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Quantum system evolution: Non-relativistic case

The state of an N-particle system is described by the
N-body wavefunction, ¥

(Linear) Schrodinger equation:
- — . — 2 3N
H\IJN(t, £I?N) — Zat\IfN(t, .’,EN); \IJN(t, ) S L (R )
‘Many-body Hamiltonian: operator in N-particle HiIbert\space

State vector in Hilbert space |‘I’N>

Of particular interest are systems of identical particles



Bosons:

N-body wave function must be symmetric under particle permutations:
UnN(t, Zr(1)s Tr(2)s - - - > Te(N)) = ¥N(E, 21,22, ..., TN)

/aﬁmtat/bw

U guantum state can be accupied by any number of Basons

Fermions:

UN(t, Tr(1), Tr(2)s« - - > T (V) Z\Sgn(ﬂ) }I’N(t, T1,T2,-..,TN)
|
-1 for odd permutations;
1 for even permutations

There are nestrictions in eccupancy of a guantum state by Fexmions (*° Fauli exclusion principle’ )



Basic schematic view of ideal Boson gas
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[Schematic: Ketterle, 1999]
The matter wave can be described by single-particle mean field




The B and E of Bose-Einstein Condensation
BEC: Macrescopic eccupation ef a 1-particle guantum state.

In 1924, Bose re-derived Planck’s black-body radiation law by
using certain partition of phase space of photons.

Einstein [1924, 1925] applied Bose’s method to gas of non-
Interacting spinless massive particles, Bosons.



BEC via density matrix
[Penrose, Onsager, 1957]

* Need an operator which, for an ideal gas, has eigenvalues equal to the
(average) occupation numbers of 1-particle stationary quantum states.

A

* Define 1-particle (reduced) density operator 7y

¥ =N tra N (p); p = |¥n)(¥y| for pure state

.

N—lparticle density op. (matrix)

* Configuration representation of 1-part. reduced density operator:

’Y(xay) — (M’yly) =N lim \I’N(xva—l)\Ijj\f(ya fN—l) di—l;
(x7y€R37Q gRg) IN_1 = (I’Q,...,CIJN) ERB(N_U

* Criterion for BEC in ground state: maximal eigenvalue of 4 is O(N)



Experiments in trapped dilute atomic gases
[(MIT) Ketterle group: Davis et al., 1995; (JILA) Cornell group: Anderson et al., 1995]

Atoms

inside the trap Interacting repulsively...
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[Courtesy of MIT group]



Key Elements for theory:

* Weak particle interactions

* Macroscopic trap



Applications:

BEC still has limited throughput, and is primarily
confined to lab settings; no commercial, large-scale
use of it.

* Precision measurements (of acceleration, gravity
gradients etc) based on atom interferometry.

* Emulation of complex condensed-matter
systems, esp. their phase transitions, using
optical lattices.

e Quantum information.

* Lithography: Creation of patterns on templates
(far from industrial production as yet).



A multiple-scale perspective of weakly
interacting trapped gas undergoing BEC
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Many-body Boson evolution

Evolution on N Bosons with repulsive interactions:

Square integrable,
~_sym metric

HyUn(t,7) = i0,Un(L,7); Un(t,) € L2(R®)

many-body Schrodinger eq.

N N
Hy =) [-8;+Velz)l+ > V(zjm)  (h=2m=1)
7j=1 jg,l=1
PDE Hamiltonian <t Short-ranged, repulsive, symmetric; usually
Y = V(LUJ — ZBZ)
No exact solutions of form & (¢, z1)®(¢, z2) ... B(¢, zN) H O(t,z;)

Bound state:
U (t, &) = e 5N U ()

Ground state: E, is lowest



Why is BEC interesting in applied math (today)?

j
HyUn(t, %) =i0,Upn(t,2); Un(t,-) € LER3N)

N

y =S -84+ Vi) + Y Vage)  (h=2m=1)

j=1 g<l

* What macroscopic description, mean field limit, emerges, and in
what sense, in lower dimensions as N->w ?

Nonlinear Schrodinger-type eq in 3D: Gross [1961], Pitaevskii [1961], and Wu [1961]

* What corrections exist beyond this limit for large but finite N,
in a controllable "PDE sense”?




A taste of BEC in
non-interacting Boson gas

[Bose, 1924, Einstein, 1924, 1925]



Digression: Bose statistics (ideal Bose gas, N particles)

[K. Huang, Statistical Mechanics]
Fatitianing of
Pree-panticle states Number of states of the system

corresponding to set of occupation numbers {n},_,, .

