be so that desorption can be neglected in the macroscopic laws.

8.1 Macroscale limit and assumptions

The macroscopic limit aims to describe a continuous surface at sufficiently

large scales. Previous studies of electromigration and desorption apparently have not

focused on global evolution laws for the surface height, and hence carry a perspective

different from ours. These works (i) focus mainly on stability issues, (ii) make use

primarily of nanoscale models where steps are everywhere parallel, and (iii) allow

steps to interact mainly through terrace diffusion (with less emphasis on step-step

entropic or elastic dipole interactions).

Our derivation uses the multiscale expansion reviewed in Chapter 5, which

handles a fully (2+1)-dimensional geometry just as easily as a straight-step geom-
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etry. The expansion parameter is the step height, a. This formulation relies on

the separation of local variables for interacting steps into fast and slow, and can

encompass additional physical effects such as desorption and electromigration. As a

result, we derive a fully continuum model in 2+1 dimensions that extends the model

of Chapter 5 to a greater variety of experimentally relevant situations. The addi-

tional effect of anisotropic terrace diffusion can also be incorporated subsequently,

following the calculation of Chapter 6.

We recall the geometric assumptions underlying the macroscopic limit. The

(microscale) terrace width is assumed to be of the order of the step height, a, and

small compared to: (i) the step radius of curvature; (ii) the length over which the

step curvature varies; and (iii) the macroscopic length over which the step density

varies. A step train satisfying these conditions is referred to as ‘slowly varying’, cf.

Sections 5.3 and 6.1. The macroscopic limit is reached formally as a/λ → 0 where

λ is a macroscopic length. The step density is fixed and approaches the surface

slope. We assume that the initial (at t = 0) ordering of steps is preserved by the

flow (for t > 0),4 and that step trains are monotonic (say, with descending steps in

the direction of increasing transverse coordinate).

Furthermore, we require that certain kinetic parameter groups involving the

step height, a, remain O(1) (as a/λ ↓ 0). In particular, we take D/(ka) = O(1)

where k is any relevant kinetic rate for attachment-detachment of adatoms at a step

edge.

4This property should be derivable from microscale physics, such as the entropic repulsions that

enforce the non-crossing condition. This aspect is not studied here.
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Figure 8.1: Schematic of 1D steps (cross section) with an applied electric field, E.

Steps are descending with increasing x; E is shown to be in the step-up direction

(E < 0); and ku (kd) is the kinetic rate for atom attachment-detachment from a

terrace to an up- (down-) step edge.

8.2 One-dimensional step models

In this section, we review briefly ingredients of step motion, including repul-

sive entropic and elastic dipole step interactions, for 1D geometries: straight and

concentric circular steps. Related versions of the adatom diffusion equation with

either an electric field or desorption are solved explicitly.

The step configuration is shown in Figure 8.1. Both the diffusion of adatoms

(density gradient) and electric field (drift velocity) contribute to the flux in each

terrace. Each step advances or retreats in response to the net (normal) flux from

the neighboring terraces. The surface evolves as the steps move, lowering its free

energy.
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8.2.1 Straight steps

The position of the ith step is denoted by xi(t) (t is time), where xi+1 > xi

for all t, and Ci(x, t) is the adatom density on the ith terrace, i.e., the region

xi < x < xi+1. A constant electric field is applied externally in the x direction

(perpendicular to steps), introducing a drift velocity v according to (8.1). The

diffusion equation satisfied by Ci(x, t) is

D∂2
xCi − v∂xCi − τ−1Ci = ∂tCi ≈ 0 xi < x < xi+1 , (8.2)

where τ is the characteristic desorption time. We use the quasi-steady approxima-

tion, ∂tCi ≈ 0, by assuming that step motion is much slower than diffusion.

The adatom flux on the ith terrace, Ji(x, t), is defined by Fick’s law with drift:

Ji(x, t) = −D∂xCi + vCi . (8.3)

Linear kinetics prescribes the familiar boundary conditions at the step edges:

−Ji = ku(Ci − Ceq
i ) x = xi , (8.4)

Ji = kd(Ci − Ceq
i+1) x = xi+1 ; (8.5)

ku (kd) is the kinetic rate for an up- (down-) step edge, and Ceq
i is the equilibrium

adatom density at the ith step.

This Ceq
i expresses step interactions via the relation

Ceq
i = Cs exp

(µi

T

)
∼ Cs

(
1 +

µi

T

)
, |µi| � T , (8.6)

where µi is the ith-step chemical potential and Cs is the equilibrium adatom density

at an isolated step. In Section 8.5.1 we consider the consequences of not linearizing
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the exponential dependence on µi.
5

To illustrate some simple computations, we next distinguish the limits (i)

τ → ∞ (no desorption) and constant nonzero v, and (ii) v = 0 with finite τ .

The combination of finite τ and nonzero v can be described explicitly, but to keep

the presentation uncluttered we postpone this calculation until Section 8.5.2 on 2D

geometry.

8.2.1.1 Electric field with no desorption

Solving (8.2) for τ →∞ yields

Ci(x) = Aie
vx/D +Bi xi < x < xi+1 . (8.7)

The adatom flux on the ith terrace, Ji(x), is computed by (8.3):

Ji(x) = vBi . (8.8)

Substituting for Ci and Ji in (8.5) via (8.7) and (8.8) leads to the system evxi/D 1 + v/ku

evxi+1/D 1− v/kd


Ai

Bi

 =

Ceq
i

Ceq
i+1

 . (8.9)

This matrix equation is solved explicitly to yield

Ji(x) = Ji(xi) = −v
Ceq

i+1 − ev(δxi)/DCeq
i

ev(δxi)/D(1 + v/ku)− (1− v/kd)
, (8.10)

where δxi := xi+1 − xi = O(a) is the terrace width.

5This extension also applies to the macroscale limits of previous chapters, but the formal ma-

nipulations used here are better motivated by first calculating the macroscale limit with electro-

migration.
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8.2.1.2 Desorption with no electric field

Now consider diffusion equation (8.2) with v = 0 and finite τ . The solution

reads

Ci(x) = Aie
bx +Bie

−bx , b := (Dτ)−1/2 . (8.11)

The mass flux is Ji(x) = −D∂xCi = −Db(Aie
bx−Bie

−bx). Boundary conditions (8.5)

yield the matrix equation ebxi(1− θu) e−bxi(1 + θu)

ebxi+1(1 + θd) −e−bxi+1(1− θd)


Ai

Bi

 =

Ceq
i

Ceq
i+1

 , (8.12)

where θl := Db/kl (l = u, d). The mass flux on the ith terrace at x = xi is

Ji(xi) = −Db
Ceq

i+1 − [cosh(b δxi) + θd sinh(b δxi)]C
eq
i

(1 + θuθd) sinh(b δxi) + (θu + θd) cosh(b δxi)
. (8.13)

The flux at x = xi+1 can be obtained by the interchanges u↔ d and Ceq
i ↔ −Ceq

i+1.

Remark 8.2.1. The fluxes in (8.10) and (8.13) are not simply proportional to

Ceq
i+1 − Ceq

i (which in the macroscopic limit, δxi = xi+1 − xi = O(a) ↓ 0, becomes

proportional to the gradient of the macroscale chemical potential, µ). In section 8.4

we argue more generally that (8.10) and (8.13) reduce to different macroscopic laws

for the flux: The electric-field drift has a distinct macroscopic signature in the result-

ing Fick’s law; in contrast, the desorption effect is of higher order (in the expansion

parameter a), and is deemed negligible for a broad class of materials and conditions.

8.2.2 Concentric circular steps

In this section, we apply the BCF formulation to an axisymmetric setting.

Our goal is to study the interplay of drift and step curvature. So, consider steps
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that are concentric circles of radii ri(t) with ri+1 > ri. The external electric field E

is taken to be radial, viz., E = erE (er: radial unit vector) where E may vary with

the polar coordinate, r. To simplify the exposition, we set E = E(r)/r.6

The electric field produces the radial drift velocity v = erv = er V/r according

to (8.1), where V = DZ∗e E/T . The radial adatom flux, Ji(r) = er · Ji(r), is

Ji(r) = −D∂rCi + vCi ri < r < ri+1 . (8.14)

The terrace diffusion equation under the quasi-steady approximation thus reads

0 ≈ −div Ji−τ−1Ci = D(∂2
rCi +r−1∂rCi)−r−1V∂rCi−r−1(∂rV)Ci−τ−1Ci (8.15)

[where r−1(∂rV)Ci = (div v)Ci]. In the following, we neglect the term r−1(∂rV)Ci

assuming that, for v 6= 0, |∂rV|Ci � |V∂rCi|; this holds, for example, if V(r) varies

sufficiently slowly.7 Hence, (8.15) simplifies to

0 ≈ D(∂2
rCi + r−1∂rCi)− r−1V∂rCi − τ−1Ci . (8.16)

In Section 8.5.2.2 we discuss the effect of retaining (divv)Ci in the diffusion equation.

Boundary conditions analogous to (8.5) that complement (8.16) follow from

linear kinetics at the step edges:

−Ji(ri) = ku[Ci(ri)− Ceq
i ] , Ji(ri+1) = kd[Ci(ri+1)− Ceq

i+1] . (8.17)

6In experimental setups, E must of course be generated and sustained by feasible charge dis-

tributions. The issue of sources for E is not addressed here. These practical concerns suggest

the view that this radial case serves as a toy model for studying the interplay of drift and step

curvature.
7This condition is also expected to hold for V of the form V = c rω with sufficiently large r.
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The difference of fluxes from neighboring terraces at the ith step edge yields

the step velocity ṙi = dri

dt
according to mass conservation,

ṙi =
Ω

a
[Ji−1(ri)− Ji(ri)] . (8.18)

The coupled step flow equations with drift and desorption form an extension of the

axisymmetric model by Israeli and Kandel [37] and Fok [25].

By analogy with section 8.2.1, we distinguish the cases with (i) τ → ∞, and

(ii) v = 0, where explicit solutions are relatively simple.

8.2.2.1 Electric field with no desorption

First, we solve (8.16) for τ → ∞. By successive integrations we obtain the

formula

Ci(r) = Bi + Ai

∫ r

ri

1

z
exp

[
D−1

∫ z

ri

v(r′) dr′
]
dz ri < r < ri+1 . (8.19)

By (8.14), we compute the corresponding (radial) flux:

Ji(r) = Ai

{
−D
r

exp

[
D−1

∫ r

ri

v(r′) dr′
]

+ v(r)

∫ r

ri

1

z
exp

[
D−1

∫ z

ri

v(r′) dr′
]
dz

}
+ v(r)Bi . (8.20)

Substituting (8.19) and (8.20) for Ci and Ji in conditions (8.17), we find
− D

kuri

1 +
vi

ku(
1− vi+1

kd

)∫ ri+1

ri

φi(z) dz +
D

kd

φi(ri+1) 1− vi+1

kd


Ai

Bi

 =

Ceq
i

Ceq
i+1

 ,

(8.21)
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where vj := v(rj)
8 and

φi(r) :=
1

r
exp

[
D−1

∫ r

ri

v(r′) dr′
]
. (8.22)

Solving for Ai and Bi we have

Ai =
DA

Dv
, Bi =

DB

Dv
, (8.23)

Dv :=
D

kuri

(
1− vi+1

kd

)
+

[
D

kd

φi(ri+1) +

(
1− vi+1

kd

)∫ ri+1

ri

φi(z) dz

]
×
(

1 +
vi

ku

)
, (8.24)

DA :=

(
1 +

vi

ku

)
Ceq

i+1 −
(

1− vi+1

kd

)
Ceq

i , (8.25)

DB :=
D

kuri

Ceq
i+1 +

[
D

kd

φi(ri+1) +

(
1− vi+1

kd

)∫ ri+1

ri

φi(z) dz

]
Ceq

i . (8.26)

The above formulas are simplified considerably if rv is treated as a constant.

For r = ri the radial flux reads

Ji(ri) = −DAi

ri

+ viBi . (8.27)

The value Ji−1(ri) can be obtained similarly. The step velocity ṙi is written explicitly

by substituting the values for the integration constants into (8.27) and evaluating

the net flux at ri; cf. (3.33)–(3.36).

We conclude this subsection by noting in passing that the term ( divv)Ci,

which was neglected above, can be included in the diffusion equation without diffi-

culty (although the algebra is lengthier and less transparent). An idea is to treat the

term in question as a forcing, apply Duhamel’s principle and thus derive an integral

8This distinction is not necessary if v(r) is macroscopic, i.e., it varies slowly.
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equation for Ci, which can be solved via a Born-Neumann series by iteration. This

approach is undertaken in Section 8.5.2 for 2D. Alternatively, Ci can be expressed

in terms of confluent hypergeometric functions [18].

8.2.2.2 Desorption with no electric field

Next, we turn our attention to (8.16) with v = 0 and finite τ . The solution

reads

Ci(r) = Ai I0(br) +BiK0(br) , b = (Dτ)−1/2 , ri < r < ri+1 , (8.28)

where I0 and K0 are modified Bessel functions [19]. The flux at the ith terrace is

Ji(r) = −D∂rCi(r) = −Db[Ai I
′
0(br) +BiK

′
0(br)] ri < r < ri+1 . (8.29)

By applying boundary conditions (8.17) we find the matrix equation I0(bri)−
Db

ku

I ′0(bri) K0(bri)−
Db

ku

K ′
0(bri)

I0(bri+1) +
Db

kd

I ′0(bri+1) K0(bri+1) +
Db

kd

K ′
0(bri+1)


Ai

Bi

 =

Ceq
i

Ceq
i+1

 .

(8.30)

The microscale flux on the ith terrace at r = ri is

Ji(ri) = Db
MiC

eq
i − (bri)

−1Ceq
i+1

Pi

, (8.31)

where

Mi =I ′0(bri)K0(bri+1)−K ′
0(bri)I0(bri+1)

+
Db

kd

[I ′0(bri)K
′
0(bri+1)−K ′

0(bri)I
′
0(bri+1)] , (8.32)
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Pi =I0(bri+1)K0(bri)− I0(bri)K0(bri+1)

+
Db

ku

[I ′0(bri)K0(bri+1)− I0(bri+1)K
′
0(bri)]

+
Db

kd

[I ′0(bri+1)K0(bri)− I0(bri)K
′
0(bri+1)]

− (Db)2

kukd

[I ′0(bri+1)K
′
0(bri)− I ′0(bri)K

′
0(bri+1)] . (8.33)

In the above relations, the prime denotes differentiation with respect to argument.

The step velocity is expressed in terms of (ri−2, ri−1, ri, ri+1, ri+2) via (3.33)–(3.36).

8.3 2-dimensional step geometry

In this section, we consider steps of reasonably arbitrary shape and formulate

their equations of motion under a macroscopic electric field E without desorption

(τ = ∞, i.e., b = (Dτ)−1/2 = 0). Of particular interest are unidirectional electric

fields with magnitudes that vary over a length scale large compared to the scale over

which the adatom density varies. So, we impose

|(div v)Ci| � |v · ∇Ci| . (8.34)

Condition (8.34) is satisfied trivially (by divv ≡ 0) if E is constant, which corre-

sponds to many experimentally relevant situations.9 With regard to the actual steps,

we assume that their edges are represented by sufficiently smooth, closed curves on

the reference plane (x, y), which do not cross or self-intersect, as ensured physically

by the step-step repulsive (entropic and elastic dipole) interactions.

9If the three-dimensional E depends only on (x, y), (8.34) is trivially satisfied (by divv ≡ 0) in

the absence of charge distribution.
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8.3.1 Step geometry and formulation

We remind the reader of our notation for the geometry of 2D steps given in

Chapter 5. The step train is monotonic, with steps descending outward from a

top terrace (surface peak). Their edges are numbered 1, 2, ..., N, starting from the

topmost step. The local coordinates (η, σ) measure the distances transverse and

parallel to steps, respectively, with η increasing in the step-down direction and σ

increasing counterclockwise (top view). The unit vectors eη, eσ are orthogonal, in

the direction of increasing η, σ, respectively. The relevant metric coefficients (r:

position vector) are defined by

ξη := |∂ηr| , ξσ := |∂σr| .

In the following, ξη and ξσ are treated as O(1) and slowly varying with σ.

