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Web Resources

RIT website:
http://www.math.umd.edu/ dio/RIT/QI-Spring10
Sam Lomonaco: A Rosetta Stone for Quantum Mechanics
with an Introduction to Quantum Computation:
http://arxiv.org/pdf/quant-ph/0007045
Todd Brun: Lecture Notes on Quantum Information
Processing: http://almaak.usc.edu/ tbrun/Course/index.html
Valerio Scarani: Quantum Information: Primitive Notions and
Quantum Correlations: http://arxiv.org/pdf/0910.4222
John Preskill: Lecture Notes on Quantum Computation:
http://www.theory.caltech.edu/people/preskill/ph229/

Quantum Information



Resources
Correlations

Information Causality: Deriving the Tsirelson Bound
Web Resources
Print Resources

Print Resources

Sam Lomonaco: A Rosetta Stone for Quantum Mechanics
with an Introduction to Quantum Computation, in AMS Short
Course Lecture Notes: Quantum Computation (Providence:
AMS, 2000).
Michael A Nielsen and Isaac L. Chuang: Quantum
Computation and Quantum Information (Cambridge:
Cambridge University Press, 2000).
Chris J. Isham: Lectures on Quantum Theory: Mathematical
and Structural Foundations (London: Imperial College Press,
1995).
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Hoi-Kwong Lo, Sandu Popescu, Tom Spiller (eds.):
Introduction to Quantum Computation and Information
(World Scientific: 1998).
L. Diosi: A Short Course in Quantum Information Theory
(Springer, 2007).
Michel Le Bellac: A Short Introduction to Quantum
Information and Quantum Computation (Cambridge
University Press, 2005).
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Correlations

Quantum probabilities are puzzling because quantum correlations
are puzzling, and quantum correlations are puzzling in the way
they differ from classical correlations.

Quantum Information



Resources
Correlations

Information Causality: Deriving the Tsirelson Bound

Classical correlations

The space of classical probability distributions, considered as a
convex set, has the structure of a simplex.
An n-simplex is a particular sort of convex set: a convex
polytope generated by n + 1 vertices that are not confined to
any (n − 1)-dimensional subspace (e.g., a triangle or a
tetrahedron as opposed to a square or a cube).
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Classical correlations

The simplest classical probability space is the 1-bit space
(1-simplex), consisting of two extremal (or pure) probability
distributions.

These are deterministic states, 0 =

(
1
0

)
and 1 =

(
0
1

)
,

represented by the vertices of the simplex, with
mixtures—convex combinations of extremal
states—represented by the line segment between the two
vertices: p = p 0 + (1− p) 1, for 0 ≤ p ≤ 1.
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‘No signaling’ correlations

A simplex has the rather special property that any state
(probability distribution) can be represented in one and only
one way as a mixture of extremal states, the vertices of the
simplex. No other state space has this feature: if the state
space is not a simplex, the representation of mixed states as
convex combinations of extremal states is not unique.
The simplest quantum system is the qubit, whose state space
as a convex set has the structure of a sphere (the Bloch
sphere), which is not a simplex.
The space of all ‘no signaling’correlations is a convex polytope
that is not a simplex.
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‘No signaling’ correlations
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Figure: A schematic representation of the space of no-signaling
correlations. The vertices are labelled L and NL for local and nonlocal.
Bell inequalities characterize the facets represented by dashed lines. The
set bounded by these is L. The region accessible to quantum mechanics
is Q. Superquantum correlations lie in region P.
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PR-box

The vertices of the ‘no signaling’ polytope are deterministic
states or non-deterministic Popescu-Rohrlich (PR) boxes (S.
Popescu and D. Rohrlich, Foundations of Physics 24, 379
(1994)).
A PR-box is a hypothetical device or nonlocal information
channel that is more nonlocal than quantum mechanics, in the
sense that the correlations between outputs of the box for
given inputs maximally violate the Tsirelson bound.
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PR-box

A PR-box is defined as follows: there are two inputs,
x ∈ {0, 1} and y ∈ {0, 1}, and two outputs, a ∈ {0, 1} and
b ∈ {0, 1}. The box is bipartite and nonlocal in the sense that
the x -input and a-ouput can be separated from the y -input
and b-output by any distance without altering the correlations.
For convenience, we can think of the x -input as controlled by
Alice, who monitors the a-ouput, and the y -input as
controlled by Bob, who monitors the b-output.
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PR-box

x = 0 or 1

a = 0 or 1

y = 0 or 1

b = 0 or 1

a⊕b = x.y
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PR-box correlations

