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A primary goal of this dissertation is to understand the links between math-

ematical models that describe crystal surfaces at three fundamental length scales:

The scale of individual atoms, the scale of collections of atoms forming crystal de-

fects, and macroscopic scale. Characterizing connections between different classes

of models is a critical task for gaining insight into the physics they describe, a

long-standing objective in applied analysis, and also highly relevant in engineering

applications. The key concept I use in each problem addressed in this thesis is

coarse graining, which is a strategy for connecting fine representations or models

with coarser representations. Often this idea is invoked to reduce a large discrete

system to an appropriate continuum description, e.g. individual particles are repre-

sented by a continuous density. While there is no general theory of coarse graining,

one closely related mathematical approach is asymptotic analysis, i.e. the descrip-

tion of limiting behavior as some parameter becomes very large or very small. In

the case of crystalline solids, it is natural to consider cases where the number of



particles is large or where the lattice spacing is small. Limits such as these often

make explicit the nature of links between models capturing different scales, and,

once established, provide a means of improving our understanding, or the models

themselves. Finding appropriate variables whose limits illustrate the important con-

nections between models is no easy task, however. This is one area where computer

simulation is extremely helpful, as it allows us to see the results of complex dynamics

and gather clues regarding the roles of different physical quantities. On the other

hand, connections between models enable the development of novel multiscale com-

putational schemes, so understanding can assist computation and vice versa. Some

of these ideas are demonstrated in this thesis. The important outcomes of this the-

sis include: (1) a systematic derivation of the step-flow model of Burton, Cabrera,

and Frank, with corrections, from an atomistic solid-on-solid-type models in 1+1

dimensions; (2) the inclusion of an atomistically motivated transport mechanism in

an island dynamics model allowing for a more detailed account of mound evolution;

and (3) the development of a hybrid discrete-continuum scheme for simulating the

relaxation of a faceted crystal mound. Central to all of these modeling and simula-

tion efforts is the presence of steps composed of individual layers of atoms on vicinal

crystal surfaces. Consequently, a recurring theme in this research is the observation

that mesoscale defects play a crucial role in crystal morphological evolution.
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Chapter 1: Introduction

The study of crystal growth has inspired a plethora of mathematical models

that aim to capture the essential aspects of the growth process. These models come

in a variety of forms, depending on the range of length and time scales they describe.

At the macroscale, crystal surface morphologies are often represented by continuous

height profiles, which presumably evolve according to partial differential equations

(PDEs). At atomistic scales, the motion of atoms may be specified by ordinary

differential equations (ODEs), such as those resulting from Newton’s second law, or

by stochastic processes, e.g. by Markov chains.

At a rich middle-ground between continuum and atomistic are mesoscale mod-

els, which often describe the motion of collections of atoms forming defects on a

crystal surface. One such treatment of crystal growth was introduced in the semi-

nal work by Burton, Cabrera, and Frank (BCF) [12], which identified steps formed

by monatomic layers of atoms on a crystal surface as critical components of the

growth process. Mathematically, the BCF model is a Stefan problem [81] where

steps act as free boundaries separating large, flat terraces. On terraces, adsorbed

atoms (adatoms) are represented by a mean-field density, assumed to satisfy a dif-

fusion equation [12]. Typically, the PDE governing adatom density is supplied with
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Robin boundary conditions, equating the normal derivative of adatom density at

the step edge to a linear function of density [36, 59, 74]. Additionally, by mass con-

servation, a step retreats or advances as atoms leave the step or are incorporated

into the step from ajoining terraces; this is expressed by a “Stefan condition” known

as the step velocity law [36,59,74].

Each type of model discussed above has its own set of weaknesses. Continuum

models, for example, may not properly account for discrete dynamics at interfaces.

On the other hand, atomistic models often involve restrictions on system size due

to computational limitations. It is interesting, then, to ask what insight might be

gained from multiscale approaches describing crystal morphological evolution. This

thesis attempts to provide some answers to this question. Accordingly, we study

atomistic and continuum models in connection with the BCF description of crystal

surface dynamics. To do so, we employ a variety of analytical and computational

tools. The analytical aspects of this work touch upon classical theories of stochastic

processes, ODEs and PDEs, and asymptotic analysis. Computational tools include

kinetic Monte Carlo (KMC) [9,87,106], the level set method [65,66,90], and standard

solvers for ODEs and PDEs [99]. The results obtained in this thesis often require the

integration of analysis and computations, a common feature of multiscale approaches

(see, e.g., [10, 109]). Likewise, the notion of coarse graining is a frequently invoked

heuristic.