8.3.2 Equations of motion

In view of (8.34) and the quasi-steady approximation, the adatom density field

Ci in the ith-terrace region (ηi < η < ηi+1) solves

0 ≈ ∂tCi = div(D · ∇Ci)− v · ∇Ci , ∇ = (∂x, ∂y) = (ξ−1
η ∂η, ξ

−1
σ ∂σ) , (8.35)

where D is in principle a tensor function of position r. Here, we consider a scalar

constant, D = D; anisotropic terrace diffusion is a straightforward application of

the methods outlined in Chapter 6.10 The (vector-valued) adatom flux Ji is

Ji = −D∇Ci + vCi . (8.36)

10The details of this extension are given in [97].
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Robin-type boundary conditions for (8.35) inform Ci of: (i) attachment and

detachment of atoms at steps; and (ii) step energetics, especially step-step interac-

tions, via the equilibrium concentration, Ceq
i . These boundary conditions read

−Ji,⊥(ηi, σ) = ku[Ci(ηi, σ)− Ceq
i (σ)] , (8.37)

Ji,⊥(ηi+1, σ
′) = kd[Ci(ηi+1, σ

′)− Ceq
i+1(σ

′)] ; Ji,⊥ := eη · Ji , ku/kd = O(1) .

(8.38)

8.3.3 Approximate solution of diffusion equation

By use of the local coordinates (η, σ), diffusion equation (8.35) for Ci(η, σ)

reads

0 =
D

ξηξσ

[
∂η

(
ξσ
ξη
∂ηCi

)
+ ∂σ

(
ξη
ξσ
∂σCi

)]
− v⊥ξ

−1
η ∂ηCi − v‖ξ

−1
σ ∂σCi , (8.39)

where ηi < η < ηi+1; v⊥ := eη · v and v‖ := eσ · v.

By analogy with the case of zero electric field [66], we solve (8.39) with recourse

to the following proposition (which puts the derivations of Chapters 5,6, and 7 on

a more rigorous footing).

Proposition 8.3.1. Consider the boundary value problem consisting of PDE (8.39)

on the terrace Ui = {(η, σ) | ηi < η < ηi+1}, and conditions (8.37), (8.38) on the

boundary, ∂Ui, of Ui. Suppose that: (i) the boundary data exhibits a scale separation

in the sense that, for some geometric parameter ε� 1, Ceq
i is a fixed, O(1) function

of the slow variable σ := εσ, i.e., Ceq
i = Ceq

i (σ), while the rates ku, kd are ε-

independent; (ii) the metric coefficients ξη, ξσ depend on (η, σ) and are O(1) as
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ε ↓ 0; and (iii) curlv = 0 (i.e., ∂xvy = ∂yvx)
11 and min{ku, kd} > (1/2)|v|. Let

Ci be a C2 (twice continuously differentiable) function on Ui and C1 (continuously

differentiable) function on U i, the closure of Ui. Then, for η = O(1), Ci(η, σ) =

C
(0)
i (η, σ) + o(1) where

C
(0)
i (η, σ) = Bi(σ) + Ai(σ)

∫ η

ηi

dz
ξη|z
ξσ|z

exp

[∫ z

ηi

(v⊥ ξη)|η′
D

dη′
]

; (8.40)

o(1) → 0 as ε ↓ 0. The integration constants Ai, Bi are given by

Ai(σ) =
(1 + v⊥|ηi

/ku)C
eq
i+1 − (1− v⊥|ηi+1

/kd)C
eq
i

D

kuξσ|ηi

(
1−

v⊥|ηi+1

kd

)
+

(
1 +

v⊥|ηi

ku

)[
D

kdξη
∂ηfi|ηi+1

+

(
1− v⊥

kd

)
fi|ηi+1

] ,
(8.41)

Bi(σ) =

(
1 +

v⊥|ηi

ku

)−1[
Ceq

i (σ) +
D

kuξσ|ηi

Ai(σ)

]
, (8.42)

where fi(η, σ) is defined by

fi(η, σ) :=

∫ η

ηi

ξη|z
ξσ|z

exp

[∫ z

ηi

(v⊥ξη)|η′
D

dη′
]
dz (η, σ) ∈ Ui . (8.43)

In the above, Q|z denotes the value Q(η = z). The role of parameter ε is

to express small variations of the step edge curvature, which in turn cause slow

variations of Ci = Cε
i (η, σ) with respect to σ, permitting a perturbative treatment.

In the limit ε ↓ 0, the step edges become 1D, approaching concentric circles or

straight lines (depending on limits of ξη, ξσ). We also assume that ku and kd are

positive (as is typical in crystalline materials). For comments on the condition

|v|/kl < 2 where l = u, d, see Remark 8.3.2.

Proof. For convenience and notational economy, in this proof we set D = 1 (or,

define the inverse length v̂ := v/D and drop the hat) and suppress the terrace

11Alternatively, it can be assumed that v(r) varies slowly, e.g., v = v(ε1η, ε1σ), ε1 � ε.
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index i unless noted otherwise. Assuming that a solution C(r) = Cε(r) exists and

is unique, as implied below, we partly separate scales in PDE (8.39) for η = O(1).

So, we expand formally Cε(r) in an ε-power series; each coefficient, C(j), is allowed

to be a function of (η, σ, σ), which are treated as independent variables:12

Cε(η, σ) = C(0)(η, σ, σ) +
∑
j≥1

εj C(j)(η, σ, σ) = C0(η, σ, σ) + o(1) , (8.44)

where the remainder approaches 0 as ε ↓ 0, assuming continuity of the solution with

ε.13 In addition, the operator ∂σ is replaced by the linear combination

∂σ ⇒ ∂σ + ε ∂σ .

By dominant balance of O(ε0) terms, (8.39) entails the (zeroth-order) PDE

{
1

ξηξσ

[
∂η

(
ξσ
ξη
∂η

)
+ ∂σ

(
ξη
ξσ
∂σ

)]
− v⊥

∂η

ξη
− v‖

∂σ

ξσ

}
C(0) = 0 (r ∈ U) , (8.45)

which must be solved under conditions (8.37), (8.38) for C(0) (for ε-independent ku,

kd).

Next, we show that, for given continuous Ceq(σ), the above boundary value

problem for C(0) has at most one solution. We apply a standard energy method [24];

the same argument carries through for proving uniqueness of Cε. First, by the

transformation C(0) = C̆e
(1/2)

R r
ri

v·dr′
, PDE (8.45) is converted to the Helmholtz

equation ∆rC̆ − 1
4
(|v|2 − 2divv)C̆ = 0 (r ∈ U : terrace), where C̆ obeys the Robin

12The use of the extra slow variable η = εη, although formally justifiable, is not deemed necessary.
13This physical property is invoked in conjunction with the assumption that eliminating the

curvature variation (as ε ↓ 0) results in a well-defined adatom density, as suggested by Section 8.2.
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boundary condition −ν · ∇C̆ =: −∂νC̆ = K(r) C̆ − k(r)Ceq e
−(1/2)

R r
ri

v·dr′
(r ∈ ∂U);

ν is the unit outward normal vector, K(r) := k(r) − (1/2)ν · v, and k(r) = ku for

an up-step edge (η = ηi where ν = −eη) while k(r) = kd for a down-step edge

(η = ηi+1 where ν = eη). Consider sufficiently small |v| so that K(r) > 0, yet

|v|2 ≥ 2div v, consistent with the neglect of the term (div v)Cε in the diffusion

equation. Now suppose there exist two solutions, say C̆1 and C̆2, of the boundary

problem for C(0), with ϕ := C̆1 − C̆2; this ϕ satisfies the given Helmholtz equation

with boundary condition −∂νϕ = K ϕ. Second, define the non-negative energy

E [ϕ] = 1
2

∫
U
|∇ϕ|2 + $2ϕ2 where $2 := (1/4)(|v|2 − 2div v). By Green’s identity,

E [ϕ] =
∫

∂U
(ν · ∇ϕ)ϕ = −

∫
∂U
K ϕ2 ≤ 0; thus, ϕ ≡ 0 which entails C1 ≡ C2.

Based on this uniqueness assertion, we construct solution (8.40)–(8.42). The

σ-dependence of Ceq in the boundary data suggests that we look for a C(0)(r) that

depends on η and σ (but not σ). Such a C(0)(r), if it can be constructed plausibly,

is interpreted as the leading-order, unique solution of the boundary value problem.

Hence, we solve (8.45) by dropping the σ-derivatives. Two successive integra-

tions with respect to the variable η immediately yield

C(0)(η, σ) = B(σ)+Â(σ)

∫ η

ηi

exp

{
−
∫ z

ηi

[
ξη′

ξσ
∂η′

(
ξσ
ξη′

)
− (v⊥|η′)ξη′

D

]
dη′
}

dz , (8.46)

where Â and B are integration constants. Equation (8.46) readily reduces to (8.40)

by direct integration (in η′) of the first term in the exponent and the subsequent

substitution A(σ) := (ξσ/ξη)|ηi
Â(σ).

The coefficients A(σ) and B(σ) are determined through boundary conditions
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(8.37), (8.38) with σ = σ′. Accordingly, we obtain the system
− D

kuξσ|ηi

1 +
v⊥|ηi

ku

D

kdξη
∂ηf |ηi+1

+
(
1− v⊥/kd

)
f |ηi+1

1−
v⊥|ηi+1

kd


 A

B

 =

 Ceq
i

Ceq
i+1

 ,

where f(η, σ) is defined by (8.43). Solving this system leads to (8.41) and (8.42).

Henceforth, we drop the dependence of v⊥ = v ·eη (and v‖ = eσ ·v) on i, since

v is considered macroscopic and eη, eσ vary slowly with η. It can be verified that

(8.40) reduces to the solutions for 1D settings of sections 8.2.1.1 and 8.2.2.1.

Remark 8.3.2. Thus far, we invoked the condition |v|/k` < 2 (` = u, d). By

definition (8.1) for v, this restriction amounts to imposing

|v|
2k`

=
D

2k`a

|Z∗e| |E|a
T

< 1 , ` = u, d .

In typical experimental situations, D/(2k`a) is of the order of 102 or smaller [43],

|eE|a/T is of the order of 10−5, and for semiconductors |Z∗| ranges from 10−4 (or

even smaller values) to about 10 [15, 28]. Hence, |v|/k` would not exceed values of

the order of 10−2.

From the perspective of perturbation theory adopted here, D/(k`a) is treated as

an O(1) quantity whereas |v|/k` will be considered as o(1) (see Proposition 8.4.1)

when a ↓ 0. This view furnishes the distinct physical contribution of drift in the

large-scale surface flux. Practically, setting |v| � k` seems to more closely describe

semiconductor surfaces, where |Z∗| can be much smaller than unity [28]. Mathemat-

ically, this view is a choice for obtaining the distinguished-limit contribution of v as

a ↓ 0.
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In Section 8.4.1 we impose |v|/kl � 1; as a result, Fick’s law for the large-scale

flux does not distinguish between up- and down-step edges, being symmetric in ku

and kd.

8.4 Evolution equations at the macroscale

In this section we find the evolution equations for the macroscale height in the

presence of an electric field. The modification of Fick’s law (8.36) at the nanoscale

leads to a convective term in the constitutive relation between the macroscale flux

and chemical potential, as we show in Proposition 8.4.1. Unchanged from Chapters

5,6, and 7 are the mass conservation law and the formula for the macroscale chemical

potential.

The law of mass conservation, in the absence of edge atom diffusion and ma-

terial deposition from above, reads

∂th+ Ω divJ = 0 ; (8.47)

see (5.44).

The macroscale chemical potential µ is regarded as a smooth interpolation,

through a suitable Taylor expansion, of the microscale step chemical potential µi.

The presence of an electric field is not expected to change the surface energy due to

steps, which experience the same line tensions and repulsive interactions as in the

case of zero electric field. We adopt the formula from Chapter 5, which reads

µ = −Ω div

{
∂m[m(g1 + g3m

2)]
∇h
|∇h|

}
, m := |∇h| . (8.48)
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8.4.1 Macroscopic Fick’s law with drift

In this section, we derive the constitutive relation between macroscale flux

and chemical potential in full 2D. The restrictions to 1D geometries then follow as

special cases. We choose units where the macroscopic length λ is unity (λ = 1) for

convenience.

Proposition 8.4.1. Suppose that in the macroscopic limit, a ↓ 0, the step density

mi = a/(ξηδηi) and the kinetic parameters D/(kla) are O(1) while v/kl = o(1),

where l = u, d and δηi := ηi+1 − ηi. Then, the solution to diffusion equation (8.39),

under boundary conditions (8.37), (8.38), gives rise to the macroscale constitutive

relation

J =

 J⊥

J‖

 = −CsM ·
[
∇µ− T

D
v
(
1 +

µ

T

)] (
v =

DZ∗eE

T

)
, (8.49)

where the (E-independent) mobility M (with units of length 2/energy/time) is a

second-rank tensor. In the coordinate system (η, σ), this M has the familiar repre-

sentation of Chapter 5, namely,

M =
D

T

1

1 + q|∇h|

 1 0

0 1 + q|∇h|

 , q :=
2D

ka
, k :=

2

k−1
u + k−1

d

. (8.50)

Proof. The starting point is the solution C
(0)
i derived in Proposition 8.3.1; see (8.40).

We drop the superscript (denoting perturbation order) in C
(0)
i for ease of notation.

The microscale adatom flux components are obtained by the formulas

Ji,‖ = −Dξ−1
σ ∂σCi + v‖Ci ,

Ji,⊥ = −Dξ−1
η ∂ηCi + v⊥Ci .
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The plan is to consider the restrictions of these components to η = ηi, and view

these restrictions as interpolations of (continuous) smooth functions, J⊥(r, t) and

J‖(r, t).

First, we compute the requisite derivatives of Ci by (8.40):

∂σCi ∼ ∂σBi + ∂σAi

∫ η

ηi

ξη|z
ξσ|z

exp

[∫ z

ηi

ξη′ v⊥|η′
D

dη′
]

dz ,

∂ηCi = Ai
ξη
ξσ

exp

[∫ η

ηi

ξη′(v⊥|η′)
D

dη′
]
.

It follows that

Ji,‖ = −Dξ−1
σ ∂σBi + v‖Bi , (8.51)

Ji,⊥ = −Dξ−1
σ Ai + v⊥Bi η = ηi . (8.52)

Consider (8.41), (8.42) (in Proposition 8.3.1) for Ai, Bi. In the limit a ↓ 0, or

δηi ↓ 0 with ξηδηi = O(a), these formulas simplify via the expansion
∫ ηi+1

ηi
F (η) dη =

F (ηi) δηi + o(δηi), where F (η) is any continuous function. After some algebra and

neglect of o(δηi) terms, (8.51) and (8.52) become

Ji,‖|ηi
∼
v‖

[
D

ξηδηi

(
Ceq

i

kd

+
Ceq

i+1

ku

)
+ Ceq

i

]
−D

[
∂‖C

eq
i +

D

ξηδηi

(
∂‖C

eq
i

kd

+
∂‖C

eq
i+1

ku

)]
D

ξηδηi

(
1

ku

+
1

kd

)
+

(
1 +

v⊥
ku

) ,

(8.53)

Ji,⊥|ηi
∼

D

ξηδηi

(Ceq
i − Ceq

i+1) + v⊥C
eq
i

D

ξηδηi

(
1

ku

+
1

kd

)
+

(
1 +

v⊥
ku

) as δηi ↓ 0 ; ∂‖ := ξ−1
σ ∂σ . (8.54)

In the above, all variables are evaluated at (the same) σ along the ith step edge.

We seek further simplification of (8.53) and (8.54). In the macroscopic limit,

we invoke the (assumed as well defined) C1 function Ceq(r) where Ceq(r)|ηi
≡ Ceq

i ,
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Ceq
i+1 ≡ Ceq(r)|ηi

+ (∂ηC
eq)|ηi

δηi + o(δηi) and ∂‖C
eq|ηi

≡ ∂‖C
eq
i = ∂‖C

eq
i+1 + O(δηi).

We keep only those combinations of microscopic parameters that remain O(1). For

example, the step density mi = a/(ξηδηi) approaches the positive surface slope, i.e.,

lima↓0mi = |∇h|. On the other hand, the ratio v⊥/ku, involved in the denominator

of Ji,‖ and Ji,⊥, is treated as negligibly small (compared to unity) by virtue of our

hypothesis; see also Remark 8.3.2.