Alice’s and Bob’s inputs and outputs are required to be correlated
according to:

a ⊕ b = x · y

where ⊕ is addition mod 2, i.e.,
same outputs (i.e., 00 or 11) if the inputs are 00 or 01 or 10
different outputs (i.e., 01 or 10) if the inputs are 11

Quantum Information



Resources
Correlations

Information Causality: Deriving the Tsirelson Bound

‘No signaling’

The ‘no signaling’ condition is a requirement on the marginal
probabilities: the marginal probability of Alice’s outputs do not
depend on Bob’s input, i.e., Alice cannot tell what Bob’s input
was by looking at the statistics of her outputs, and conversely.
Formally:∑

b∈{0,1}
p(a, b|x , y) = p(a|x), a, x , y ∈ {0, 1}

∑
a∈{0,1}

p(a, b|x , y) = p(b|y), b, x , y ∈ {0, 1}
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PR-box marginals

The correlations together with the ‘no signaling’ condition entail
that the marginals are equal to 1/2 for all inputs x , y ∈ {0, 1} and
all outputs a, b ∈ {0, 1}:

p(a = 0|x) = p(a = 1|x) = p(b = 0|y) = p(b = 1|y) = 1/2
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PR-box joint probabilities
A PR-box can be defined equivalently in terms of the joint
probabilities for all inputs and all outputs. For bipartite probability
distributions, with two input values and two output values, the
vertices of the ‘no signaling’ polytope are all PR-boxes (differing
only with respect to permutations of the input values and/or
output values) or deterministic boxes.

x 0 1
y
0 p(00|00) = 1/2 p(10|00) = 0 p(00|10) = 1/2 p(10|10) = 0

p(01|00) = 0 p(11|00) = 1/2 p(01|10) = 0 p(11|10) = 1/2
1 p(00|01) = 1/2 p(10|01) = 0 p(00|11) = 0 p(10|11) = 1/2

p(01|01) = 0 p(11|01) = 1/2 p(01|11) = 1/2 p(11|11) = 0

Table: Joint probabilities for the PR-box
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A Game: simulating a PR-box

Consider the problem of simulating a PR-box: how close can
Alice and Bob come to simulating the correlations of a PR-box
for random inputs if they are limited to certain resources?
In units where a = ±1, b = ±1,

〈00〉 = p(same output|00)− p(different output|00)

so:

p(same output|00) =
1 + 〈00〉

2

p(different output|00) =
1− 〈00〉

2

and similarly for input pairs 01, 10, 11.
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CHSH correlation

It follows that the probability of a successful simulation is given by:

prob(successful sim) =
1
4(p(same output|00) + p(same output|01)

+p(same output|10) + p(different output|11))

=
1
2(1 +

CHSH
4 ) =

1
2(1 + E )

where
CHSH = 〈00〉+ 〈01〉+ 〈10〉 − 〈11〉

is the Clauser-Horne-Shimony-Holt (CHSH) correlation.
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Bell’s locality argument

Bell’s locality argument shows that if Alice and Bob are
limited to classical resources, i.e., if they are required to
reproduce the correlations on the basis of shared randomness
or common causes established before they separate (after
which no communication is allowed), then CHSHC ≤ 2 (i.e.,
E ≤ 1

2), so the optimal probability of success is 1
2(1 + 1

2) =
3
4 .

If Alice and Bob are allowed to base their strategy on shared
entangled states prepared before they separate, then the
Tsirelson inequality requires that CHSHQ ≤ 2

√
2 (i.e.,

E ≤ 1√
2), so the optimal probability of success limited by

quantum resources is 1
2(1 + 1√

2) ≈ .85.
For the PR-box, CHSH = 4 (i.e., E = 1), so the probability of
success is, of course, 1

2(1 + 1) = 1.
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Information causality

M. Pawlowski, T. Patarek, D. Kaszlikowski, V. Scarani, A.
Winter, M. Zukowski: ‘A New Physical Principle: Information
Causality,’ Nature 461, 1101 (2009), or
quant-ph/0905.2292v1 (at http://www.arxiv.org).
Information Causality states that the information gain for Bob
about an unknown data set of Alice, using all his local
resources and m classical bits communicated by Alice, is at
most m bits.
The no-signaling condition is just Information Causality for
m = 0.
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New game: oblivious transfer

