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ĤªN(t; ~xN) = i@tªN(t; ~xN); ªN(t; ¢) 2 L2(R3N)

Quantum system evolution: Non-relativistic case 

(Linear) SchrÄodinger equation:

The state of an N-particle system is described by the  
N-body wavefunction, ΨN  

Many-body Hamiltonian: operator in N-particle Hilbert space 

Of particular interest are systems of identical particles 

jªNiState vector in Hilbert space 



Bosons: 

ªN(t; x¼(1); x¼(2); : : : ; x¼(N)) = ªN(t; x1; x2; : : : ; xN)

N-body wave function must be symmetric under particle permutations: 

permutations 

A quantum state can be occupied by any number of Bosons 

ªN(t; x¼(1); x¼(2); : : : ; x¼(N)) = sgn(¼)ªN(t; x1; x2; : : : ; xN)

Fermions: 

-1 for odd permutations; 
1 for even  permutations 

There are restrictions in occupancy of a quantum state by Fermions (``Pauli exclusion principle’’) 



Basic schematic view of ideal Boson gas 

[Schematic: Ketterle, 1999] 
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The matter wave can be described by single-particle mean field 

Bose-Einstein condensate 



The B and E of Bose-Einstein Condensation 

• BEC: Macroscopic occupation of  a 1-particle quantum state. 

 

• In 1924, Bose re-derived Planck’s black-body radiation law by 

using certain partition of phase space of photons. 

• Einstein [1924, 1925] applied Bose’s method to gas of non-

interacting spinless massive particles, Bosons.  



BEC via density matrix  
[Penrose, Onsager, 1957] 

• Configuration representation of 1-part. reduced density operator: 

°(x; y) = hxj°̂jyi = N lim
j­j!1

Z

­N¡1
ªN(x;~xN¡1)ª

¤
N(y; ~xN¡1) d~xN¡1;

(x; y 2 R3;­µ R3) ~xN¡1 = (x2; : : : ; xN) 2 R3(N¡1)

• Define 1-particle (reduced) density operator 

°̂ =N tr2:::N (½̂) ; ½̂= jªNihªNj for pure state
N-particle density op. (matrix) 

°̂

• Need an operator which, for an ideal gas, has eigenvalues equal to the  
(average) occupation numbers of 1-particle stationary quantum states. 

• Criterion for BEC in ground state: maximal eigenvalue of      is O(N) °̂



Experiments in trapped dilute atomic gases 
[(MIT) Ketterle group: Davis et al., 1995;  (JILA) Cornell group: Anderson et al., 1995] 

[Courtesy of MIT group] 

Ve(x)

Interacting repulsively… 



Key Elements for theory: 

• Weak particle interactions 

 

• Macroscopic trap 



Applications: 

BEC still has limited throughput, and is primarily 
confined to lab settings; no commercial, large-scale 
use of it.  
• Precision measurements (of acceleration, gravity 

gradients etc) based on atom interferometry. 
• Emulation of complex condensed-matter 

systems, esp. their phase transitions, using 
optical lattices. 

• Quantum information. 
• Lithography: Creation of patterns on templates 

(far from industrial production as yet). 
 



A multiple-scale perspective of weakly 
interacting trapped gas undergoing BEC 

Length scales: 

a d λcor λth λtrap 
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Many-body Boson evolution 

Evolution on N Bosons with repulsive interactions: 

ĤNªN(t; ~x) = i@tªN(t; ~x); ªN(t; ¢) 2 L2s(R
3N)

many-body Schrödinger eq. 

ĤN =

NX

j=1

[¡¢j + Ve(xj)] +

NX

j;l=1
j<l

V(xj; xl) (¹h = 2m = 1)

Short-ranged, repulsive, symmetric; usually PDE Hamiltonian 

ªN(t; ~x) = e¡itENªN(~x)

Bound state: 

Ground state:  EN is lowest 

Square integrable, 
symmetric 

No exact solutions of form  ©(t; x1)©(t; x2) : : :©(t; xN) =
NY

j=1

©(t; xj)

V = V (xj ¡xl)



Why is BEC interesting in applied math (today)? 

ĤNªN(t; ~x) = i@tªN(t; ~x); ªN(t; ¢) 2 L2s(R
3N)

ĤN =

NX

j=1

[¡¢j + Ve(xj)] +
X

j<l

V(xj; xl) (¹h = 2m = 1)

• What macroscopic description, mean field limit, emerges, and in  
 what sense, in lower dimensions as N→∞ ? 

Nonlinear Schrodinger-type eq in 3D: Gross [1961], Pitaevskii [1961], and Wu [1961] 

• What corrections exist beyond this limit for large but finite N,  
                                                                       in a controllable ``PDE sense’’? 



A taste of BEC in  
non-interacting Boson gas 

[Bose, 1924, Einstein, 1924, 1925] 



Digression: Bose statistics (ideal Bose gas, N particles) 
                                                  [K. Huang, Statistical Mechanics] 

…
 

`i levels

…
 

ni = 0; 1; : : :Cell  i 

Number of states of the system  
corresponding to set of occupation numbers {ni}i=1,2,… .   