Of the two parts in this thesis, Part I is more analytical, but makes judicious

use of KMC simulations in an effort to understand the atomistic processes leading

to the BCF model in one dimension (1D). Part II, on the other hand, focuses on the
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simulation of crystal growth at atomistic, mesoscopic, and macroscopic scales in 2D.

The common thread among these is the BCF description of stepped crystal surfaces.

As such, we start by investigating the atomistic origins of the BCF model using a

kinetic, restricted solid-on-solid (KRSOS) model of a single step in 1D, whereby

atoms with multiple nearest neighbor bonds are immobile [70, 71]. To this end,

we exploit properties of the Markov process underlying the KRSOS model, such

as detailed balance, to derive a discrete analog of the BCF model. The discrete

BCF-like model that emerges from our analysis involves correction terms, which we

characterize using a blend of analytical and numerical methods.

Although the KRSOS model assumes that adatoms do not interact with one

another energetically, we identify “kinetic interactions” between adatoms as the

source of certain corrections to the discrete analog of the BCF model. These kinetic

interactions result from atomistic transitions included in the KRSOS model. In

an effort to better understand the nature of corrections to the BCF model, at the

end of Part I we explore the properties an “alternate” KRSOS model that does

not include the kinetic interactions between adatoms in the original KRSOS model.

Subsequent analysis of the alternate KRSOS model, together with KMC simulation

results, leads us to conclude that discrete corrections to the BCF diffusion equation

for adatom density sensitively depend on the choice of transition rates in Markov

process describing our atomistic model.

After a thorough investigation of the connection between KRSOS and BCF

models in 1D, we venture into the 2D setting (Part II). The first problem we address

in 2D is the incorporation into a mesoscale island dynamics model [68] of certain
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atomistic mass transport mechanisms associated with external material deposition,

i.e. transient mobility [32, 60] and downward funneling [16, 26, 46]. This is accom-

plished by effectively introducing each mechanism in the island dynamics model

by modification of deposition near steps as well as step velocities. We are able to

show qualitative agreement between the mesoscale model and the results of KMC

simulations including transient mobility [94].

The last problem addressed in this thesis concerns relaxation dynamics of a

faceted crystalline mound. In this work, we connect the mesoscale BCF model of

step flow to a thermodynamics-based PDE for the surface height of a crystalline

mound. Here, the height profile includes a macroscopically flat region called a facet,

which is treated as a free boundary in our PDE formulation of the problem. We

find that discrete dynamics near the facet play a critical role in macroscale surface

evolution, and devise a discrete-continuum hybrid scheme coupling the motion of

discrete steps to the continuous slope profile of the mound. This scheme enables the

efficient simulation of faceted mound decay and highlights the distinct nature of the

chemical potential on the facet [86].

The remainder of this dissertation is organized as follows. Part I, which ex-

plores the atomistic origins of the BCF model of a single step, is divided into three

chapters. In Chapter 2, we introduce a KRSOS model which enriches the one

in [70, 71] with external deposition and adatom desorption. This KRSOS model

is formulated as a Markov process, which we describe using a variety of master

equations. The long-time behavior of the KRSOS model is also characterized in

that chapter. Next, Chapter 3, is devoted to the derivation of a discrete version of
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the BCF model, given in terms of averages over KRSOS microstates. The analysis

here makes direct use of master equations from Chapter 2. The discrete BCF-

like equations have corrections, for which we compute estimates in terms of model

parameters. In the last stage of our derivation of the BCF model, we assume appro-

priate scaling of model parameters with lattice spacing before taking the continuum

limit. Finally, the discrete corrections are computed using KMC simulations with

several parameter sets.

The final component of Part I, Chapter 4, introduces an alternate KRSOS

model by a small modification of the original KRSOS model in Chapter 2. We go

on to study several key differences between the two KRSOS models, as well as the

corrections that emerge from their respective derivations of the BCF model. In the

end, we find that the corrections resulting from the alternate KRSOS model are

universally smaller than those from the original KRSOS model, computed via KMC

simulations. Moreover, our comparative study reveals that two types of corrections

are possible; one set of corrections results from the choice of the atomistic model,

while the other is more fundamental, i.e., certain corrections result from a wide class

of atomistic models.