Figure: Alice receives N random and independent bits ~a = (a1, a2, ..., aN).
In a separate location, Bob receives a random variable b ∈ {1, 2, ..., n}.
Alice can send m classical bits to Bob with the help of which Bob is
asked to guess the value of the b-th bit in the Alice’s list, ab.
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Classical strategy

Bob can correctly give the value of at least m bits. If Alice
sends him a message ~x = (a1, ..., am) Bob will guess ab
perfectly whenever b ∈ {1, ...,m}.
The price to pay is that he is bound to make a sheer random
guess when b ∈ {m + 1, ...,N}.
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Information causality condition

More formally, denote Bob’s output by β. The efficiency of
Alice’s and Bob’s strategy is quantified by

I ≡
N∑

k=1
H(ak : β|b = k)

where H(ai : β|b = k) is the Shannon mutual information
between ai and β, computed under the condition that Bob
has received b = k, i.e.

I ≡
N∑

k=1
H(ak) + H(β)− H(ak , β)

By definition, Information Causality is fulfilled if

I ≤ m
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Shannon entropy and mutual information

The Shannon entropy of a random variable X is defined as:

H(X ) = −
∑

i
pi log pi

The mutual information H(X :Y )—sometimes I(X :Y )— of
two random variables is a measure of how much information
they have in common: the sum of the information content of
the two random variables, as measured by the Shannon
entropy (in which joint information is counted twice), minus
their joint information:

H(X :Y ) = H(X ) + H(Y )− H(X ,Y )
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No signaling’ boxes

Figure: Simplest case (m = 1): Alice receives two bits (a1, a2) and is
allowed to send only one bit (m = 1) to Bob. A convenient way of
thinking about no-signaling resources is to consider black boxes shared
between Alice and Bob (NS-boxes). Note: the + here should be ⊕.
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Violating information causality

The correlations between inputs a, b and outputs A,B of the
boxes are described by probabilities P(A⊕ B = ab|a, b).
Assume random local outputs, so no-signaling is satisfied.
With suitable NS-boxes Alice and Bob can violate Information
Causality. Alice uses a = a1 ⊕ a2 as an input to the shared
NS-box and obtains the outcome A, which is used to compute
her message bit x = a1 ⊕ A for Bob. Bob, on his side, inputs
b = 1 if he wants to learn a1, and b = 2 if he wants to learn
a2; he gets the outcome B.
Upon receiving x from Alice, Bob computes his guess
β = x ⊕ B = a1 ⊕ A⊕ B.
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Probability of guessing the value of a bit

The probability that Bob correctly guesses the value of the bit a1 is

PI =
1
2 [P(A⊕ B = 0|0, 0) + P(A⊕ B = 0|1, 0)] ,

and the analogous probability for the bit a2 reads

PII =
1
2 [P(A⊕ B = 0|0, 1) + P(A⊕ B = 1|1, 1)] .
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Unbiased case

In the unbiased case, where Bob’s bit can be 0 or 1 with equal
probability, the probability that Bob guesses successfully (i.e., gives
the correct value of Alice’s k’th bit if his input bit is k, for
k = 1, 2) is:

P(success) =
1
2(PI + PII) =

1
4
∑
a,b

P(A⊕ B = ab|a, b)

=
1
4((p(same|0, 0) + p(same|0, 1)

+p(same|1, 0) + p(different|1, 1)))

=
1
2(1 + E )
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Bounds

Recall:
classical bound: E = 1

2 (CHSH = 2)
quantum (Tsirelson) bound: E = 1√

2 (CHSH = 2
√

2)
PR-box: E = 1 (CHSH = 4)
Note that for uncorrelated random bits: E = 0 (CHSH = 0)
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Alice receives n-bits

In the case where the outcomes of the boxes are uniformly
random, the correlations are given by:

P(A⊕ B = ab|a, b) = 1
2(1 + E )

with 0 ≤ E ≤ 1.
So Pk = 1

2(1 + E )

If Alice receives N = 2n bits and Bob receives n input bits bn
that describe the index of the bit he has to guess, and Alice is
allowed to send Bob 1 bit, the probability that Bob guesses ak
correctly can be shown to be given by:

Pk =
1
2(1 + En)
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N-bit case

Figure: Alice receives N = 2n input bits and Bob receives n input bits bn
that label the index of the bit he has to guess: b = 1 +

∑n
k=1 bk2k−1.