Number of ways to arrange 
ni  particles in li levels 

Partitioning of 

free-particle states 

To find average occupation numbers,  ¹ni :

Maximize entropy S = kBlogWfnig
under the constraints 
X

i

ni = N;
X

i

ni²i = E

Energy ²i

) ¹ni =
1

z¡1e²i=(kBT) ¡ 1
Lagrange  
Multiplier; 
Fugacity z 

Total energy: E 



e¹=(kBT); ¹ < 0

N non-interacting Bosons (in periodic box of volume L3 ) 

4p
¼

Z 1

0

dx
x2

z¡1ex
2 ¡ 1

¹n0

N =
X

k

¹nk ) 1 =

Ã
N

L3

!¡1Ã
mkBT

2¼¹h2

!3=2

g3=2(z) +
1

N

z

1¡ z

X

k 6=0
¹nk=N ! integral

O(1)

z 

g3/2(z) 

¸¡3

No condensation: ¹n0

N
= o(1)

¹n0

N
= O(1) (= N

L3
¡ ¸¡3g3=2(1) > 0; or 0 < T < Tc

T = Tc :
N

L3
= ¸¡3g3=2(1) ) ¸ ¼ (L3=N)1=3 = d

Condition of condensation (N: large): 

Finite fraction of particles at 0 momentum:  

~1/N 

Single out 
0-th momentum 
contribution! 

Ave. occupation 
numbers  
over momenta k, 
from Bose statistics 

Lowest energy is 0 



Weakly interacting Boson gas 

[Bogoliubov, 1947; Lee, Huang, Yang, 1957; Wu, 1961] 



Weakly interacting Bosons in periodic box, T=0: 
Statics 

[Bogoliubov, 1947; Lee, Huang, Yang, 1957]  

  Fact: 
A small fraction of particles leak out from the condensate to other states. 
    
  Emerging concept: Particles are primarily scattered from zero momentum to pairs 
of opposite momenta and vice versa. 

What is the ground state energy? 

Macroscopic single-particle quantum state (condensate): Zero-momentum eigenstate. 

Pair excitation 
hypothesis 

condensate 

X

k 6=0 k

¡k



Fraction of atoms escaping the macroscopic state: 
Observation of quantum depletion [Xu et al., 2006] 



Digression: Second quantization: Bosonic Fock space 

² Elements of F (space with inde¯nite number of Bosons):

Z = fZ(n)gn¸0 where Z(0): complex number, Z(n) 2 L2s(R
3n). Inner product:

hZ;ªiF =
P

n¸0
R
R3n Z

(n)(x)ª(n)¤(x)dx.

² Annihilation & creation operators for 1-part. state © are a©; a
¤
© : F ! F.

(a¤©Z)
(n)(~xn) = n¡1=2

nX

j=1

©(xj)Z
(n¡1)(x1; : : : ; xj¡1; xj+1; : : : ; xn) ;

(a©Z)
(n)(~xn) =

p
n+ 1

Z

R3
dx0 ©

¤(x0)Z
(n+1)(x0; ~xn) ; ~xn := (x1; : : : ; xn)

Commutation relation: [a©; a
¤
©] = a©a

¤
© ¡ a¤©a© = k©k2

L2
.

² Periodic bc's: Momentum creation and annihilation operators:

a¤k and ak, for ©(x) = (1=
p
j­j)eik¢x.
[ak; a

¤
k0] = ±k;k0

²Vacuum (no particles): jvaci= fc;0;0; : : :g. a©jvaci= 0, a¤©jvaci = j©i

adjoint 

F = C©
L

n¸1
¡
L2(R3)

¢­sn
F



Digression: Second quantization (cont.) 

The use of Fock-space language enables convenient notation  
(and not only). 

Example: The Bosonic wave function with n1 atoms at state F1 ,…, nM atoms at FM   

 (where these states are orthogonal) is represented by the vector (living in Fock  
space): 

MY

j=1

(a¤©j)
nj

p
nj !

jvaci = (0; 0; : : : ; Z(n1+n2+:::+nM); 0; : : :)



   The algebra for many Bosons is facilitated through replacing operators in a Hilbert  
   space of a fixed number of atoms with operators in the Fock space; in particular, 

Ĥn replaced by H

Interpretation: 

H (c;Z(1); : : : ;Z(n); : : :) = (0; Ĥ1Z
(1); : : : ; ĤnZ

(n); : : :)

Operator  
In Fock space 

vector  
in Fock space 

n-particle 
operator 

n-particle  
wavefunction 

Projection to the ``N-particle sector’’, n=N,  
        forms a constraint 

Digression: Second quantization (cont.) 

Number operator for Bosons at momentum k : Nk = a¤kak

Op. in Hilbert 
space with n particles 

Op. in Fock space, with 
indefinite number  
of particles 



Weakly interacting Bosons in a periodic box Ω, T=0: Statics 
[Bogoliubov, 1947; Lee, Huang, Yang, 1957]  

ĤN =

NX

j=1

(¡¢j) +
1

2

NX

j;l=1
j 6=l

V(xj ¡ xl) (¹h = 2m = 1)

PDE Hamiltonian: 

In a dilute gas, the actual form of  V  is not important. What matters is an 

effective potential that reproduces the correct low-energy behavior in the far field. 

Lee, Huang, and Yang set: V(xi ¡ xj)!V0 = 8¼a±(xi ¡ xj)
@

@rij
rij; rij = jxi ¡ xjj

Low-energy scattering length 

Fermi pseudopotential 

   This is replaced by Hamiltonian in Fock space: 

H =
X

k

k2 a¤kak +
1

2j­j
X

k1;k2;q

a¤k1+qa
¤
k2¡q

~V(q)ak1ak2

~V(q) =
Z

­

V(x) e¡iq¢x dx
Operator for number 
of Bosons at mom. k 

k1
k2

k1 +q

k2 ¡q

~V(q)

volume 

Length a comes from solving: ¡¢w+ (1=2)V(x)w = 0; lim
jxj!1

w = 1

In particular,  w(x) » 1¡ a

jxj as jxj !1
Definition 
  of a 

[Blatt, Weiskopf, 1952] 



To be continued…. 