In Part II, we investigate mound evolution in 2D. First, Chapter 5 addresses

the incorporation of transient mobility and downward funneling in an island dynam-

ics model well suited for simulation by the level set method. The main results in-

clude level set simulations that qualitatively agree with KMC simulations of mound

growth. In each case, slope stabilization is observed. Second, we study the decay of

a semi-infinite, faceted crystalline mound. Here, we formulate a hybrid scheme that
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couples a PDE for continuum height with the motion of a few steps, whose trajec-

tories are given by the BCF model. It is shown that our hybrid scheme produces

height profiles in excellent agreement with many-step simulations. Note that this

work was published in reference [86].
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PART I

Atomistic origins of BCF model in 1+1-dimensions
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Chapter 2: Atomistic model of a single step

In this chapter, we introduce a kinetic, restricted solid-on-solid (KRSOS)

model of a single step, based on the foundational work of [70]. This KRSOS model

serves as the starting point for our investigation of the atomistic origins of the

BCF model of crystal growth. It describes transitions between atomistic configu-

rations through the processes of adatom hopping, attachment to and detachment

from the step, external material deposition, and desorption. Mathematically, the

KRSOS model is a Markov process with a discrete, countable state space of atomistic

configurations. Accordingly, the evolution of a time-dependent probability density

function (PDF) over atomistic configurations is governed by a master equation. For

Part I of this thesis, we make use of several, related master equations with appropri-

ately defined transition rates. The analysis carried out in Chapter 3, for example,

makes heavy use of two of the master equations introduced in this chapter.

Once we have fully specified the KRSOS model, we characterize its long-time

behavior in three parameter regimes: The first is a parameter regime that results

in conservative dynamics, for which no mass is gained or lost by the system via

external deposition or desorption of atoms. The second regime involves parame-

ters that dictate mass is constant on average for long times, which we describe as
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“quasi-conservative” dynamics, where the external deposition and desorption rates

are roughly the same order of magnitude. And the third parameter regime leads to

non-conservative dynamics, where mass continuously increases in the long-time limit

because the deposition rate greatly exceeds the desorption rate. Of the three pa-

rameter regimes we consider, the case of conservative dynamics is treated in [70,71].

Specifically, in [71], the authors give an expression for the equilibrium distribution

of KRSOS configurations on the basis of the canonical ensemble from statistical

mechanics. In this chapter, we improve upon this result by deriving a simple, closed

form formula for the equilibrium distribution of the Markov process governing the

KRSOS model. Going beyond conservative dynamics, we also determine the equi-

librium distribution in the quasi-conservative parameter regime by invoking detailed

balance. Furthermore, in the non-conservative case, we formally derive a steady-

state distribution for the Markov process describing the KRSOS model.

The final result presented in this chapter is a proposition that allows us to

estimate time-dependent PDFs with corresponding stationary distributions. This

proposition is a generalization of the so-called “maximum principles” found in [70,

71]. This “maximum principle” is a cornerstone of Part I of this thesis; together

with the equilibrium and steady-state distributions we determine, it enables rigor-

ous estimates of corrections that emerge from the discrete version of the BCF model

derived in Chapter 3. Note that this “maximum principle” bears no connection to

the maximum principle in potential theory of Markov chains [11], or maximum prin-

ciples invoked in the theory of second-order, elliptic PDEs [29]. For continuity with

past works, however, we will use this loose terminology, but include it in quotations

9



in an attempt to reduce confusion.

2.1 The kinetic, restricted solid-on-solid model

At the microscale, we consider a simple-cubic crystal surface with a single

step [70, 71]. The surface consists of distinct height columns on an 1D lattice of

lateral spacing a, with total length L = Na; see Fig. 2.1. We consider L = O(1) as

a → 0, e.g., by setting L = 1. Screw-periodic boundary conditions are applied in

the x-direction.

Atoms of the top layer that have two in-plane nearest neighbors are step

atoms [70, 71]; these atoms are immobile in our model. In contrast, the atom of

the step edge, which lies at one end of the top layer, has a single in-plane nearest

neighbor and is referred to as an edge atom; it may detach from the step and move

to one of the adjacent terraces. By this picture, the adatoms are movable atoms

that are neither edge atoms nor step atoms [70,71].

To establish a meaningful SOS model in 1D, we do not allow islands to nucle-

ate [71]; thus, if any two adatoms become nearest neighbors on a terrace, they do

not form a bond with each other. Adatoms are free to diffuse across the surface until

they reach the step, which acts as a sink or source of them. Externally deposited

atoms are assumed to become adatoms on the terrace instantly, and may not attach

to the step directly [49]. Similarly, neither step atoms nor edge atoms may desorb

from the surface.
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2.1.1 Atomistic processes and system representation

Our model is characterized by transitions between discrete configurations of

adatoms. The total mass of these configurations is not conserved when deposition

or desorption events are included. The transitions are controlled by F , the rate that

particles are deposited into the system, as well as by Arrhenius rates proportional to

exp[−E/(kBT )], where T is the absolute temperature, kB is Boltzmann’s constant,

and E is an appropriate activation energy; see [71]. These kinetic rates correspond

to atomistic processes of surface diffusion, attachment/detachment at the step, and

desorption from terraces.