Alice is allowed to send Bob a single bit, m = 1. (Note: The two inputs to the boxes at

(a) should be one input a1 ⊗ a2 to the Left box, one input a3 ⊗ a4 to the Right box at level k = 1, and one input

(a1 ⊗ AL) ⊗ (a3 ⊗ AR ) to the box at the level k = 2.)
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n = 2 protocol

To encode information about her data, Alice uses a pyramid
of NS-boxes as shown in the panel (a) for n = 2. Previously
we saw how Bob can correctly guess the first or second bit of
Alice using a single pair of the boxes.
The probabilities of guessing correctly the first or the second
bit are PI and PII, respectively. If Alice has more bits, Bob
recursively uses this protocol.
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n = 2 protocol

For four input bits of Alice, two pairs of NS-boxes on the level
k = 1 allow Bob to make the guess of a value of any one of
Alice’s bits as soon as he knows either a1 ⊕ AL or a3 ⊕ AR ,
which are the one-bit messages of the 1-box protocol.
These can be encoded using the third box, on the level k = 2,
by inserting their sum to the Alice’s box and sending
x = a1 ⊕ AL ⊕ A to Bob.
Depending on the bit he is interested in, he now reads a
suitable message using the box on the level k = 2 and uses
one of the boxes on the level k = 1.
The situation in which Bob aims at the value of a3 or a4 is
depicted in the panel (b). Bob’s final answer is x ⊕ B2 ⊕ B1.
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n = 2 protocol example

Generally, Alice and Bob use a pyramid of N − 1 pairs of
boxes placed on n levels. Looking at the binary decomposition
of b Bob aims (n − k) times at the left bit and k times at the
right, where k = b1 + ...+ bn.
His final guess is the sum of β = x ⊕B1 ⊕ ...⊕Bn. Therefore,
Bob’s final guess is correct whenever he has made an even
number of errors in the intermediate steps.
This leads to Pk = 1

2(1 + En) for the probability of his correct
final guess.
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n = 2 protocol

Consider the case n = 2. Bob receives 2 input bits b1, b2 that
label the index of the bit he has to predict, as follows:

b = 1 + b121 + b222 = 1 + b1 + b2

So:
if b1 = 0, b2 = 0 : b = 1
if b1 = 1, b2 = 0 : b = 2
if b1 = 0, b2 = 1 : b = 3
if b1 = 1, b2 = 1 : b = 4
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n = 2 protocol

So b2 = 0 or 1 distinguishes between the pairs:
b2 = 0: 1st bit, 2nd bit
b2 = 1: 3rd bit, 4th bit

b1 = 0 or 1 then distinguishes between the two members of
the pair chosen by b2
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How the n = 2 protocol works

The protocol works as follows:
At the first level, there are two boxes. Call them L and R.
Alice inputs a1⊕a2 into the L box, and a3⊕a4 into the R box.
Bob inputs b1 into both boxes (the input to one of these
boxes is going to be irrelevant, depending on what bit Bob
aims to guess).
At the second level, they use one box. Alice inputs
(a1 ⊕ AL)⊕ (a3 ⊕ AR) into this box, where AL is the
Alice-output of the L box and aAR is the Alice output of the
R box.
Bob inputs b2 into this box.
Alice then sends Bob 1 bit: a1 ⊕ AL ⊕ A, where A is the
Alice-output of the second level box.
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How the n = 2 protocol works

Now Bob’s output of this second level box is: B2

Bob can predict either a1 ⊕ AL or a3 ⊕ AR (using the protocol
for the single box) as:

[(a1 ⊕ AL)⊕ A]⊕ B2

Suppose Bob wants to predict a3. This corresponds to
b1 = 0, b2 = 1. He takes the Bob-output of the R box (which
corresponds to the pair (a3, a4)) and adds this to the above
bit:

[(a1 ⊕ AL)⊕ A]⊕ B1 ⊕ B2

This is his final response (his guess for the value of a3).
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How the n = 2 protocol works

Now Bob’s response will be correct if [(a1 ⊕ AL)⊕ A]⊕ B2
correctly predicts the required pair (in this case a3, a4), and if
[(a1 ⊕ AL)⊕ A]⊕ B1 ⊕ B2 correctly predicts the correct
member of the pair (in this case, a3).
But Bob’s response will also be correct if he is incorrect in
both cases (because the errors will cancel out, i.e., B1 ⊕ B2 is
the same if B1,B2 are both correct or both incorrect, i.e., if
B1 differs from the correct bit by 1 and B2 differs from the
correct bit by 1).
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Probabiity that Bob is correct