Without further ado, we make the substitutions Ceq
i+1−C

eq
i = (∂⊥C

eq) ξηδηi +

o(δηi) and Ceq ∼ Cs(1 + µ/T ) (|µ| � T ), where ∂⊥ := ξ−1
η ∂η. The resulting limits

for the flux components read

lim
a↓0

Ji,‖|ηi
=: J‖(r)|ηi

= −CsD

T
∂‖µ(r) + Csv‖

[
1 +

µ(r)

T

]
, (8.55)

lim
a↓0

Ji,⊥|ηi
=: J⊥(r)|ηi

= −CsD

T

∂⊥µ−
T

D
v⊥

(
1 +

µ

T

)
1 + q|∇h|

η = ηi . (8.56)

These relations are identified with (8.49) under definition (8.50) for the mobility M.

It can be verified directly that the same limits emerge if the evaluation point

of fluxes is at η = ηi+1 [66]. Two remarks on the results of Proposition 8.4.1 are in

order.

Remark 8.4.2. In the absence of electromigration (v = 0), we recover the relation

J = −CsM · ∇µ of Chapter 5. For nonzero drift (v 6= 0), the additional term

derived above is affine with µ. This new relation is recast to the zero-drift form via

an exponential transformation of µ; see Section 8.4.3.

Remark 8.4.3. An alternate proof of Proposition 8.4.1 makes direct use of the
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adatom concentration, Ci, and the normal flux component, Ji,⊥, avoiding entirely

the use of integration constants Ai and Bi. This approach treats boundary conditions

(8.37), (8.38) for σ′ = σ as a system of equations for Ci(ηi) and Ji,⊥(ηi). This argu-

ment is also applicable to situations where the boundary conditions couple densities

of different terraces, e.g., in the case with step permeability (see Chapter 7).

By Proposition 8.4.1, we state the following corollary for cases of symmetry.

Corollary 8.4.4. Consider 1D settings with v 6= 0, where translational or rotational

symmetry causes all dependent variables to have zero σ-derivatives. The macroscopic

surface flux corresponding to (8.49) is

J = J(χ)eχ , J(χ) = −CsD

T

∂χµ

1 + q|∂χh|
+

Csv

1 + q|∂χh|

(
1 +

µ

T

)
, (8.57)

where χ = x for straight steps and χ = r for concentric circular steps; q = 2D/(ka).

Recall that, in the microscale model underlying the limit of this section, the

contribution (div v)Ci is left out from the terrace diffusion equation (see Section

8.2.2). For a discussion on a correction to the macroscopic limit, see Remark 8.5.4.

8.4.2 Evolution equation in Cartesian system

In this section, we describe the PDE for the surface height by combining

ingredients (8.47) and (8.48)–(8.50) and making use of Cartesian coordinates, (x, y).

First, we recall the non-singular orthogonal matrix S, Eq. (5.26).

S(∂xh, ∂yh) = (eη eσ) =
1

|∇h|

−∂xh ∂yh

−∂yh −∂xh

 (∇h 6= 0) . (8.58)
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The mobility tensor M, which is defined by (8.49) in the (η, σ) coordinate system,

is now expressed in the Cartesian coordinate system (x, y) by

M(x,y) = SM(η,σ) S
T ; (8.59)

as usual, ST denotes the transpose of S (ST = S−1). The Cartesian components of

the surface flux (8.49) read (e`: orthonormal vectors, ` = x, y):

Jx =− Cs

1 + q|∇h|

{
D

T

[(
1 + q

(∂yh)
2

|∇h|

)
∂xµ− q

(∂xh)(∂yh)

|∇h|
∂yµ

]
−
(

1 +
µ

T

)[(
1 + q

(∂yh)
2

|∇h|

)
vx − q

(∂xh)(∂yh)

|∇h|
vy

]}
, (8.60)

Jy =− Cs

1 + q|∇h|

{
D

T

[(
1 + q

(∂xh)
2

|∇h|

)
∂yµ− q

(∂xh)(∂yh)

|∇h|
∂xµ

]
−
(

1 +
µ

T

)[(
1 + q

(∂xh)
2

|∇h|

)
vy − q

(∂yh)(∂xh)

|∇h|
vx

]}
; v` = e` · v (` = x, y) .

(8.61)

The PDE for the surface height follows from the mass conservation statement.

Using the Cartesian representation of (8.47), we have

∂th = −Ω(∂xJx + ∂yJy) . (8.62)

This relation leads to a nonlinear, fourth-order parabolic PDE for h after substitu-

tion for Jx, Jy, and µ from (8.60), (8.61), and (8.48).

8.4.3 Change of variables

We show that law (8.49) is recast to the form

J = −cM · ∇ϑ (c = const.) , (8.63)
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leading to the PDE

∂t̃h̃ = divα[M · ∇αϑ] , (8.64)

with suitable choices of the tensor M and variable ϑ[µ̃], the transformed chemical

potential; the dimensionless variables t̃, h̃, µ̃ and operators divα, ∇α are defined in

Appendix B.

Constitutive relation (8.49) for the surface flux reads

J = −CsD

λx

M̃ · [∇αµ̃− u(1 + µ̃)] , (8.65)

where the dimensionless mobility M̃ – in the (x, y) representation – and drift velocity

u are defined by

M̃(x,y) := S̃ ·


1

1 + q̃ |∇αh̃|
0

0 1

 · S̃T , u :=
λx

D
v ; q̃ :=

qh0

λx

. (8.66)

The corresponding change-of-basis matrix, S̃, is S̃ ≡ S(∂x̃h̃, α∂ỹh̃); cf. (8.58).

Consequently, the PDE for the nondimensional height, h̃, reads

∂t̃h̃ = divα{M̃ · [∇αµ̃− u(1 + µ̃)]} . (8.67)

Next, we show (8.63) and (8.64). By inspection, we start with the transfor-

mation

ϑ = (1 + µ̃) fϑ , (8.68)

where the (nonzero) fϑ = fϑ(x̃, ỹ) is to be determined. By virtue of M · ∇αϑ =

(Mfϑ) · [∇αµ̃+ (∇αf
ϑ/fϑ)(1 + µ̃)] and (8.65), we have the consistency relations

M fϑ = M̃ , (∇αf
ϑ)/fϑ = −u ,
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the second one of which yields

fϑ(x̃, ỹ) = Ae−u·(x̃,ỹ/α) ⇒ M = A−1M̃(∇αh̃) e
u·(x̃,ỹ/α) , A = const. 6= 0 . (8.69)

Relations (8.63), (8.64) ensue. For definiteness, take A = 1.

The transformed chemical potential ϑ and mobility M are

ϑ(x̃, ỹ) =

{
1− µ̃0 divα

[
g̃
∇αh̃

|∇αh̃|
+ |∇αh̃|∇αh̃

]}
e−(uxx̃+uy ỹ/α) , (8.70)

M(x,y) = euxx̃+uy ỹ/αS̃ · M̃ · S̃T = euxx̃+uy ỹ/α S̃ ·


1

1 + q̃ |∇αh̃|
0

0 1

 · S̃T . (8.71)

The finite element scheme introduced in Chapter 2 can easily accommodate the

transformed chemical potential and mobility. The change-of-variables is not deemed

likely to introduce numerical instability if the grid Peclet number Pe = |v|∆x/D is

much less than 1 [77].14 For easier readability of the code, however, we opted to

include the convective term directly when simulating the macroscopic effect of an

electric field. A thorough comparison of the two methods is still lacking.

8.5 Extensions of macroscopic limit

In an attempt to formulate a reasonably general theory of macroscopic surface

relaxation, we enrich the BCF model with additional microscale effects. These

are: (i) the exponential law Ceq
i = Cs exp(µi/T ) in the place of its linearization,

and (ii) atom desorption. Our broader goal with these extensions is to reconcile

the macroscopic theory with realistic situations where an electric field is present.

14Pe compares the relative importance of convection to diffusion; ∆x : mesh size.
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We show that (i) can modify significantly the constitutive relation between surface

flux and chemical potential. In contrast, effect (ii) arguably has vanishingly small

influence on the macroscopic evolution law.

8.5.1 Exponential law for step chemical potential

To derive the constitutive relation between large-scale flux and chemical po-

tential, we approximated the difference of equilibrium concentrations Ceq
i by use of

the linearized form (8.6). The quantitative justification for this approximation is not

clear in the literature, particularly since the chemical potential µi is not measured

directly. However, the PDE is easily modified to accommodate the complete, expo-

nential law. For a similar modification in 1+1 dimensions with v = 0 and long-range

step interactions, see [123].

By skipping details irrelevant to the modification at hand, we start from (8.54).

By setting µi = µ(r)|ηi
we expand the difference Ceq

i+1 − Ceq
i as follows:

Ceq
i+1 − Ceq

i = Cs

[
exp

(
µi+1

T

)
− exp

(
µi

T

)]
=

aCs

|∇h|
exp

(
µ(η̌)

T

)
∂⊥µ(η̌)

T
, η̌ ∈ [ηi, ηi+1] .

Hence, the normal flux component Ji,⊥ at (ηi, σ) becomes

Ji,⊥|ηi
=

− D

ξηδηi

aCs

|∇h|
exp

(
µ(η̌)

T

)
∂⊥µ(η̌)

T
+ v⊥Cs exp

(
µ(ηi)

T

)
D

ξηδηi

(
1

ku

+
1

kd

)
+

(
1 +

v⊥
ku

) . (8.72)

Similarly, the σ-derivative of Ceq
i appearing in (8.53) for the longitudinal flux com-
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ponent, Ji,‖, now acquires exponential factors when expressed in terms of µi :

Ji,‖|i =

[
− D

ξηδηi

(
1

ku

+
1

kd

)
− 1

]−1{
−CsD

ξηδηi

v‖

[
1

kd

exp
(µi

T

)
+

1

ku

exp
(µi+1

T

)]
− v‖Cs exp

(µi

T

)
+ CsD exp

(µi

T

) ∂‖µi

T

+
D2Cs

kdξηδηi

exp
(µi

T

) ∂‖µi

T
+

D2Cs

kuξηδηi

exp
(µi+1

T

) ∂‖µi+1

T

}
. (8.73)

The coarse-graining procedure carries through as in Proposition 8.4.1. The

components of the flux J(r) are found to satisfy the equations

J⊥(r)

(
2

k
+

a

D|∇h|

)
= exp

[
µ(r)

T

] {
− aCs

|∇h|
∂⊥µ(r)

T
+ v⊥

aCs

D|∇h|

}
, (8.74)

Cs exp

[
µ(r)

T

]
∂‖µ(r)

T
= − 1

D

{
J‖(r)− v‖Cs exp

[
µ(r)

T

]}
. (8.75)

The last two equations result in the effective constitutive relation

J = −Cs e
µ/TM ·

(
∇µ− T

D
v

)
. (8.76)

By inspection of (8.76), we have the following remark:

Remark 8.5.1. The modified constitutive relation for the macroscopic surface flux

results from the invariant under the law Ceq = Ceq[µ] form (8.64) and the definition

ϑ(r) := eµ(r)/T−v·r/D , (8.77)

which is a direct extension of the linearized version, (8.68) or (8.70).

8.5.2 Adatom desorption

The effect of desorption is expected to affect only the relation between the

large-scale surface flux and chemical potential. In this section, we show that, under
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certain conditions, desorption does not appear in the macroscopic laws to leading

order in a.

8.5.2.1 Solution for microscale diffusion

Following the rationale of slow and fast step variables of section 8.3.3, we write

the (quasi-steady) diffusion equation on the ith terrace with desorption time τ and

a drift velocity v (v⊥ = eη · v) as

∂η

(
ξσ
ξη
∂ηCi

)
− v⊥ξσ

D
∂ηCi ∼

ξηξσ
τD

Ci (ηi < η < ηi+1) . (8.78)

A first observation is that, for v⊥ 6= 0 and τ 6= ∞, this equation does not admit a

relatively simple solution, i.e., in terms of elementary functions. (The radial case of

Section 8.2.2 certainly alludes to the same conclusion.)

It is of interest to note that there are at least two ways of solving (8.78). First,

it can be converted to a canonical ordinary differential equation (ODE) solvable by

confluent hypergeometric functions [18]. This route is not particularly informative.

Alternatively, (8.78) can be recast to a Volterra integral equation, which can be

solved by iterations through a (convergent) Born-Neumann series [116].

We now focus on the (simpler) integral-equation formulation for (8.78).15

Proposition 8.5.2. Suppose Ci is a solution of the PDE (8.78). Then, Ci satisfies

the following Volterra equation on ηi < η < ηi+1 :

Ci(η, σ) = [Bi(σ) + Ai(σ)fi(η, σ)] + [ui,1(η, σ) + ui,2(η, σ) fi(η, σ)] , (8.79)

15For notational simplicity, we use σ in the place of the slow variable σ.
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where

ui,1(η, σ) = ui,1[Ci] = −(τD)−1

∫ η

ηi

fi(η
′, σ)ξ2

η′Ci(η
′, σ)

W(η′)
dη′ , (8.80)

ui,2(η, σ) = ui,2[Ci] = (τD)−1

∫ η

ηi

ξ2
η′ Ci(η

′, σ)

W(η′)
dη′ , (8.81)

W(η) = ∂ηfi =
ξη
ξσ

exp

[
D−1

∫ η

ηi

ξη′ (v⊥|η′) dη′
]
, (8.82)

fi(η, σ) is defined by (8.43), and the coefficients Ai(σ) and Bi(σ) are determined

through boundary conditions (8.37), (8.38) for atom attachment-detachment at η =

ηi, ηi+1. Note that W(η) is the Wronskian of the two homogeneous (for τ = ∞)

solutions of ODE (8.78), namely, the functions 1 and fi(η, ·).

Proof. We provide a sketch of the proof since this relies on standard techniques for

linear ODEs and PDEs. Consider the (τ -dependent) term in the right hand side

of (8.78) as a forcing. Apply Duhamel’s principle (or the method of “variation of

parameters”) to construct a particular solution of the ODE. This approach yields

Ci as a sum of: (i) a linear combination of the two homogeneous solutions, 1 and

fi; and (ii) a τ−1-scaled particular solution, which involves two distinct integrals

of Ci/τ (one for each homogeneous solution). The coefficients Ai and Bi in the

aforementioned linear combination are determined via enforcement of the boundary

conditions.

The integral equation (8.79) can be solved by the conventional iteration (Born-

Neumann) scheme [116]: First, set Ci = 0 under the integral (in ui,1 and ui,2) and

obtain Ci ∼ Bi + Aifi; second, replace Ci by Bi + Aifi under the integral; next,

repeat successively with the updated Ci. Because the kernel is L2 and smooth, the
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series generated by iterations converges to the solution Ci for all τ > 0, and yields a

sufficiently smooth Ci. Since the kernel is proportional to τ−1, the procedure yields

a power series in 1/τ , whose convergence rapidity is thus enhanced by increasing τ .

The value of the Born-Neumann scheme becomes evident for η − ηi � 1.

Since
∫ η

ηi
F (η′) dη′ = F (ηi) (η − ηi) + o(η − ηi) for any continuous F , the associated

iterated integrals contribute respective ascending powers of η − ηi. So, evidently,

in the limit maxi δηi = maxi{ηi+1 − ηi} ↓ 0, constructing a solution to (8.79) via a

Born-Neumann series corresponds to producing a Taylor series in η−ηi for Ci(η, σ).

This result is directly applicable to the macroscopic limit of the step system.

8.5.2.2 Limit a ↓ 0

Next, we derive a macroscopic Fick’s law with desorption and external electric

field. We follow the main procedure of Proposition 8.4.1 by use of formula (8.79)

(in Proposition 8.5.2) for Ci. Suppressing the σ dependence, we define

Cv
i (η) := Bi + Ai fi(η) , (8.83)

which is the solution form without desorption.16 Thus, Ci satisfies

Ci(η)− Cv
i (η) = (τD)−1

∫ η

ηi

ξ2
η′
fi(η)− fi(η

′)

∂η′fi

Ci(η
′) dη′ . (8.84)

By differentiation of (8.84) with respect to η we obtain the normal flux com-

ponent, Ji,⊥ = eη · (−D∇Ci + vCi):

Ji,⊥− Jv
i,⊥ = −∂⊥fi

τ

∫ η

ηi

ξ2
η′ Ci(η

′)

∂η′fi

dη′ +
v⊥
τD

∫ η

ηi

ξ2
η′
fi(η)− fi(η

′)

∂η′fi

Ci(η
′) dη′ , (8.85)

16Ai and Bi entering Cv
i in principle depend on τ via boundary conditions at step edges.
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where Jv
i,⊥ := −D∂⊥Cv

i + v⊥C
v
i ; recall that ∂⊥ = ξ−1

η ∂η.