. W{nl,ng,...}:Hwi
[
] 7' /
¢; levels Number of wlays to arrange
n;=0,1,... n; particlesin ¢, levels
Energy €; To find average occupation numbers, 7; :
. Mazximize entropy S = kglogW{n,;}
undex the constriaints
Zni\: N, Z"%QZE
Total energy: E i i

1

“~._ Lagrange
*, Multiplier;
Fugacity z




N

N non-interacting Bosons (in periodic box of volume L3)
Lowest energy is O

Ave. occupation
numbers

over momenta k,
from Bose statistics

Zﬁk/N — integral
Single out k70 A
0-th momentum ! ‘
tribution! O(1)
contribution! 2 4 3/2
— n — - o
- /kz I3 27Th2 93/2

Condition of condensation (N: large):

Finite fraction of particles at 0 momentum:

n N
N _
T="T,: 73 = A"%g3/9(1)

No condensation:

gg/;(z)
E.EIEJL__
no
1" =z
N1—2 0




Weakly interacting Boson gas

[Bogoliubov, 1947; Lee, Huang, Yang, 1957; Wu, 1961]



Weakly interacting Bosons in periodic box, T=0:
Statics

[Bogoliubov, 1947; Lee, Huang, Yang, 1957]

Macroscopic single-particle quantum state (condensate): Zero-momentum eigenstate.

Fact:
A small fraction of particles leak out from the condensate to other states.

Emerging concept: Particles are primarily scattered from zero momentum to pairs
of opposite momenta and vice versa.

—k

=712’

hypothesis
o0 | k7

What is the ground state energy?

Pair excitation g condensate /’




Fraction of atoms escaping the macroscopic state:
Observation of quantum depletion [xu et al., 2006]
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Digression: Second quantization: Bosonic Fock space [
F= C@@nzl (LQ(RS))®Sn

e FElements of F (space with indefinite number of Bosons):
Z ={Z™}, 5o where Z(9): complex number, Z(™ ¢ L2(R3"). Inner product:
(Z,V)r = ano fR3n AL (x)\I’(n) (z)dz. adljoint

e Annihilation & creation operators for 1-part. state ® are ag,a3 : F — F.

(afI,Z)(”)(fn) — _1/22(1) Z(n 1) CUl,...,LCj_l,LUj+1,...,LCn> ,
(asZ)™(Z,) = Vn+1 / dzo ®*(20)Z "V (20, Bn) 5 Tn = (T1,... ,2n)
R3
Commutation relation: [ag,a}] = agal — ahas = || P[/7..
e Periodic bc’s: Momentum creation and annihilation operators:
a; and ay, for ®(z) = (1/4/|Q])et2.

[ak, ak,] = 5k,k’

e Vacuum (no particles): |vac) = {c,0,0,...}. ag|vac) =0, a}|vac) = |P)



Digression: Second quantization (cont.)

The use of Fock-space language enables convenient notation
(and not only).

Example: The Bosonic wave function with n, atoms at state @, ,..., n,, atoms at @,
(where these states are orthogonal) is represented by the vector (living in Fock
space):

>|< nj

yvac (0,0,...,ZmtnetAdnn) Y

117



Digression: Second quantization (cont.)

The algebra for many Bosons is facilitated through replacing operators in a Hilbert
space of a fixed number of atoms with operators in the Fock space; in particular,

H,, replaced by H

Op. in Hilbert Op. in Fock space, with
space with n particles  indefinite number il
: of particles n-particie
Interprefation: P ;wavefunction

Wi 20, 27, )= (0, Z0,... H 2™, )
\ ,

// }

n-pgrticle
operator
Projection to the “'N-particle sector”, n=N,

forms a constraint

Operator"

|
vector
In Fock space

in Fock space

Number operator for Bosons at momentum k : N = ajag



Weakly interacting Bosons in a periodic box Q, T=0: Statics

[Bogoliubov, 1947; Lee, Huang, Yang, 1957]
PDE Hamlltonlan
N

I:IN:Z —l— V —a:l (h=2m=1)
j=1 Ji=1 . ko —q
77 e ki+q \ ~
This is replaced by Hamiltonian in Fock space: T @ V()
H = Z K kak ™ Z akl—l—qakz —q (Q) Ay Ay k \k2
k Operator for numberl_\(/_/ k1,k2,q . 1
of Bosons at mom. k  Volume V(q) = V(x) e T dx

Q
In a dilute gas, the actual form of V' is not important. What matters is an

effective potential that reproduces the correct low-energy behavior in the far field.

Low-energy scattering length

: 0
Lee, Huang, and Yang set: V(z; —x;) = V' = 8nad(z; — x;) —Tij, Tij = |2 — 2]
Fermi pseudopotential *J
Length a comes from solving: —Aw + (1/2)V(z)w =0, |w1|i£>noow =11 Definition
: a  ofa
In particular, w(z) ~1— m as |z| — oo

[Blatt, Weiskopf, 1952]



9a be cantinued. ...