The probability of being correct at both levels is:

1
2(1 + E ) · 1

2(1 + E ) =
1
4(1 + E )2

So the probability of being correct at both levels or incorrect
at both levels is:

1
4(1 + E )2 +

1
4(1− E )2 =

1
2(1 + E 2)

since 1− 1
2(1 + E ) = 1

2(1− E )

In the general case, iterating the procedure, you get:
1
2(1 + En)
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Probabiity that Bob is correct

So far we’ve shown that if Alice has N = 2n bits then the
probability of Bob correctly guessing Alice’s k’th bit is:

Pk =
1
2(1 + En)

We now show that if E > 1√
2 then information causality is

violated, i.e., I > m.
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Simple case n = 1

Consider the simple case n = 1, where Alice has 21 = 2 bits,
Bob receives n = 1 bit that indicates the index of Alice’s bit
that he has to guess, and Alice can send Bob 1 bit of
information.
Information causality is the condition that I ≤ 1, where:

I = (H(a1) + H(β)− H(a1, β)) + (H(a2) + H(β)− H(a2, β))

In the unbiased case H(a1) = H(β) = 1 and
H(a1, β) = H(a2, β).
For I ≤ 1 to be violated (i.e, I > 1), we require
4− 2H(ak , β) > 1, i.e.,

H(ak , β) < 1 +
1
2
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Condition for a violation of information causality

We can show that

H(ak , β) = 1 + h(Pk)

where h(Pk) is the binary entropy of Pk :

h(Pk) = −(
1
2(1 + E ) log(1 + E ) +

1
2(1− E ) log(1− E ))

So the condition for a violation of information causality can
be expressed as:

For n = 1: H(ak , β) < 1 +
1
2

i.e., h(Pk) ≤
1
2
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Probability that Bob correctly guesses Alice’s k ’th bit

In the unbiased case, the probability that Bob correctly
guesses Alice’s k’th bit is:

Pk =
1
2(1 + E ) = p(ak = 0, β = 0) + p(ak = 1, β = 1)

p(ak = 0, β = 0) = p(ak = 1, β = 1) = 1
2Pk = 1

4(1 + E )

p(ak = 0, β = 1) = p(ak = 1, β = 0) = 1
2(1− Pk) =

1
4(1− E )
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H(ak , β) = h(Pk) + 1

H(ak , β) = −(p(ak = 0, β = 0) log p(ak = 0, β = 0)
+p(ak = 0, β = 1) log p(ak = 0, β = 1)
+p(ak = 1, β = 0) log p(ak = 1, β = 0)
+p(ak = 1, β = 1) log p(ak = 1, β = 1))

= −(1
4(1 + E ) log 1

4(1 + E ) +
1
4(1− E ) log 1

4(1− E )

+
1
4(1− E ) log 1

4(1− E ) +
1
4(1 + E ) log 1

4(1 + E ))

= −(1
2(1 + E ) log 1

2(1 + E ) +
1
2(1− E ) log 1

2(1− E )) + 1

= h(Pk) + 1

where h(Pk) = −(Pk log Pk + (1− Pk) log(1− Pk)) is the binary
entropy of Pk .
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Case n = 2

Now consider the case n = 2, where Alice has 22 = 4 bits, Bob
receives n = 2 bits that indicate the index of Alice’s bit that
he has to guess, and Alice can send Bob 1 bit of information.
As we saw above, Pk = 1

2(1 + E 2)

In this case:

I = [H(a1) + H(β)− H(a1, β)]

+[H(a2) + H(β)− H(a2, β)]

+[H(a3) + H(β)− H(a3, β)]

+[H(a4) + H(β)− H(a4, β)]
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Information causality violation condition

So for I > 1 to be satisfied, we require:

8− 4H(ak , β) > 1

i.e., H(ak , β) <
7
4

So the condition for a violation of information causality can
be expressed as:

For n = 2: H(ak , β) < 1 +
3
4

i.e., h(Pk) ≤
3
4
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General case

For the general case: Pk = 1
2(1 + En)

The condition for a violation of information causality becomes:

For n: H(ak , β) < 1 +
2n − 1

2n

i .e., h(Pk) <
2n − 1

2n
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General case

In the general case, we have a violation of information
causality when:

h(Pk) <
2n − 1

2n

i.e., h(1
2(1 + En) <

2n − 1
2n

The following inequality can be proved:

h(1
2(1 + y)) ≤ 1− y2

2 ln 2

where ln 2 ≈ .693 is the natural log of 2 (base e).
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General case

So you get a violation of information causality when:

1− E 2n

2 ln 2 <
2n − 1

2n

This becomes:
(2E 2)n > 2 ln 2 ≈ 1.386
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The Tsirelson bound

The condition for a violation of information causality is:
(2E 2)n > 2 ln 2 ≈ 1.386.
If 2E 2 = 1, i.e., if E = 1√

2 , the Tsirelson bound, then you
don’t get a violation.
If 2E 2 = 1 + a, for some a, no matter how small, then:

(1 + a)n = 1 + na +
n(n − 1)

2! +
n(n − 1)(n − 2)

3! + · · ·

i.e., (2E 2)n > 1 + na

But 1 + na > 2 ln 2 ≈ 1.386 for some n, i.e., na > .386, or,

n > .386
a

for some n, for any a, however small.
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Some numbers

Let’s take some numbers for E and n to see how things work
(remembering that log2 x = log10 x

log10 2 ≈
log10 x
.301 ).

We get a violation of information causality when
h(Pk) <

2n−1
2n .

For the case n = 1, where Alice has 21 = 2 bits, and E = 1√
2

(the Tsirelson bound):

h(Pk) = −(1
2(1 +

1√
2
)

log10
1
2(1 + 1√

2)

.301

+
1
2(1−

1√
2
)

log10
1
2(1−

1√
2)

.301 )

≈ .600

There is no violation of information causality because
.600 > 2−1

2 = 1
2 .
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Case n = 8 for Tsirelson bound

For the case n = 8, where Alice has 28 = 256 bits, and
E = 1√

2 (the Tsirelson bound), we get a violation of
information causality when:

h(Pk) <
28 − 1

28 =
255
256

In this case:

h(Pk) = −(1
2(1 +

1
√

28 )
log10

1
2(1 + 1√

28 )

.301

+
1
2(1−

1
√

28 )
log10

1
2(1−

1√
28 )

.301 )

≈ .997
There is still no violation of information causality because
.997 > 255

256 ≈ .996.
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Case n = 8 and E = .725

Take n = 8 and E = .725 (i.e., E > 1√
2 ≈ .707, i.e.,

E > Tsirelson bound).
In this case:

h(Pk) = −(1
2(1 + .7258)

log10
1
2(1 + .7258)

.301

+
1
2(1− .7258)

log10
1
2(1− .7258)

.301 )

≈ .9958 (1)

Now there is a violation of information causality because
.9958 < 255

256 ≈ .996.
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E close to Tsirelson bound

If E is very close to the Tsirelson bound, then n must be very
large for a violation of information causality.
For example, ET ≈ .707. For n = 10, where Alice has
210 = 1024 bits, 1023

1024 ≈ .9990, there is no violation:

Pk = −(1
2(1 +

1
√

210 )
log10

1
2(1 + 1√

210 )

.301

+
1
2(1−

1
√

210 )
log10

1
2(1−

1√
210 )

.301 ) ≈ .99939

If we take E = .708, then there is still no violation:

Pk = −(1
2(1 + .70810)

log10
1
2(1 + .70810)

.301

+
1
2(1− .70810)

log10
1
2(1− .70810)

.301 ) ≈ .99937
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Looking at it another way

Another way to look at this: As n→∞, for E = 1√
2 ,

Pk = 1
2(1 + En)→ 1

2 (so H(ak , β)→ 1 + 1
2), and:

h(Pk) →
2n − 1

2n

i.e., I → 1 (from below)

For a PR-box, E = 1, h(Pk) = 0, so I = N = 2n.
Note that in the unbiased case:

I = 2N −
N∑

k=1
H(ak , β)

So: 0 ≤ I ≤ N
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Looking at it another way

If Bob guesses randomly for all k, then:

h(Pk) = 1 (so H(ak , β) = 1 + 1 = 2)

and
I = 0

In fact, 0 ≤ I ≤ N, with a violation of information causality
when I > 1 (for m = 1, where m is the number of bits Alice is
allowed to send to Bob).
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