Now consider the limit δη := η − ηi ↓ 0. By Taylor expanding the right hand

sides of (8.84) and (8.85), we readily obtain

Ci(η)− Cv
i (η) = (2Dτ)−1Cv

i (ηi) ξ
2
ηi
δη2 +O(δη3) , (8.86)

Ji,⊥(η)− Jv
i,⊥(η) = −τ−1Cv

i (ηi) ξηi
δη +O(δη2) as δη ↓ 0 . (8.87)

Next, we apply conditions (8.37) and (8.38) for σ′ = σ. With recourse to Cv
i (ηi+1) =

Cv
i (ηi) + (∂ηC

v
i )|ηi

δηi + o(δηi), and likewise for Ji,⊥(ηi+1), we find

−k−1
u Jv

i,⊥ = Cv
i − Ceq

i , (8.88)

k−1
d

[(
1 +

kd

D
δwi

)
Jv

i,⊥ + (∂⊥J
v
i,⊥)δwi

]
∼
[
1 +

(
v⊥
D

+
1

kdτ
+

δwi

2Dτ

)
δwi

]
Cv

i − Ceq
i+1 , (8.89)

where δwi := ξηi
δηi, and Cv

i , Jv
i,⊥ and ∂⊥J

v
i,⊥ are evaluated at ηi. Note that (8.88)

does not involve τ explicitly. In contrast, (8.89) manifests desorption terms in the

right hand side. If these, τ−1-scaled, terms can be neglected appropriately, the

resulting system becomes identical to that without desorption; the corresponding

terms in Ci and Ji,⊥ can then be dropped.

Remark 8.5.3. By inspection of the (attachment-detachment) boundary conditions

(8.88) and (8.89) for the adatom flux and density, sufficient conditions for neglecting

the desorption effect in the macroscopic limit [assuming k/k` = O(1), ` = u, d] are

|v|
D
� 1

kτ
and

a

kτ
� 1 . (8.90)
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Then, the large-scale adatom flux is not affected by τ uniformly in space coordinates.

Both of these conditions are expected to be met in a wide range of physical situations.

In particular, the first condition amounts to having |v|τ � a when D/(ka) = O(1).

From the viewpoint of coarse graining and perturbation theory, formulas (8.90) sim-

ply state that the effect of desorption is of higher order (in a).

We conclude this section with the following observation.

Remark 8.5.4. The (thus far neglected) term (div v)Ci in the terrace diffusion

equation for the adatom density Ci can be treated on the same footing as the des-

orption term Ci/τ . Hence, in assessing the validity of dropping the former, it is

reasonable to repeat the above procedure with τ−1 being replaced by div v, in an

appropriate sense.

8.6 Conclusions

Starting with the BCF model of step flow, we derived macroscopic evolu-

tion laws for the surface height in settings with an electric field. We considered

microscopic processes of isotropic adatom diffusion on terraces, attachment and de-

tachment of atoms at step edges with an Ehrlich-Schwoebel barrier, and desorption

of atoms to the surrounding vapor. Energetic effects such as entropic and elastic

dipole step interactions were included.

Our central contribution is Fick’s law (8.49) relating surface flux J, chemical

potential µ, and drift velocity v. The linear combination of µ and ∇µ of this law

is consolidated into a single variable, ϑ, by an exponential transformation. Accord-
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ingly, the PDE for the macroscale height is recast to form (8.64), which has the

same structure as the evolution law ∂th = ΩCs div{M · ∇µ} derived in the absence

of an electric field. We showed that desorption is a higher-order effect in a sense

dictated by multiscale expansions in the step height, a.

Many effects are absent from our analysis. For instance, time-dependent,

coupled electromagnetic fields are not accounted for. In the same vein, the control

of evolving surface morphologies by electric fields was barely touched upon. Our

assumption of a slowly-varying step train restricts the validity of the PDE to regions

where the steps do not experience drastic instabilities. We also leave out long-range

step interactions, e.g., interactions mediated by bulk stress. We postpone until

Chapter 9 a more thorough discussion of the appropriate boundary conditions for

the derived PDE, and the effect of an electric field on the height profile near this

boundary.
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Chapter 9

Facets and boundary layers

In this chapter, we discuss analytical aspects of faceted relaxation of crystal

surfaces. As we see in the next chapter, the results of applying the finite element

method to the previously derived PDEs have been validated only in the limiting case

g1/g3 � 1. For larger values of g1/g3, our numerical scheme is challenged by the

appearance of facets, which expand during the surface relaxation. The variational

approach on which our numerics are based still offers a possible connection with

the physically realistic case of nonzero line tension. To see this connection, we turn

to analytical methods, focusing on the local behavior of the height profile near a

facet edge. We study how the slope far from the facet approaches continuously its

boundary value (|∇h| = 0 at the facet edge), for different values of the material

parameters and the electric field. This local analysis of this chapter complements

the global analysis we used to derive decay rates for approximately separable PDE

solutions, which are assumed to exist based on experimental observations and 1D

step simulations. Our analysis is based on a conjecture (or ansatz) about the sep-

arability of space and time dependence of the slope profile, which entails a locally

factorizable solution of the PDE.
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9.1 Faceting on crystal surfaces

The presence of facets indicates clearly that a given surface orientation is below

roughening, which is the context we assume when deriving a PDE for h from the

motion of steps. However, strictly speaking the domain of this PDE does not include

the facet itself, where the surface energy is singular due to the vanishing slope |∇h|.1

We then face the problem of determining the appropriate boundary conditions at

the facet edge. Analysis of the PDE and the boundary conditions near the facet

edge provides insight into the local behavior of the slope profile. This analytically

predicted behavior could be experimentally testable [115].

9.2 Formulation of faceted relaxation as a free-boundary problem

Spohn [109] first studied facet evolution as a free-boundary problem for nonlin-

ear PDEs. Here, we summarize the main idea and extensions. The moving boundary

is the facet edge, a curve we denote by rf(t) ∈ L0(t). More precisely, for a train of

descending steps in the vicinity of a facet with height hf (Fig. 9.1), we identify the

facet with the set {r = (x, y) : h(x, y, t) = hf(t)}, and rf(t) ∈ L0(t) is the boundary

of this set. (Recall that Li was used in Chapter 5 to denote the ith step edge. Al-

though, strictly speaking, the facet edge does not correspond to the topmost step,

we use L0 for lack of a more suggestive notation.)

1The reason for this pathology is that step positions near the facet edge do not satisfy the usual

assumptions of the macroscopic limit. Mathematically, the PDE can be extended on the facet by

the “subgradient (subdifferential) formulation” [24], as outlined below.
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Figure 9.1: Orthogonal projection of a 2D step train in the vicinity of a facet.
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The motion of the facet edge is found by imposing the requisite boundary

conditions on the PDE solution. The slope profile at perpendicular distance d⊥ from

the facet edge has a (characteristic) d
1/2
⊥ behavior related to a Pokrovsky-Talopov

phase transition, as predicted by Jayaprakash et al. [41, 42] for equilibrium crystal

shapes. Margetis, Aziz and Stone [64] applied the free-boundary approach in an

axisymmetric setting (circular steps) to determine how the width of a boundary layer

near the facet edge scales with the ratio g3/g1 of step interaction strength to the step

line tension, when g3/g1 � 1. In the case of straight steps, Odisharia used the free-

boundary approach to establish the time decay of self-similar profiles [79]. Shenoy

et al. applied nonlinear Galerkin schemes to incorporate facets into a variational

formulation of surface relaxation [108].

9.3 Natural boundary conditions of the variational problem for pe-

riodic profiles

To investigate the effect of the free energy coefficients g1 and g3 on the ob-

served slope profile near a facet, one must in principle write down the boundary

conditions at the facet edge. A complete set of boundary conditions emerges “nat-

urally” by considering the variational approach in more detail. We alert the reader

that not all of the natural boundary conditions play a role in our subsequent local

analysis. For the sake of completeness, we present the full set of natural bound-

ary conditions, so that the numerical results of Chapter 10 with g1 6= 0 can be

interpreted from the perspective of strong PDE solutions informed by conditions at

161



the free boundary. Not all of these boundary conditions are physically meaningful,

but they possess the advantage of being enforced automatically by any numerical

scheme based on the variational formulation. An “unphysical” condition is that the

chemical potential extends continuously across the facet edge. In fact, this latter

condition can be replaced by a boundary condition respecting the discrete sequence

of collapse times for the top step [37]. In this case, the resulting set of boundary

conditions, while consistent with the microstructure of the crystal surface, unfor-

tunately requires feedback from discrete step simulations to implement a numerical

solution of the free-boundary problem.

We now develop a brief argument for the natural boundary conditions arising

from the variational formulation for evolution of a spatially periodic profile h. This

approach follows closely the presentation of [79] in 1+1 dimensions. We restrict

our attention to diffusion-limited kinetics, where the mobility M = CsD/(kBT ) is

a scalar constant. To address ADL kinetics we would need to invoke the semi-

implicit time stepping of Chapter 2, which yields a weighted H−1 inner product

in the extended gradient (subgradient) formulation. By using the height profile

at a previous time step in the evaluation of the tensor mobility M, we determine

explicitly the inner product through which the surface evolution is interpreted as

a subgradient flow. This issue has been addressed in the doctoral dissertation by

Odisharia [79].

The macroscale equations have the familiar structure of three key relations:

(i) mass conservation, (ii) Fick’s law for surface diffusion, and (iii) the equation for

chemical potential in terms of slope. We restate these three ingredients under the
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assumption of diffusion-limited kinetics.

∂h

∂t
= −Ω divJ,

J = −CsD

kBT
∇µ,

µ = Ωg3
δE
δh

=
Ωg3

λx

divαN,

where divα is the divergence operator with respect to nondimensional spatial vari-

ables2, λx is a characteristic length in the basal plane, and E =
∫
γ(∇h)dx with

γ(∇h) = g1

g3
|∇h|+ 1

3
|∇h|3. To emphasize the importance of the ratio g1/g3, we choose

to treat E and N as nondimensional; the chemical potential acquires the correct units

through the prefactor Ωg3/λx. The auxiliary vector N is introduced to write the

variation of E more explicitly: outside the facet the formula N = g1

g3

∇h
|∇h| + |∇h|∇h

holds. We take the height h to be a periodic function of the nondimensional spatial

variables x, y, which entails

[0, 1]× [0, 1]× [0,∞) 3 (x, y, t) 7→ h(x, y, t) ∈ (−h0 − ε, h0 + ε);

see Appendix B.3

Because the surface energy density γ(∇h) has a corner singularity at ∇h = 0,

we need to make use of a generalized notion of differentiation when combining the

three ingredients of the macroscopic theory to incorporate facets. This generaliza-

tion of a gradient flow begins with the definition of subgradient for a real-valued

2Following the notation of Appendix B; in the calculations below we drop the subscript α for

the sake of readability.
3The range for h is chosen to accommodate the transient behavior in which the height slightly

exceeds its initial amplitude maxh(·, ·, 0) = h0 at the beginning of a relaxation experiment.
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function on R2. Here we follow the presentation of Odisharia [79] to introduce the

subgradient in the context of surface relaxation. We use 〈·, ·〉 to denote the Euclidean

inner product in the following

Definition 9.3.1. The subgradient of γ : R2 → R, denoted ∂γ, is the set

∂γ = {a ∈ R2 : 〈a, δ〉 ≤ γ(∇h+ δ)− γ(∇h) ∀δ ∈ R2}.

To illustrate this definition, we consider first the singular case ∇h = 0. Then

∂γ = {a ∈ R2 : 〈a, δ〉 ≤ g1

g3

|δ|+ |δ|3/3},

which is the ball of radius g1/g3 around 0.

In the smooth case (∇h 6= 0), we have

∂γ = {a ∈ R2 : 〈a, δ〉 ≤ g1

g3

|∇h+ δ| − g1

g3

|∇h|+ |∇h+ δ|3

3
− |∇h|3

3
},

which reduces to the single element

a =
g1

g3

∇h
|∇h|

+ |∇h|∇h,

after expanding the norms in Taylor series about δ = 0.

Evidently, the subgradient agrees with the usual notion of gradient when the

free energy density is smooth enough. We note that the calculation of a subgradient

depends on which inner product 〈·, ·〉 is used in the definition. For the free energy

density γ, the natural choice for 〈·, ·〉 is the Euclidean inner product. For a functional

such as E [∇h], we must use the inner product of the H−1 Sobolev space [24]. The

essential property of the H−1 inner product is an identity that follows (formally)
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from integration by parts:

〈u, v〉H−1 = −〈∆−1u, v〉L2 , (9.1)

where 〈·, ·〉L2 denotes the usual inner product of square-integrable functions: 〈f, g〉L2 =∫
[0,1]2

fgdA. The idea of the H−1 inner product becomes more transparent by using

the Fourier transform û of periodic u with zero mean.

The variation of E must be expressed using the language of subgradients so

that the chemical potential µ can be defined in the case of facets. In this vein, we

compute the subgradient of the functional E [h] =
∫
γ(∇h)dx with respect to the

H−1 inner product. By definition,

u ∈ ∂H−1E ⇔ E [h+ δ]− E [h] ≥ 〈u, δ〉H−1 ∀δ. (9.2)

Having at our disposal the calculation of ∂γ(∇h) in both the smooth and the non-

smooth cases, we let N(x, y) ∈ ∂γ(∇h) and consider u = ∆ divN.

For such N we have

γ(∇h+∇δ)− γ(∇h) ≥ 〈N(x, y),∇δ〉 (9.3)

pointwise, which can be integrated to obtain

E [h+ δ]− E [h] ≥
∫
〈N(x, y),∇δ〉dx = −

∫
〈 divN, δ〉dx (9.4)

= −〈 divN, δ〉L2 (9.5)

= 〈∆ divN, δ〉H−1 . (9.6)

Therefore u = ∆ divN ∈ ∂H−1E . In fact, the subgradient of the functional E

consists precisely of these elements [47]; i.e.,

∂H−1E = {∆ divN : N(x, y) ∈ ∂γ(∇h) for each (x, y)}.
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Returning to the problem of surface evolution, with DL kinetics we have

∂th = −CsDΩ2g3

kBT
∆ divN globally, (9.7)

where N is the canonical restriction of the subgradient ∂H−1E , i.e., the element

“nearest” to the origin with respect to the H−1 norm. As we observed above, for

∇h 6= 0 the subgradient consists of a single element, and the canonical restriction

does not come into play. Only in the singular case ∇h = 0 do we need to invoke the

canonical restriction to determine ht uniquely. The auxiliary function N ∈ ∂H−1E

can be found by solving the minimization problem

min
N∈∂γ

‖∆ divN‖2
H−1 ⇔ min

N∈∂γ
‖∇ divN‖2

L2 . (9.8)

The canonical restriction N which solves the minimization problem (9.8) must

have a square integrable derivative ∇ divN. This condition implies that N and

µ = Ωg3 divN are continuous on [0, 1]2. We are now in a position to state the

natural boundary conditions arising from the variational formulation.

The first boundary condition states that the slope |∇h| approaches zero at the

facet edge L0(t). Since N is restricted to the ball of radius g1/g3 on the facet, while

|N| = g1

g3
(1 + |∇h|2) outside the facet, continuity of N dictates that |∇h| → 0 as

r → rf ∈ L0, i.e.,

∇h = 0, (x, y) ∈ L0. (9.9)

The second boundary condition in DL kinetics follows from enforcing continu-

ity of surface flux (∇ divN in the discussion above) at the facet edge. Outside the
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facet, we have a surface flux given by

J = −CsD

kBT
∇µ =

CsDΩg3

kBT
∇ div

(
g1

g3

∇h
|∇h|

+ |∇h|∇h
)
. (9.10)

The flux on the facet follows from mass conservation, ḣf +Ω divJf = 0, where

hf (t) is the facet height. Solving for the divergence of Jf , we write

divJf = − ḣf

Ω
on the facet. (9.11)

Fix t, and integrate (9.11) over the interior of L0(t). We apply the divergence

theorem to conclude ∮
L0(t)

Jf · νds = −Ω−1ḣfAf (t), (9.12)

where Af (t) is the area of the facet at time t.

Now we invoke continuity of J at L0(t) to replace Jf in (9.12) with its coun-

terpart (9.10) restricted at L0(t). The result is

ḣfAf (t) = −
∮

L0(t)

CsDΩ2g3

kBT
∇ div

(
g1

g3

∇h
|∇h|

+ |∇h|∇h
)
· νds. (9.13)

The next boundary condition follows from continuity of the surface height

h = h(x, y, t) at the facet edge. The height continuity dictates

hf (t) = h(x, y, t)|r∈L0(t). (9.14)

We now differentiate with respect to t to obtain

ḣf (t) =
d

dt
h(r, t) =

∂h

∂t

∣∣∣∣
r∈L0(t)+

−∇h|r ·
∂r

∂t
. (9.15)

The value of ∂th as (x, y) → L0(t) from outside the facet is governed by the

relaxation PDE for DL kinetics.

∂h

∂t
= −CsDΩ2g3

kBT
∆ div

(
g1

g3

∇h
|∇h|

+ |∇h|∇h
)
. (9.16)
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Using (9.16) together with∇h|L0(t) = 0, we have the third boundary condition,

ḣf = −CsDΩ2g3

kBT
∆ div

(
g1

g3

∇h
|∇h|

+ |∇h|∇h
)∣∣∣∣

L0(t)

. (9.17)

We now elaborate on the boundary conditions stemming from continuity of

the chemical potential µ and the vector field N. These quantities have physical

meaning outside the facet, where ∇h 6= 0 and the step positions satisfy the usual

assumptions conducive to a macroscale limit. Following Spohn [109], to determine

how N and µ should be defined on the facet, we reverse the calculations that lead

to surface flux outside the facet. In this vein, we start with the mass conservation

law, ḣf = −Ω divJf , assuming that ḣf is a known function of t. Extending the

constitutive relation (9.10) to the facet, we want to solve

Jf = −CsD

kBT
∇µf

for µf . Due to the scalar proportionality constant in DL kinetics, the solution for

µf can be given as a line integral of Jf over a path contained in the facet:

µf (x, y, t) = µ0 −
kBT

CsD

∫ (x,y)

(x0,y0)

Jf · dx. (9.18)

Then, continuity of µ implies µf (rf(t), t) = µ(rf(t), t), or

µ0 −
kBT

CsD

∫ (x,y)

(x0,y0)

Jf · dx = −Ωg3 div

[
g1

g3

∇h
|∇h|

+ |∇h|∇h
]
, (x, y) ∈ L0(t). (9.19)

Outside the facet we have µ = Ωg3 divN, so the natural extension of N to the

facet is a vector field Nf satisfying

CsDΩ2g3

kBT
∆ divNf = ḣf . (9.20)
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Continuity of N at the facet edge gives us Dirichlet boundary conditions to

complement the third-order PDE (9.20):

Nf = −
[
g1

g3

∇h
|∇h|

+ |∇h|∇h
]
, (x, y) ∈ L0(t). (9.21)

Conditions (9.9), (9.13), (9.14), (9.19), (9.20), and (9.21) for J, µ, N, and h

follow naturally from the treatment of macroscopic height evolution in terms of the

variational framework. With this perspective, the smoothing of the height profile is

described by a path of steepest descent for the energy with respect to the H−1 inner

product. At the risk of redundancy, we emphasize that conditions (9.19), (9.20), and

(9.21), for continuity of µ and N at the facet edge, rely on a nonphysical chemical

potential defined on the facet.4 Implementation of the weak formulation for g1 6= 0

must therefore be interpreted cautiously, since the boundary conditions it enforces

are not entirely consistent with the discrete character of processes occurring on a

facet [37].

9.4 Scaling of the boundary layer width

While studying numerical simulations of relaxing axisymmetric steps, Mar-

getis, Aziz and Stone [64] noticed a rapid variation of the slope in the vicinity of

the top facet (in contrast to the slowly varying slope farther away, in the bulk of

the step train). This observation prompted them to investigate the possibility of a

boundary layer near the facet edge. Intuitively, one might argue for the existence of

a boundary layer by noting that a slowly varying slope profile outside the facet must

4This inconsistency has been reported previously by Israeli and Kandel [37].
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still connect continuously with the slope |∇h| = 0 at the facet edge, for any solution

that respects the boundary conditions given above. In the boundary layer, the step

interaction (g3) term plays the role of a perturbation, influencing the slope profile

through the balance among derivatives of different orders. This local analysis uses

only the PDE for h and continuity of slope, not the other boundary conditions at the

facet edge. As a result, the scaling we obtain is not altered if we replace µ-continuity

by a more physical, microscale condition. To quantify the perturbation effect of the

g3 term, Margetis et al. [64] introduced a small parameter

ε =
g3

g1

� 1. (9.22)

The slope profile F := ∇h · eη that solves the boundary value problem is then a

function of space, time and ε. The PDE for F is found by computing the directional

derivative of (9.16) along the local normal:

∂F

∂t
=
CsDΩ2g1

kBT
∇
(
∆ div∇

[
eη + εF 2eη

] )
· eη. (9.23)

Assuming a long-time similarity solution, which depends separately on t and

the rescaled local coordinate, Margetis et al. found that the boundary layer width

δ scales as ε1/3, independently of the axisymmetric initial conditions.

In this section we expand the details of this calculation to accommodate ge-

ometries in 2+1 dimensions. Allowing the facet to evolve in time, we assume that

a boundary layer of (possibly time-dependent) width δ moves with the facet edge.

Within this boundary layer, the slope profile is assumed to have an approximate

factorization, which then leads to an ODE in the “fast” spatial variable. The re-
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sults we obtain for the boundary layer width take the form of inspired conjectures

or speculations, awaiting verification by experiments and rigorous analysis.

The fully 2-dimensional geometry is handled using local analysis, which sepa-

rates the spatial coordinates into slow (σ) and fast (η). The terminology reflects the

separation of scales (short distances along the step normal direction, larger distances

along the step tangential direction) over which comparable variations in the slope

profile are observed. Suppose that the rapid variation of the slope F , from 0 at the

facet edge η = w(t) to its value where step interactions are less important, takes

place within a boundary layer of width δ(t). We then define a rescaled transverse

coordinate η according to

η =
η − w(t)

δ(t)
, (9.24)

so that η remainsO(1) inside the boundary layer. We express the spatial dependence

of the slope profile in terms of this rescaled coordinate:

F (η, σ, t; ε) = F(η, σ, t; ε) = F
(
η − w(t)

δ(t)
, σ, t; ε

)
. (9.25)

By substituting F for F in the PDE, we explicitly account for the rapid variation

of the slope within the boundary layer. The time derivative ∂tF is replaced by

∂tF = −

(
ηδ̇

δ
+
ẇ

δ

)
∂ηF + ∂tF , (9.26)

while the normal derivative is replaced by

∂ηF = ∂ηF ·
∂η

∂η
=

1

δ
∂ηF . (9.27)

Motivated by analogy with observations of the step density from axisymmetric

step simulations, we make the conjecture of a long-time solution that obeys the
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following local ansatz to leading-order in ε: 5

F(η, σ, t; ε) ∼ a0(σ, t) · f0(η; ε), |η − w| < O(δ). (9.28)

Outside the boundary layer (η � 1), we expect that the slope becomes independent

of the distance from the facet, i.e., f0(η) → 1 and df0/dη → 0 as η →∞.

We compute the required derivatives of F and then substitute into the PDE

(9.23). Thus, we have

∂tF −

(
ηδ̇

δ
+
ẇ

δ

)
∂ηF = −B∇

(
∆ div

[
eη + εF2eη

] )
· eη, (9.29)

where B = CsDΩ2g1/(kBT ).

If we neglect σ derivatives in accordance with slow-fast variable separation,

then the PDE becomes

∂tF −

(
ηδ̇

δ
+
ẇ

δ

)
∂ηF = − Bε

ξηδ4
∂η

1

ξηξσ
∂η

(
ξ2
σ

ξη
∂η

1

ξηξσ
∂η[(ε

−1 + F2)ξσ]

)
. (9.30)

There are two small parameters in (9.30): the ratio ε of step interactions to

step line tension, and the boundary layer width δ, which is assumed to scale as a

power of ε. To decide systematically which terms dominate the PDE for small ε,

we multiply (9.30) by δ4/(Bε) and expand the nested derivatives to retain only the

highest derivative of F2. This calculation yields

δ3ẇ

Bε
∂ηF −

1

ξ4
η

∂4
ηF∈ = O

(
δ4Ft

Bε
,
δ3δ̇

Bε

)
, (9.31)

where the terms on the right-hand side are shown to be negligible [64].

5By ∼ we mean asymptotic equivalence as ε → 0, i.e., F ∼ g ⇔ limε→0
F−g

g = 0.
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Now the separation ansatz (9.28) indicates that f0 satisfies an ordinary differ-

ential equation, whose coefficients are time-independent. We substitute (9.28) into

(9.31) to obtain

ẇδ3

Bεa0

∂ηf0 −
1

ξ4
η

∂4
η(f

2
0 ) = O

(
δ4Ft

Bε
,
δ3δ̇

Bε

)
(9.32)

Considering the left-hand side of 9.32, the requirement of time-independent coeffi-

cients for the ODE satisfied by f0 implies

δ = O(ε1/3). (9.33)

The same local analysis can be applied in the case of a fixed drift velocity

u, the macroscale effect of an electric field (see Chapter 8). Again, the dominant

balance of terms as ε → 0 would involve only the highest derivatives of f0 with

respect to η. In particular, the drift term could be made negligible in comparison

to the other terms by taking η − w small enough. This asymptotic treatment is

complementary to the analysis of the next section, in which we discuss the local

behavior of the slope itself when a fixed drift velocity is present.

We emphasize that the power-law scaling of the boundary layer width δ(t) with

ε arises only from the form of the PDE and the condition of a long-time similarity

solution satisfying (9.28). The existence of a solution with this particular form is

not easily established for an arbitrary facet shape.

Further studies of step-flow models in 2+1 dimensions should be pursued to

support the scaling ansatz assumed above. We would then have graphical confirma-

tion that even a weak step-step interaction strength can lead to a rapid variation of

step density in the neighborhood of a facet edge. Far away from the facet, line ten-
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sion is expected to dominate so that the step density varies much more slowly. These

remarks generalize the observations found for axisymmetric step flow simulations,

as reported by [64].

9.5 Effect of an electric field on the slope profile near a facet

Another question that we might treat using local analysis concerns the appli-

cation of a direct current through a faceted crystal shape. The destabilizing effect

of an electric field on a uniform step train, producing either step bunching or step

meandering, is well-known [15, 28, 125]. For a faceted material, even in the sim-

ple geometry of straight steps, the effect of an electric field has received far less

attention. We conclude this chapter with a brief discussion of this effect, bringing

together the local analysis of the previous section and the macroscale PDE with

a drift term from Chapter 8. Our derivation assumes diffusion-limited kinetics in

order to facilitate an approximate solution of the macroscale PDE, i.e., we take

q|∇h| � 1 and replace 1 + q|∇h| by 1 wherever possible.

9.5.1 Straight-step morphology

We consider the continuous graph y = h(x) with the facet {(x, y) ∈ R2 |h =

const.} in x ≤ 0, while ∂xh < 0 in x > 0; so the facet edge is at x = 0 as

shown in Figure 9.2. We seek to characterize stationary solutions of the macroscale

evolution equation. Setting ∂th ≡ 0 in the conservation law ∂th+ Ω∂xJ = 0, where
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Figure 9.2: Cross-section of a facet and a descending train of straight steps.

J = −[∂xµ−D−1vkBT (1 + µ/(kBT ))] entails the ODE

∂xµ− l−1
v µ = l−1

v kBT −J0 ⇒ µ(x) = (µ0 +kBT − lvJ0)e
x/lv − (kBT − lvJ0) x > 0 ;

(9.34)

where lv := D/v, J0 := J(0) and µ0 := µ(0). By substituting µ = −Ωg3∂x(|∂xh|∂xh),

g3 > 0, we obtain the relation

ĝ3(∂xh)
2 = (−kBT + lvJ0)x+ lv(µ0 + kBT − lvJ0)

(
ex/lv − 1

)
x > 0 ; ĝ3 = Ωg3 .

(9.35)

The above formula is simplified for 0 < x� |lv| (weak drift) and for x� |lv| (strong

drift). Accordingly, we obtain the approximation

|∂xh| ∼ ĝ
−1/2
3



√
µ0x , x� |lv| ,√
lv(µ0 + kBT − lvJ0) e

x/(2lv) , x� lv > 0 ,√
(−|lv|J0 − kBT )x , x� −lv > 0 .

(9.36)
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For x� −lv > 0, a compatibility condition is

−DJ0 > kBT |v| . (9.37)

By (9.36), changes of the electric field magnitude and direction can cause a drastic

qualitative change in the slope behavior. In particular, a strong electric force Z∗eE

in the step-down direction causes an increase of the slope, as steps tend to bunch.

(Ultimately, of course, m approaches O(
√
x) as x ↓ 0.) This behavior is reversed by

a strong electric force in the step-up direction, which restores the familiar O(
√
x)

behavior.

9.5.2 Axisymmetric structure

The radial case provides a model for the interplay of step edge curvature

and electric field. Suppose the surface is axisymmetric, h = h(r), with the facet

{(r, h) ∈ R+ × R |h = const.} in 0 ≤ r ≤ rf while ∂rh < 0 for r > rf ; so, the

facet edge is at r = rf . Consider a constant drift velocity v. The ODE for µ(r) is

∂rµ− l−1
v µ = l−1

v kBT − rfJ0/r, with solution

µ = (µ0 + kBT )e(r−rf )/lv − kBT − rfJ0

∫ r

rf

e(r−r′)/lv

r′
dr′ r > rf , (9.38)

where µ0 := µ(rf ), J0 := J(rf ). Taking into account that Ω−1µ = g1/r+g3r
−1∂r[r(∂rh)

2],

by direct integration we have

ĝ3(∂rh)
2 ∼ [lvrfJ0 (1− lv/rf )− ĝ1 − rfkBT ](r − rf ) + (kBT + µ0)lv

[
(r − lv)e

(r−rf )/lv

− rf + lv
]
− lv(rfJ0) (r − lv)

∫ r

rf

e(r−r′)/lv

r′
dr′ , 0 <

r − rf

rf

� 1 ;

(9.39)
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ĝl := Ωgl (l = 1, 3). Here, we consider distances r − rf from the facet boundary

that are small compared to the facet radius of curvature. By analogy with Section

9.5.1, we simplify the formula for ∂rh by imposing weak or strong drift:

|∂rh| ∼ ĝ
−1/2
3



√
(µ0 − ĝ1/rf )(r − rf ) , 0 < r − rf � |lv| ,

[lv(µ0 + kBT − lvJ0)]
1/2 e(r−rf )/(2lv) , r − rf � lv > 0 ,√

(|lv||J0| − kBT − ĝ1/rf )(r − rf ) , r − rf � −lv > 0 ,

(9.40)

The approximation for r − rf � −lv > 0 is compatible with the condition

−DJ0 > (kBT + ĝ1/rf )|v| . (9.41)

Approximations analogous to the radial case can be worked out in 2D by

invoking the separation of local variables into fast (η) and slow (σ). Variations

with respect to η are dominant in the vicinity of the facet, which allows us to find

stationary solutions by solving an ODE in η. This approach provides formulas that

directly generalize the radial case and is not further discussed here.

9.6 Conclusions

In this chapter, we considered the inclusion of facets in a weak solution of

the macroscale evolution equation. A weak solution with one or more facets can be

interpreted as a strong solution of the PDE informed by natural boundary conditions

at the moving facet edge. These natural boundary conditions include continuity of

slope, continuity of flux, and continuity of chemical potential across the facet edge.

To satisfy the boundary condition that the positive surface slope |∇h| ap-

proaches zero at the facet edge, while varying more slowly away from the facet, we
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hypothesized the existence of a boundary layer near the edge of the facet. Under

the assumption that the slope profile in this boundary layer satisfies a separability

ansatz, we derived a scaling of the boundary layer width in terms of the ratio g3/g1

of step interactions to step line tension.

Finally, we discussed the effect of an electric field on stationary solutions of

the evolution equation in 1D step geometries. This approach yields qualitatively

different slope profiles near the facet edge, depending on the strength and direction

of the external electric field.
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Chapter 10

Numerical results1

In this chapter, we illustrate numerically the rich variety of relaxation behav-

iors corresponding to solutions of the macroscale PDEs derived above. Of particular

interest are the simulations that demonstrate a morphological transition, from a 2-

dimensional profile at the start to an essentially 1-dimensional profile at finite times.

Factors affecting the onset time of this transition include (i) the material parameter

q = D/ka, (ii) the aspect ratio α = λx/λy of the initial sinusoidal profile, where

λx and λy are the wavelengths in x and y, respectively, and (iii) the presence of an

external electric field. By varying these three factors independently, we tentatively

conclude that transition phenomena can be explained as the result of longitudinal

fluxes comparable in size to the transverse fluxes. We alert the reader, however, that

we still lack a complete understanding of the reason for this behavior. Also, some

of the results we obtain might not apply to more general periodic profiles. Initial

data with additional harmonics superimposed on the fundamental sinusoidal profile

might exhibit nonlinear mode coupling effects, which could destroy the separable

behavior reported below.

1Material in this chapter appeared previously in Bonito, Nochetto, Quah and Margetis 2009,

Phys. Rev. E 79, 050601 (R), and relies heavily on the finite element algorithms and codes gra-

ciously contributed by Andrea Bonito and Ricardo Nochetto.
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The height evolution is governed by the PDE

∂h

∂t
= ΩCs div

{
M ·

[
∇µ− kBT

D
v

(
1 +

µ

kBT

)]}
,

µ = −Ω div

{
g1
∇h
|∇h|

+ g3|∇h|∇h
}
,

which we nondimensionalize prior to numerical implementation. This nondimension-

alization (carried out in Appendix B) serves two main purposes: (i) to focus on the

structure of the equations without the distraction of dimensional coefficients, and

(ii) to isolate the relevant combinations of material parameters, in particular those

that have significant temperature dependence. The second purpose furnishes five

combinations of parameters to describe the experimental setting. These parameter

combinations are:

• q = D
ka

, which compares diffusion and attachment/detachment rates;

• g1/g3, which compares the step line tension to step-step interactions;

• α = λx/λy, the aspect ratio of the initial data;

• h0/λx, the amplitude of the initial data;

• u = vλx/D, the nondimensional drift velocity (in the presence of an electric

field).

The last three parameters can in principle be adjusted independently for any given

material and temperature. On physical grounds we expect some restrictions on the

physically attainable profile dimensions and drift velocity magnitude. For example,

a corrugated surface with aspect ratio λx/λy = 1/10000 might be indistinguishable
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from a one-dimensional profile, if imperfections in the patterning process ended up

obscuring the long-wavelength period. Also, a sufficiently strong electric field will

heat the sample, thereby changing the temperature unless the material is kept in

contact with a suitably cold reservoir. The latter practical consideration is not

accounted for in our simulations.

The first two parameters depend strongly on the temperature and the choice of

material. The parameter q is the ratio of two thermally-activated quantities with dif-

ferent energetic barriers. If the energy barrier for adatom diffusion is larger (smaller)

than that of attachment/detachment, then q is expected to increase (decrease) as

temperature increases. The inequality between these energetic barriers need not

be consistent from one material to another. In principle we can have one material

where q increases with temperature, and another material where q decreases with

temperature. Even two different orientations of the same material might exhibit

contrasting temperature dependence of q. A good starting point for enumerating

these possibilities is the table of energy barriers in [43] and the references cited

therein.

The ratio g1/g3 of line tension to step interactions is also sensitive to the

choice of material and temperature. Roughly speaking, the line tension decreases as

temperature increases, reaching g1 = 0 precisely at the roughening transition tem-

perature. A more precise description of the temperature dependence of g1 is given

by invoking the Ising model [73]. The strength of repulsive step interactions, quan-

tified by g3, has two different contributions. Entropic repulsions become stronger

as temperature increases, because steps have a greater tendency to wander and
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collision distance is shorter. The strength of elastic dipole interactions, which are

mediated through the crystal, varies with temperature mainly through the temper-

ature dependence of the Young modulus for the material. Entropic repulsions tend

to dominate at higher temperatures. As T approaches TR from below, we therefore

expect g3 to increase. A formula for the step-step interaction coefficient g3 is given

in [43].

We note that a meaningful connection with experiments requires physically

attainable values for the material parameters. In particular, crystal surfaces well

below the roughening transition temperature typically fail to satisfy g1/g3 � 1. To

obtain a numerically reliable result, and to circumvent the difficulty of enforcing

boundary conditions at the moving facet edge, we were forced to consider only

g1/g3 = 0 or g1/g3 = O(10−8) in our simulations. Note that small (O(10−8)) values

of g1/g3 were used in the numerical simulations in order to check the continuity of

the observed phenomena with g1, as discussed below. Our preliminary investigations

with g1/g3 � 1 merit careful scrutiny, in order to avoid erroneous conclusions about

the relaxation of real materials.

10.1 Review of the finite element method

With these limitations in mind, we now describe our numerical method, start-

ing from the introductory material of Chapter 2. After nondimensionalization (see
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Appendix B), the PDE we want to solve is

∂th = divM · ∇µ, (10.1)

µ =
δE

δh
(10.2)

for some appropriate mobility M and surface energy E. The spatial domain of this

PDE is taken to be a rectangular region B = [0, 1] × [0, 1], and h, µ at each time t

are required to be spatially periodic. Given the initial data h(·, t) at t = 0, we want

to determine the height profile at t > 0.

We exploit the variational structure of (10.1),(10.2) to simulate surface relax-

ation by using the FEM in space [9] and finite differences in time. The fourth-order

PDE for h is conveniently written as two second-order equations: one for the height

h, using mass conservation and the constitutive law for J, and another for the chem-

ical potential µ, which is essentially the variation with respect to h of the energy

functional E[h]. We apply a semi-implicit Euler scheme [77] to express (10.1),(10.2)

as a system in the updated variables (hn+1, µn+1) where hn ≈ h(·, nτn) and τn is the

(adaptive) time step. The mobility M and the energy E[h] are evaluated by use of

(hn, µn) to ensure linearity of the finite difference equations with (hn+1, µn+1).

The equations for hn+1 and µn+1 are recast to their “weak form” via multi-

plication by a periodic test function φ and integration by parts over B. Restricting

hn+1, µn+1, and φ to the finite-dimensional space VT of continuous piecewise linear

functions associated with the triangulation T , we obtain the FEM equations for

(hn+1, µn+1), which are required to hold for all φ ∈ VT :
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∫
B

(
g1

g3

∇hn+1

|∇hn|
+ |∇hn|∇hn+1

)
· ∇φ =

∫
B
µn+1φ, (10.3)∫

B

[
hn+1φ+ τnMε(∇hn)∇µn+1 · ∇φ

]
=

∫
B
hnφ. (10.4)

One major concern is the singularity of the g1 term and the similarity trans-

formation Mx,y = SMη,σS
−1, Eqs. (5.24)–(5.26), when |∇h| = 0. Computing the

fraction ∇hn+1/|∇hn| which multiplies g1/g3 is numerically unstable when |∇hn| is

close to zero. The elements of the change-of-basis matrix S given by (5.26) have

|∇h| in the denominator; consequently, the computation of S near ∇h = 0 is also

numerically unstable. We eliminate the singularity in these terms by adding a small

regularization parameter so that the problematic denominators remain nonzero as

∇h→ 0; see Table 10.1 for possible regularization schemes. Mathematically it can

be argued that the mobility becomes a scalar (identity tensor) wherever ∇h = 0.

Ideally, this limit should be respected by the regularization we choose, in order

to avoid any spurious results arising from a mathematically inconsistent mobility.

However, we do note that in a particular instance where one of our regularization

schemes did not respect this limit, the numerical results were practically the same,

as we discuss below.

10.2 Software and computers

Our implementation of (10.3),(10.4) uses the FreeFem++ program,

http://www.freefem.org/ff++/, developed by Olivier Pironneau, Frédéric Hecht, and

Jacques Morice. The code specific to our PDE (10.3),(10.4) was written by Andrea

184



Bonito following the algorithm suggested by Ricardo Nochetto. Simulations were

performed on a Dell desktop PC with 2.0GHz Intel Core 2 processor, 1GB of RAM,

running Fedora Core 7 and Linux kernel 2.6.21.

The following auxiliary libraries and programs were also used:

• The UMFPACK library, http://www.cise.ufl.edu/research/sparse/umfpack, was

used for direct solvers. UMFPACK implements the Unsymmetric Multi Frontal

Method to solve unsymmetric sparse linear systems.

• The utility Gnuplot http://www.gnuplot.info/ was used to plot graphs. Gnu-

plot offers a command-line interface for visualizing data and functions in 2D

and 3D plots.

• The MATLAB software suite, http://www.mathworks.com/, was used for post-

processing the FreeFem++ output files, when Gnuplot did not offer the needed

capabilities for certain plots.

10.3 Zero line tension (“ideal” case)

The macroscale equation we simulate for the height evolution has been shown

in Chapter 5 to stem from the motion of steps, which exist as stable objects only

below the surface roughening temperature. Temperatures below roughening dictate

g1 > 0; otherwise there would be no free energy cost to create surface defects, and

these would appear and disappear spontaneously. However, once we have found a

PDE consistent with step flow, we are free to ask how its solutions behave in certain

limiting cases. As a test case, we take g1 = 0 to circumvent the difficulty of treating
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height evolution as a free boundary problem; see Chapter 9 for a discussion of the

open problems in this direction. We also alert the reader that the case g1 6= 0 with

sufficiently high g1/g3 leads to an ill-conditioned linear system for our numerical

method [6], which makes the results of a simulation unreliable. Thus far, we have

not been able to overcome the numerical hurdles of larger values for g1/g3.

The limit g1 → 0 is a starting point, with the same capacity to illustrate

the contributions of our model as the plausibly more physical choice with g1/g3 =

O(1). In this limiting case we can see the effect of a tensor mobility and an electric

field. One major concern addressed within this perspective is whether observables

of the macroscopic theory (e.g., height, surface energy) are continuous solutions as

functions of g1. In particular, we want to check whether the numerically observed

transition for 2D to almost 1D profiles persists for nonzero (even small) g1/g3. In

other words, we want to make sure that no “spurious” singular behavior is developed

by the macroscale theory as g1 → 0. We begin this section by contrasting our tensor

mobility predictions with the scalar mobility simulations of [108], both with g1 = 0.

By analogy with 1D macroscale models, these simulations set

M =
D

kBT

1

1 + q|∇h|
, (10.5)

i.e., a scalar mobility which does not distinguish between step-normal and step-

parallel fluxes. Our purpose in conducting these tests is to see whether our finite

element code generates height profiles consistent with the results of previous varia-

tional methods, namely the Fourier series expansions within a Galerkin scheme used

by Shenoy et al [107, 108].
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10.3.1 Simulations with zero E-field

Our first test of the finite element implementation of the relaxation PDE

used a scalar mobility, in order to validate our code against previously published

results [107, 108]. In [107], Shenoy and co-authors outline their method of Galerkin

expansions of the surface height profile. They start from a variational formulation of

the height evolution equation and derive a system of ODEs for the coefficients in the

Galerkin expansion of h. They simulate the relaxation with different values for the

material parameters q and g1/g3, finding approximately separable solutions which

decay either exponentially or algebraically in time when the initial height profile is

a perfect sinusoid [107, 108].

We simulated a decaying bidirectional modulation, with different wavelengths

in x and y. The height profiles from this simulation are plotted in Figure 10.1, with

time increasing to the right.
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Figure 10.1: Height profiles computed using scalar mobility M = D
kBT

1
1+q|∇h| , for

initial data h = h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24, and material

parameters q = 104, g1/g3 = 0.

The biperiodicity of the initial sinusoidal profile evidently persists throughout

the relaxation, suggesting that the spatial dependence can be factored from the

height in the approximate sense of (5.47). Assuming this factorization holds, a plot

of the height peak versus time would reveal which decay law is exhibited by the

solution. We plot in Figure 10.2 the evolution of energy and height peak using data

from the same numerical experiment as Figure 10.1.

With logarithmic axes for height and energy, the two decay curves in Fig-

ure 10.2 are well-approximated by straight lines for most of the relaxation. To the

eye, this trend is enough to classify the decay law as exponential. This finding is

qualitatively consistent with [107, 108]. We are inclined to interpret their agreement

with our plots as good evidence that Bonito’s code [7] is reliable for the parameters

under consideration. However, we have not carried out comparisons of our finite

element-based numerical results with Shenoy’s Fourier series-based numerics. Thus,

our discussion here is restricted to qualitative (rather than precise quantitative)

features of simulations.
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Figure 10.2: Decay of height peak and energy computed using scalar mobility, for

initial data h = h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24, and material

parameters q = 104, g1/g3 = 0. t∗ and E∗ are measured in units where kBTλ5
x

CsDg3Ω2h0

and
g3h3

0λy

λ2
x

are taken to be 1.
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Table 10.1: Different regularization schemes for the tensor mobility. The first

(“näıve”) scheme was originally coded by Bonito. To respect the limit of scalar

mobility as |∇h| → 0, we discussed and implemented scheme 2. Nochetto suggested

scheme 3, which takes a convex combination of the identity with the unregularized

M.

1. Mε =
1

|∇h|2 + ε2

 h2
x

1+q|∇h| + h2
y − q|∇h|hxhy

1+q|∇h|

− q|∇h|hxhy

1+q|∇h|
h2

y

1+q|∇h| + h2
x



2. Mε =

 (hx+ε)2+(1+q|∇h|)(hy+ε)2

(1+q|∇h|)(|∇h|+
√

2ε)2
−q|∇h|(hx+ε)(hy+ε)

(1+q|∇h|)(|∇h|+
√

2ε)2

−q|∇h|(hx+ε)(hy+ε)

(1+q|∇h|)(|∇h|+
√

2ε)2
(hy+ε)2+(1+q|∇h|)(hx+ε)2

(1+q|∇h|)(|∇h|+
√

2ε)2


3. Mε = (1− λ2)I + λ2M, λ = min(ε, |∇h|)/ε.

We now present the results of implementing a tensor mobility in the finite

element code. Because the tensor mobility distinguishes between step-normal and

step-parallel fluxes, its representation in a fixed coordinate system relies on the

change-of-basis matrix S given by (5.26), which is singular at ∇h = 0 as discussed

above. We ran the simulations with different choices of regularization for the tensor

mobility (see Table 10.1) , finding good agreement even between regularizations that

gave different limits for M as ∇h → 0 [8]. This robustness with respect to regu-

larization suggests that the novel phenomena reported below are insensitive to the

exact behavior of fluxes around peaks and valleys. We expand on this interpretation

after showing a few more plots.
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Figure 10.3: Height profiles computed using tensor mobility, starting from the initial

data h = h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24, and material parame-

ters q = 104, g1/g3 = 0.

Figure 10.3 shows the computed height profiles at three selected times during

a relaxation with tensor mobility. The initial data is identical to that of Figure 10.1,

biperiodic with different wavelengths in x and y. At later times (middle and right

surface plots), the x-dependence becomes less pronounced. Even before the height

peak decays to 1% of its initial amplitude, the computed height profile looks essen-

tially like a 1-dimensional modulation.

Because the spatial dependence of the height profile does not remain the

same throughout the simulation, we suspect that a different separation ansatz

h ≈ H(x, y)A(t) is obeyed for different time intervals, e.g.,

h ≈ H1(x, y)A(t), 0 < t < t1

h ≈ H2(x, y)A(t), t1 < t < t2

...

We find it instructive to show the decay of height peak and energy. These curves,

we hope, would give us a clue about what time scales are relevant for observing the

transition.
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In Figure 10.4 we compare the predictions for decay of peak height using scalar

and tensor mobilities. The simulation with tensor mobility appears to exhibit an

exponential decay of the height peak until we reach t∗ ≈ 0.1, after which the height

peak drops sharply into another decay regime. This sharp drop on the graph of

height peak vs. time coincides with the onset of a transition, as confirmed visually

by plotting the height profiles for t∗ before and after t∗ = 0.1.

To give the reader a feel for what physical time might correspond to t∗ = 0.1,

we compute the magnitude of the time unit kBTλ5
x

CsDg3Ω2h0
for the hypothetical material

that has an extremely small value of g1/g3, corresponding to the simulation above.

To this end we set h0/λx = 0.03 as dictated by the simulation, and choose D/(ka) =

q = 104 and g1/g3 = 0. The other parameters we take from Si(001) at 700 K, which

Erlebacher et al. used in the first demonstration of nonclassical smoothing [20]. We

originally considered Si(001) because of its large q value, but the non-negligible ratio

g1/g3 makes it unsuitable for a simulation using finite elements. For now its main

purpose is to furnish plausible values for the undetermined parameters in our time

unit.

The possibility of constructing the “metamaterial” which agrees with all of

the parameters of our simulation is not addressed here. One promising direction is

to look for materials that exhibit a preroughening transition, such as GaAs, in which

g1/g3 → 0 before the BCF theory becomes inapplicable [85]. Based on the meager

literature, it appears that kinetic parameters such as ku,kd, and D are difficult to

determine for GaAs, due to the high deposition flux needed to keep a sample under

observation [85]. Accordingly, we fall back on the more fully-documented Si material
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Figure 10.4: Decay of height peak, as computed using scalar and tensor mobilities,

starting from initial data h = h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24,

with material parameters q = 104 and g1/g3 = 0. t∗ is measured in units where

kBTλ5
x

CsDg3Ω2h0
is taken to be 1.
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in order to calculate a possibly reasonable time unit.

After substituting the values from [20, 39], we determine our time unit to be

kBTλ5
x

CsDg3Ω2h0
= 3 × 10−8(λx/Å)4 seconds. The wavelength λx of the surface feature is

still free to vary, which allows an appreciably large range of time scales that this one

simulation can address. In particular, if we could pattern a bidirectional corrugation

in our hypothetical material with 100 nm wavelength along the shorter direction,

then relaxation at 700 K would need to proceed for at least 45 minutes before

our predicted transition could occur. However, a wavelength of 100 nm might not

comprise enough steps for the macroscale limit to be justified. Biperiodic profiles

with larger period (e.g., 363 nm [20]) would need to be observed much longer: at

least 12 hours to see the transition computed by our simulation above.

If the height profile did indeed decay in a separable manner until about

t∗ = 0.1, then the surface energy E =
∫
B g1|∇h| + g3

3
|∇h|3 should also show an

exponential dependence on time. Since g1/g3 was taken to be zero for this simula-

tion, a globally approximately factorizable solution h(x, y, t) = H(x, y)A(t) would

entail E = A(t)3
∫
B

g3

3
|∇H|3, whose time dependence is exponential precisely when

A(t) is exponential. We plot in Figure 10.5 the decay of surface energy as predicted

by simulations with scalar and tensor mobilities. Note that this factorizability of E

is strictly speaking spoiled if both g1 and g3 are nonzero.
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With E∗ plotted on a logarithmic axis in Figure 10.5, the curve corresponding

to either mobility appears as a straight line at least until t∗ = 0.1. The slope of

this line is approximately three times as large as the slope in Figure 10.4, which is

what we would expect from an exactly separable solution. However, after t∗ = 0.1,

the curve corresponding to tensor mobility deviates from a straight line, dropping

sharply into another decay law. The simulation described here does not continue

long enough to say anything definitive about this second decay law, owing to the

stopping criterion that terminated the simulation after an essentially 1D profile

had been reached [7]. Earlier simulations, without such a stopping criterion in

place, indicate that the 1D profile after the transition follows another separable,

exponential decay.
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Figure 10.5: Decay of surface energy, as computed using scalar and tensor mobilities,

starting from initial data h = h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24,

with material parameters q = 104 and g1/g3 = 0. t∗ and E∗ are measured in units

where kBTλ5
x

CsDg3Ω2h0
and

g3h3
0λy

λ2
x

are taken to be 1.
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We now show contour plots of the height profile at various stages of the relax-

ation, in order to elucidate a possible mechanism for the appearance of a transition.

Figure 10.6 shows level sets of height (top row) and streamlines for the vector adatom

flux (bottom row) at four different times during the transition. The streamlines are

defined by the property of being tangent to the vector adatom flux at each point

in B. Our use of streamlines is adopted from fluid mechanics, where they serve as

a visual aid in describing the velocity field of a fluid. To plot the streamlines at a

given time t, we first compute the height profile and macroscale chemical potential,

which yields by (8.49) the vector-valued flux J. We then solve Poisson’s equation

for ψ, i.e., ∆ψ = ∂xJy−∂yJx, so that J = (Jx, Jy) is orthogonal to ∇ψ = (∂xψ, ∂yψ).

Level sets of ψ then correspond to streamlines.

In contrast to the case of scalar mobility, the adatom flux is not orthogonal

to the level sets, but instead has an appreciable component in the longitudinal

direction. This longitudinal component can be comparable in size to the transverse

component of flux, despite the slower variation of the chemical potential along the

former direction than the latter. Again, this effect can be traced back to the tensor

mobility, which for q � 1 inhibits the macroscale flux in the transverse direction

but not in the longitudinal direction. To illustrate the effect of smaller q (and

hence a lower energy barrier for uphill and downhill mass transport), we show in

Figure 10.7 the height level sets and the streamlines corresponding to q = 5000.

The other parameters from the previous simulation are kept unchanged.
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Figure 10.6: Snapshots during the transition from the initial data h =

h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24 to an eventually 1D profile, taken

from [7]. The simulation uses tensor mobility and material parameters q = 104,

g1/g3 = 0. Top row: level sets of height. Bottom row: streamlines, which are locally

tangent to the vector adatom flux. Plot window is [0, λx/2]× [0, λy/2].
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As q is increased, the transverse flux is diminished, and downhill mass trans-

port proceeds more slowly. The decay of height peak would then be expected to

take longer, as confirmed in Figure 10.8. Meanwhile, the longitudinal flux now has

a greater relative contribution, since adatoms flowing along level sets of height en-

counter the same energetic barrier as for smaller q. This flow of adatoms along the

step-parallel direction happens fast enough that steps with large perimeter have a

chance to straighten, eventually aligning themselves with the x-axis as more mass

flows downhill (uphill) from the peaks (valleys). We now have a possible explana-

tion for the robustness of a transition with respect to regularization of the mobility.

If the transition results from sizable contributions of the longitudinal adatom flux

on terraces of large perimeter, then the fluxes on smaller-perimeter terraces near

|∇h| = 0 are of secondary importance, serving only to transport mass downhill (or

uphill) from peaks (or valleys). As long as the tensor mobility yields an adatom

flux at peaks of the surface profile that points approximately downhill (and flux at

valleys that points uphill), then the accurate calculation of flux at other points is

sufficient to induce a transition.

The error in the computed flux arising from the regularized mobility can be

quantified by comparing the regularization parameter ε with the computed denom-

inator |∇h| to which it is added. If the mesh size is 10−2, then the height difference

between neighboring gridpoints, say |h(xi, yj) − h(xi+1, yj)|, must be much greater

than 10−2ε in order to avoid an inaccurate flux calculation. In practice, this in-

equality is only violated very close to the peaks and valleys of a profile, or for very

flat profiles. We find that an “outward-pointing” flux is respected by all of the
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Figure 10.7: Snapshots during the transition from the initial data h =

h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24 to an eventually 1D profile. The

simulation uses tensor mobility and material parameters q = 5000, g1/g3 = 0. Top

row: level sets of height. Bottom row: streamlines, which are locally tangent to the

vector adatom flux. Plot window is [0, λx/2]× [0, λy/2].
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Figure 10.8: Decay of the height peak happens more slowly as q is increased, due

to the increased attachment-detachment barrier that must be surmounted for mass

to be transported uphill or downhill.
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regularization schemes we tried, and they all predicted a transition event. We infer

that the tensor mobility manifests a transition more through the fluxes on level sets

close to the mean height, than through the fluxes on terraces of shorter perimeters.
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10.3.2 Simulations with nonzero E-field

We were fortunate to have finished calculating the macroscale limit of step flow

in the presence of an electric field, just when the numerical results of implementing

the tensor mobility were available. The presence of an electric field at the BCF

level, as we saw in Chapter 8, leads to a convective term in the macroscale adatom

flux, Eq. (8.49). The evolution equation is given by modifying (10.3),(10.4) with the

addition of a convective term in (10.3). We solve numerically the following system

within the space of piecewise linear functions on VT (cf. Section 2.2):∫
B

(
g1

g3

∇hn+1

|∇hn|
+ |∇hn|∇hn+1

)
· ∇φ =

∫
B
µn+1φ, (10.6)∫

B

[
hn+1φ+ τnMε(∇hn)

(
∇µn+1 + (1 + µn+1)u

)
· ∇φ

]
=

∫
B
hnφ; (10.7)

see Appendix B for a nondimensional interpretation of these equations. Again,

the relevant geometric ratios and parameter combinations are λx/λy, h0/λx, u =

λxD
−1v, q, and g1/g3.

By tuning the electric field (and hence the drift velocity u), we hoped to gain

some control over the relative contributions of transverse and longitudinal fluxes,

which were hypothesized as the driving mechanisms behind a transition. This con-

trol would allow us to inhibit or accelerate a transition, by reinforcing the fluxes

along a specified direction. We find that by choosing a drift velocity in the direction

of the longer wavelength, the time to observe a transition is drastically reduced.

In Figure 10.9 we plot the decay of the height peak and surface energy, com-

puted with Bonito’s finite element code using tensor mobility, with and without

an electric field. The exponential transformation of Chapter 8 is not implemented
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Figure 10.9: Decay of the height peak and surface energy using tensor mobility,

with and without an electric field. The electric field is aligned with the y-axis and

appears to accelerate a transition.
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in this code, due to unresolved issues with the validation. We see that the height

peak and surface energy follow an exponential decay in both cases, until the sudden

drop corresponding to a transition. The transition happens earlier in the presence

of an electric field, suggesting that the reinforced adatom fluxes are a plausible ex-

planation for this phenomenon. The nondimensional time of the transition is now

t∗ ≈ 0.05 in the presence of an electric field, corresponding to about half of the

previously indicated time for the hypothetical material above.

For completeness we also show in Figure 10.10 the contour plots and stream-

lines computed with the electric field. Again we see that fluxes are not normal to

level sets of height, so that large-perimeter steps have a chance to elongate before

downhill or uphill mass transport causes them to collapse. In addition, the pres-

ence of an electric field seems to direct the fluxes into a pattern more conducive to

straightening the large-perimeter steps than the u = 0 simulation presented above.

The reinforcement of adatom fluxes in the y-direction eventually assists the uphill

and downhill mass transport as the profile tends to become 1-dimensional.

205



Figure 10.10: Snapshots during the transition from the initial data h =

h0 cos(k1x) cos(k2y), h0/λx = 0.03, k2/k1 = 11/24 to an eventually 1D profile,

calculated using tensor mobility, drift velocity (u1, u2) = (0, 10−3), and material

parameters q = 104, g1/g3 = 0. Top row: level sets of height. Bottom row:

streamlines, which are locally tangent to the vector adatom flux. Plot window

is [0, λx/2]× [0, λy/2].
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10.4 Continuous dependence on line tension of the 2D to 1D transi-

tion

Now that we have a basic idea of the macroscale surface evolution in the

limiting case g1 = 0, we address the question of whether our observations carry over

to the case of nonzero g1. Another possibility is that some of our observations arise

only as a singular limit for g1 → 0, while others do persist and vary continuously

with g1.

The disappearance of facets at g1 = 0 has been interpreted as a singular

limit, prompting some materials scientists to view g1 as an O(1) parameter that

determines whether the Mullins above-roughening theory or the BCF step-based

framework should be adopted [107]. Our perspective is more inclusive, treating the

PDE derived from step flow as a tool with predictive value over a large range of g1.

The reliability of these predictions, however, depends in large part on the accuracy

of our numerics.

In our approach, the g1 = 0 case serves as a testbed from which to draw

tentative conclusions about g1 > 0, where simulations are currently incomplete. In

addition, the PDE simulated here is the limit of step motion. Thus, the limit g1 → 0

of the macroscopic theory is essentially the limg1→0 lima→0 of the step flow equations.

In principle, this limit is expected to be different from lima→0 limg1→0, in which the

BCF theory is questionable or not valid.

While the results for g1/g3 = 0 were still being collected and discussed, we also

began preliminary trials with g1/g3 nonzero. Returning to the idea of partitioning
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the parameter space into regions based on their eventual evolution, we wondered

about the shape of the separatrix between transition-supporting and transition-

suppressing regions. One cross-section that we considered trying to plot was the

restriction of this separatrix by keeping fixed the aspect ratio λx/λy, the initial am-

plitude h0/λx, and the drift velocity u. The resulting cross-section would be a curve

in the q − g1/g3 plane, which we hypothesized to look something like Figure 10.11.

We conjectured a threshold q that increases with g1/g3, because the facet

size grows more quickly for larger g1/g3, which would increase the contribution

of transverse fluxes in the steeply-sloped regions between facets. The longitudinal

fluxes can still be given time to effect a transition, if a larger value of q is used to slow

down the uphill and downhill mass transport. The threshold q has been determined

only for the smallest values of g1/g3 in Figure 10.11. The trend of threshold q for

larger g1/g3 is merely speculated. As it turned out, the calculation of these threshold

q values for larger g1/g3 was never completed, due to the enormous computational

time our algorithm seemed to require. After further investigation, we attributed

the uncharacteristically slow convergence of the method to an ill-conditioned linear

system [6]. Work to address this ill-conditioning and to extend confidently our finite

element implementation in the case of large g1/g3 is still an open problem [6, 77].

The more modest goal of considering only a single nonzero value of g1/g3,

small enough for the numerical method to yield reliable results, led us to take

(g1/g3)(λx/h0)
2 = 10−4. We simulated the relaxation using both (i) scalar and

tensor mobilities, (ii) zero and nonzero drift velocities. Again the use of a tensor

mobility produced a transition, which is marked by the abrupt change from pure
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Figure 10.11: Speculation for the separatrix between transition-supporting and

transition-suppressing regions, with fixed aspect ratio α = 2/3, initial amplitude

h0/λx = 0.03, and drift velocity u = 0. The upper (lower) curve would connect

the computed (g1/g3, q) pairs for which a transition does (does not) occur. The

uncertainty (vertical distance between the two curves) of the separatrix ordinates

can in principle be decreased using bisection. In practice, a good preconditioner is

needed to stabilize the numerics when g1/g3 is large [6].
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exponential behavior in the height peak and energy curves; see Figure 10.12. Note

also that the presence of an electric field accelerates the transition. Evidently, the

two major observations we made for zero g1 are also true for this particular choice

of nonzero g1. It is tempting to conjecture that the transition and its acceleration

by an electric field are not singular limits as g1/g3 → 0.

10.5 Conclusions and open issues

The two major contributions of our modeling in this thesis are (i) a tensor

mobility, which distinguishes between step-parallel and step-normal components of

the macroscale flux J, and (ii) an electric field, which leads to a convective term

in the constitutive relation for J. These contributions inspired and led directly

to the (hopefully) novel phenomena predicted here by finite element simulations

of the macroscale evolution equation. A tensor mobility, which for ADL kinetics

makes longitudinal fluxes predominant, leads to a transition from initially biperiodic

data to an eventually one-dimensional profile. The inclusion of an electric field

reinforces adatom fluxes along a specified direction, thereby causing the transition

to be observed earlier. These two effects appear to persist continuously as g1/g3 is

allowed to take nonzero values.

The connection between our simulations and real materials is still elusive. The

first reason is computational: at larger values of g1/g3 corresponding to real ma-

terials, our finite element implementation tries to solve an ill-conditioned matrix

problem. The second reason is physical: the boundary conditions enforced by ap-
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Figure 10.12: Log plots for maximum height h∗m = maxh/h0 (left axis) and sur-

face energy E∗ (right axis), taken from [7]. These simulations used tensor mo-

bility, material parameters (g1/g3)(λx/h0)
2 = 10−4, q = 104, and initial data

h = h0 cos(k1x) cos(k2y), k2/k1 = 11/24, h0/λx = 0.03. A transition still occurs

in the presence of a facet.
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plying the finite element method over the entire domain B are incompatible with the

boundary conditions stemming from the flow of steps [65]. Even if we had trustwor-

thy numerical results for larger values of g1/g3, the weak formulation itself would

be questionable.

We leave it for future numerical work to characterize how the predicted phe-

nomena vary with increasing g1/g3. Pending issues include (i) finding a good pre-

conditioner, so that the matrix problem given by our finite element equations is

well-posed; (ii) enforcing more realistic boundary conditions, by restricting the do-

main of the PDE and informing the solution of microscale effects at the facet edge;

and (iii) developing a numerical scheme for step flow in 2+1 dimensions, in order to

determine the discrete sequence of collapse times for the top step [37].

The most promising route for connecting our macroscale theory to experiments

is analytical, at least until the ill-conditioning problem is resolved and a hybrid

scheme is adopted to incorporate step collapse times into the weak formulation.

We also hope that ongoing research in metamaterials might lead to an engineered

material with the precise set of parameters that numerical constraints forced us

to use in our simulations. Lacking a suitable experimental setting that can be

simulated reliably by our numerics, we leave it for future research to make a more

specific connection with real materials. For now we can only report the noteworthy

numerical results for a hypothetical material, which appear precisely because of the

novel contributions of our macroscale model; namely, a tensor mobility and the

macroscale drift due to electromigration.
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Chapter 11

Epilogue: conclusions and open questions

In this thesis we have studied the macroscale consequences of different physical

processes at the nanoscale, deriving PDEs to describe macroscopic surface relaxation

in the absence of material deposition. Our main result is a macroscale analog of

Fick’s law relating surface flux to the chemical potential. We revisit these results

by discussing correspondences between the terms of this relation and the underlying

nanoscale processes. For convenient reference, we give once again the macroscale

analog of Fick’s law in the most general form found so far.

J = −CsM ·
[
∇µ− kBTD

−1v

(
1 +

µ

kBT

)]
(11.1)

Energetic considerations yield the formula for the macroscale step chemical

potential, which remains invariant under changes of the nanoscale kinetic processes

considered in this thesis:

µ = −Ω div

{
g1
∇h
|∇h|

+ g3|∇h|∇h
}
. (11.2)

The inclusion or suppression of the different possible nanoscale processes is

reflected in the macroscale equation (11.1) by a linear superposition of effects, or

a renormalization of parameters. As an example, consider the effect of step edge

diffusion. By allowing for adatoms to diffuse along the step edge, we saw in chapter

6 that the σσ mobility element acquired an additional term proportional to the edge
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Table 11.1: Macroscale consequences of several physical processes at the nanoscale.
An asterisk next to “none” alerts the reader that the macroscale effects are deemed
negligible, being of higher order in the expansion parameter a.

nanoscale process effect on M effect on v

isotropic diffusion

tensor character dis-
tinguishes between
transverse and longi-
tudinal fluxes, with
diagonal form in
the local coordinate
representation

none

anisotropic diffusion
tensor form even in
the local coordinate
representation

none

step edge diffusion
additional term in
the mσσ element

none

step transparency

kinetic parame-
ter q = 2D/(ka)
renormalized via
k 7→ k + 2p

none

electric field E none proportional to E

adatom desorption none∗ none∗

diffusivity. Later, when studying the results of electromigration current, we saw that

the macroscale equation acquired a convective term featuring the drift velocity v.

These correspondences are summarized in Table 11.1.

Although the description of step flow below roughening can vary appreciably

depending on which nanoscale processes we include in the model, the macroscale

limit is much more robust, taking the form of a standard conservation equation

together with (11.1) and (11.2). Finding the same macroscale limit via homogeniza-

tion theory [70] serves as further confirmation of the coarse-graining results shown

here.
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11.1 Summary of contributions

One macroscale PDE, with appropriate modification of the parameters, en-

compasses a wide range of step flow models within the BCF framework. We have

studied representative versions of the macroscale evolution equation both numeri-

cally and analytically. These complementary approaches address different regimes in

the parameter space, and different questions about the evolving surface morphology.

Numerically, we have simulated the macroscale PDE using a semi-implicit time

scheme and the finite element method in space. We observe a 2D→1D transition

under ADL kinetics, indicating that the tensor mobility distinguishes between step-

normal and step-parallel fluxes. This transition appears to be accelerated by the

application of an electric field in the direction of the longer initial wavelength. Our

understanding of the transition phenomena is incomplete, but we hypothesize that a

key contribution is the initially enhanced magnitude of longitudinal fluxes relative to

transverse fluxes under ADL kinetics. The relevance of our numerical results to real

materials is not immediate, owing to the restricted subset of the parameter space

(g1/g3 � 1) that the finite element method could handle reliably. Preliminary

computations with nonzero but small g1/g3 suggest that the 2D→1D transition

persists continuously as g1/g3 is allowed to take on small positive values. This

continuous dependence on g1/g3 offers the promise of an eventual connection with

real materials, or even engineered metamaterials.

Analytically, we have looked for approximately separable solutions of the

macroscale PDE for surface height, predicting novel decay laws for some regions

215



of the parameter space. We have studied the possibility of a boundary layer near

a facet edge, finding a boundary layer width that scales as a power of g1/g3 in the

regime where g1/g3 is large. We have also characterized the effect of an electric field

on the slope profile near a facet. These latter two predictions offer the most promis-

ing connection with real materials, whose parameter values challenge the reliability

of our numerical method.

11.2 Open questions

An ambitious research program inevitably raises more questions than it an-

swers. We list below some of the pending issues that this thesis could not address.

• Stabilizing the numerics for larger values of g1/g3. As indicated in

Chapter 10, we lack a reliable simulation of the macroscale PDE for values of

the parameter g1/g3 of the order of unity. The usual way to address this nu-

merical instability is by means of a preconditioning matrix. An open problem

is to develop an accurate and efficient preconditioner for the matrix equation

given by the finite element method.

• Higher-order time stepping. Much of the discrepancy between different

simulations could be attributed to the choice of adaptive time step [6]. In

contrast, the calculated decay of height peak and energy were rather robust

with respect to mesh size [6]. Perhaps a fruitful direction to pursue is the

modification of our algorithm to reduce the time discretization errors.

• Comparison of macroscale simulations with step flow in 2D. Valida-
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tion of the macroscale theory is commonly done by comparing its predictions

with those of an atomistic simulation, as in the work of Shenoy et al. [107, 108].

Since our derivation of the macroscale PDE begins with the generalized BCF

model rather than atomistic physics, it might be instructive to compare a step

flow simulation with the results of this thesis. The step-flow model of Weeks

et al. [122], which has been implemented numerically by Kan et al. [45], offers

a promising means of comparison. A crucial question is whether the material

parameters used in simulations of Weeks’ model are within the scope of our

finite element method. (Note that extensive comparisons of step flow with

PDEs have been carried out for one-dimensional geometries [25, 79].)

• Boundary conditions at facet edges. As discussed in Chapter 9, the vari-

ational formulation of our evolution equation does not respect the boundary

conditions arising from the microstructure at a facet edge. An open problem

is the development of a hybrid approach, which would couple the variational

implementation of a fully continuum PDE with collapse time data from the

flow of steps near facets.

• Further analysis of the macroscale PDE. All of our numerics assumed

a spatially periodic solution whose period remained unchanged throughout

the simulation. The analytical justification of this assumption is still lacking.

Other qualitative features of the computed surface morphology, such as the

non-monotonic decay of height peak, could likewise be subject to analysis.

The question of backwards uniqueness in time is also of physical significance,
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as indicated in the following.

• Inverse problem. To make our modeling more attractive to the materials

engineering community, we might want to analyze whether a desired surface

pattern can emerge from self-organization of an initial profile, which relaxes

near equilibrium according to the flow of steps below roughening. This ques-

tion is an obvious analog for our macroscale PDE of the backwards uniqueness

property for the heat equation. We essentially want to characterize which “fi-

nal data” can successfully be evolved backward in time by our fourth-order

nonlinear PDE. This characterization might involve the Fourier components of

the final data (as in the case of the heat equation), or perhaps a more restric-

tive set of conditions. If we manage by analytical means to address backwards

uniqueness satisfactorily, we might then try to implement a numerical algo-

rithm to approximate the solution of the inverse problem.

• Stochastic effects. In this thesis we performed coarse-graining for a com-

pletely deterministic BCF-type model. Stochastic effects (especially the effect

of noise at the nanoscale) were not studied. A more realistic picture of the

nanoscale physics would allow for the fluctuation of step edges by adding noise

terms to the step flow equations. An interesting problem is then to derive the

macroscale limit from these stochastic differential equations.

• Far-from-equilibrium conditions. Throughout this thesis we assumed the

surface to evolve near equilibrium. In this vein we have focused entirely on

relaxation phenomena, omitting the effect of material deposition. The under-
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standing we gain from studying relaxation is expected to carry through to

far-from-equilibrium conditions, because relaxation by surface diffusion is al-

ways present in evolving surfaces. However, the far-from-equilibrium setting is

found to yield qualitatively different macroscale equations [11, 68, 69], which

are of interest in their own right and for the connection they promise with

modern experiments in epitaxial growth.
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Appendix A
Brief review of the Mellin transform

In this Appendix, we introduce the Mellin transform starting from the more

familiar Laplace integral transform. Motivated by the eventual use of the Mellin

transform in asymptotic expansion of integrals, we include only those technical

details needed to facilitate this application. The extension to iterated integrals and

inversion formulas in higher dimensions are not needed for our purposes; the reader

is directed to [100] for a more thorough discussion of these issues.

Many problems in engineering and applied mathematics are cumbersome to

solve when expressed in the relevant physical variables. Integral transforms were

developed to address this difficulty. The role of an integral transform is to map

an equation from the original domain (e.g., physical space or time) into another

domain (e.g., wavenumber or frequency space) where the computations are simpler.

The solution in the transformed domain is then pulled back to the physical domain

by the inverse transform.

The Laplace transform is well-known for its use in ordinary differential equa-

tions (ODEs): by taking the Laplace transform of a linear ODE, we obtain an

algebraic equation for the transform of the ODE solution. After solving the result-

ing algebraic equation, we can apply the inverse Laplace transform to express the

solution in the original variable. This idea is made rigorous by the following

Definition A.0.1. For a function f : R → R, the two-sided Laplace transform
f̂(s) is given by:

f̂(s) =

∫ ∞

−∞
f(t)e−stdt. (A.1)
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The original function f(t) is recovered from f̂(s) by the inverse Laplace transform:

f(t) =
1

2πı

∫ γ+ıω

γ−ıω

f̂(s)estds, (A.2)

where γ is a real number so that the integration path lies in the region of convergence
of f̂(s).

For asymptotic expansion of integrals, it turns out to be more convenient to use

an integral transform whose kernel is a power function rather than an exponential.

In this vein, we let x = et, dx = xdt in (A.1), which yields

f̂(s) =

∫ ∞

0

f(lnx)x−s dx

x
. (A.3)

We introduce F (x) to denote the composite function f(lnx), and −ζ = −s − 1 to

denote the power of x. The resulting integral, viewed as a function of ζ, is called

the Mellin transform and written F̂ (ζ), i.e.,

F̂ (ζ) =

∫ ∞

0

F (x)x−ζdx. (A.4)

We break up the integral (A.4) into two parts when studying its convergence

properties:

F̂ (ζ) =

(∫ 1

0

+

∫ ∞

1

)
F (x)x−ζdx. (A.5)

The restrictions on ζ for convergence of (A.5) emerge from enforcing boundedness

of the two integrals separately. We have a bound for the first integral,

∣∣∣∣∫ 1

0

F (x)x−ζdx

∣∣∣∣ ≤ ∫ 1

0

|F (x)|x−Reζdx, (A.6)

where Reζ denotes the real part of ζ. Suppose that F (x) = O(xp) as x → 0. This

first integral converges if p− Reζ > −1, or Reζ < 1 + p.
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On the other hand, we have for the second integral∣∣∣∣∫ ∞

1

F (x)x−ζdx

∣∣∣∣ ≤ ∫ ∞

1

|F (x)|x−Reζdx. (A.7)

If F (x) = O(xq) as x → ∞, then the convergence of the second integral requires

q − Reζ < −1, or 1 + q < Reζ. Together with the first condition on ζ, we find the

fundamental strip 1 + q < Reζ < 1 + p, which indicates the region in the complex ζ

plane where the integral defining the Mellin transform converges.

The inverse Mellin transform is obtained from F̂ (ζ) by the same contour

integral as (A.2):

F (x) = f(lnx) =
1

2πı

∫ γ+ıω

γ−ıω

F̂ (ζ)xζ−1dζ. (A.8)

For the asymptotic evaluation of integrals, where F (x) is defined by an integral

with a “large” or “small” variable x, this formulation is useful when the Mellin

transform F̂ (ζ) is meromorphic. Then the only singularities of F̂ are poles in the

complex ζ plane, and an asymptotic expansion for F can be calculated by applying

the Cauchy residue theorem. Care must be taken to ensure that the integration

path is deformed to account for the sign of ln x and the strip of convergence.

The Mellin transform is useful when F (x) is defined by a definite integral with

“large” or “small” parameter x, and the main contribution to this integral cannot be

attributed to isolated values of the integration variable. Indeed, classical asymptotic

approaches, such as the steepest descent or the stationary phase methods, are usually

sufficient in such cases. When the contribution to F (x) comes from an extended

interval in the domain of integration, the Mellin transform helps by mapping this

contribution to an isolated singularity in the transformed ζ space. The required
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calculation is often easier in the transformed domain, as we see in Chapter 4 when

studying the integral for elastic interaction energy.
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Appendix B
Nondimensionalization of the evolution equations

In this chapter we rewrite the evolution equations for the macroscale sur-

face height in nondimensional form. These equivalent representations allow for a

more systematic numerical treatment of relaxation experiments. We find that for

relaxation of initially sinusoidal profiles, any collection of material and geometric

parameters can be thought of as a point p in R6, with coordinates λx/λy, h0/λx,

λxD
−1v, q, g1/g3. If a certain crystal surface is specified, then q and g1/g3 are not

independent; both quantities are related through the temperature T . If the crystal

surface is not specified, then varying q and g1/g3 independently has the same effect

as considering many different possible materials over a wide range of temperatures.

The subset of R6 corresponding to physically realizable parameters can be fur-

ther partitioned according to the distinct morphological changes that the macroscale

PDE allows. One such partition, distinguishing between initial data that supports a

2D → 1D transition and initial data that prohibits such a transition, has been illus-

trated in [7] as cross-sections in the q, α plane, where α = λx/λy is the aspect ratio.

To extract from these plots the initial conditions for an experimental comparison

with real materials, we need to undo the nondimensionalization of the simulated

equations. Undoing this nondimensionalization will determine all the terms of the
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original macroscale PDE, rewritten here in the universal form

∂h

∂t
= ΩCsD div

{
Λ ·
[
∇µ
kBT

−D−1v

(
1 +

µ

kBT

)]}
, (B.1)

µ = −Ωg3 div

{
g1

g3

∇h
|∇h|

+ |∇h|∇h
}
, (B.2)

where Λ is the dimensionless mobility tensor.

The initial data has characteristic lengths λx, λy in the basal plane, and h0 in

the vertical direction. Accordingly, we define nondimensional spatial variables by

x̃ = x/λx, (B.3)

ỹ = y/λy, (B.4)

h̃ = h/h0. (B.5)

To compute spatial derivatives, we define the operators ∇α and divα by

∇α = (∂x̃, α∂ỹ), (B.6)

divα = ∂x̃ + α∂ỹ, (B.7)

which are related to the usual operators ∇ and div in an obvious way:

∇α = λx∇ and divα = λx div. (B.8)

The nondimensional chemical potential µ̃ and drift velocity u are defined as

µ̃ =
µ

kBT
, (B.9)

u = λxD
−1v. (B.10)

Applying (B.3)–(B.8) to (B.2), we find

µ = −Ωg3h
2
0

λ3
x

divα

(
g1λ

2
x

g3h2
0

∇αh̃

|∇αh̃|
+ |∇αh̃|∇αh̃

)
. (B.11)
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The prefactor in (B.11) requires us to find µ̃ by solving

µ̃ = − Ωg3h
2
0

kBTλ3
x

divα

(
g1λ

2
x

g3h2
0

∇αh̃

|∇αh̃|
+ |∇αh̃|∇αh̃

)
. (B.12)

Substituting (B.3)–(B.10) into the PDE (B.1), we find

∂h̃

∂t
=

ΩCsD

λ2
xh0

divα{Λ · [∇αµ̃− u(1 + µ̃)]}. (B.13)

The prefactor in (B.13) suggests that we choose a time unit t0 given by

t0 =
h0λ

2
x

ΩCsD
, (B.14)

so that t̃ = t/t0 is nondimensional.

In light of (B.12), (B.13), the numerical implementation of the macroscale

height evolution with drift u 6= 0 requires that we rescale three coefficients in the

code: the line tension coefficient g1/g3, the material parameter q appearing in Λ, and

the prefactor in (B.12). The nondimensional time can absorb only the prefactor in

(B.13). In contrast, for u = 0 the nondimensional time can also absorb the prefactor

of (B.12), thereby reducing the number of rescaled coefficients to two: g1/g3 and

q. This procedure is adopted in Chapter 10, where our time unit is chosen as

t0 = kBTλ5
x

Ω2Csg3Dh0
.
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