The basic processes allowed by our 1D atomistic model are shown in Fig. 2.1.

The requisite atomistic rates can be described as follows [71]. First, the rate D =

ν exp[−ES/(kBT )] accounts for unbiased adatom hopping on terraces sufficiently

away from a step edge; the prefactor ν is an attempt frequency. The extra factor

φ± = exp[−E±/(kBT )] expresses additional energy barriers, E±, corresponding to

adatom attachment to the step edge from the lower (+) or upper (−) terrace. The

factor k = exp[−EN/(kBT )] accounts for the extra energy, EN , that is necessary for

the breaking of the nearest-neighbor bond between an edge atom and step atom,

so that an atom detaches from the step edge. Lastly, τ−1 = νe exp[−Ee/(kBT )] is

the desorption rate, which indicates the rate at which adatoms evaporate from the

surface. It is important to note that atoms may not be deposited directly to, or

desorb directly from the step edge in this formulation of the model.

Following [71], we are compelled to represent atomistic configurations by mul-
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Figure 2.1: Microscopic picture: Schematic of atomistic processes allowed by
the 1D atomistic model on a lattice with lateral spacing a. The configuration-
dependent step position is labeled s(α,m); see Definition 2. Movable atoms
(adatoms) are shown in dark grey. (a) First panel: Illustration of the potential
energy surface describing Arrhenius transition rates in the KRSOS model.
EN accounts for bonding energy and E± are Ehrlich-Schwoebel barriers to
the right (+) and left (−) of the step. (b) Second panel: Hopping of adatoms
on each terrace with rate D, detachment of edge atom from step to upper
(−) or lower (+) terrace with rate Dkφ±, and deposition of atoms from above
with rate F . (c) Third panel: Hopping of an adatom at the step to same
terrace with rate D, attachment of an adatom from lower terrace to step edge
with rate Dφ+, and hopping of (unbonded) adatoms forming a pair with rate
D. Adatoms cannot form islands. (d) Fourth panel: Attachment of adatom
from upper terrace to step edge, hopping of an adatom to same terrace, and
desorption of an adatom from a terrace. Only the top adatom in a stack is
mobile.
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tisets. A multiset, α, is an unordered list whose entries correspond to the positions

of adatoms on the 1D lattice; in particular, α = {} expresses a configuration that

is void of adatoms. Accordingly, repeated entries in α indicate multiple adatoms

occupying the same lattice site; for example, the system configuration represented

by α = {ı̂, ̂, ̂} has one adatom at site ı̂ and two adatoms at site ̂. The number of

adatoms corresponding to α is simply |α|, the cardinality of the multiset. Without

any restriction on its cardinality, there is a countably infinite number of adatom

configurations α. We make one notable departure from previous uses of this nota-

tion [70, 71]; in this thesis the multisets α contain adatom positions in Lagrangian

coordinates, that is, in a frame of reference relative to the step edge. An example

illustrating the connection between Eulerian and Lagrangian indices is provided in

Figure 2.2. For notational convenience, indices i and j are used to reference lat-

tice sites in Eulerian coordinates, while ı̂ and ̂ are used to reference lattice sites in

Lagrangian coordinates throughout this thesis.

In connecting the atomistic model to one-step flow with F = 0, τ−1 = 0 in 1D,

our approach relies on explicitly determining the position of the step edge at time

t > 0 from the number of adatoms, |α|, and the initial adatom configuration [70,71].

This is a consequence of mass conservation. If deposition or desorption are included,

however, more information is needed in order to track the step edge: At every

atomistic transition, one must account for the atoms entering or leaving the system

through processes not conserving total mass.

For our purposes, a system representation that allows this bookkeeping results

from using an integer, m, in addition to using α. This m is the total mass, or

13



α = {3} α′ = {−1, 4}

j= 0 1 2 3 4 5 6 7 8 ... j= 0 1 2 3 4 5 6 7 8 ...

(a) (b)

Figure 2.2: Illustration of multiset α before and after a detachment event.
For each Eulerian lattice site, indexed by j, the corresponding Lagrangian
index is ̂ = j − s(α,m); see Definition 2. (a) Before a detachment event,
the step position is s(α,m) = 4, an adatom (dark grey) is located at j = 7
in the Eulerian coordinate frame, and the corresponding Lagrangian multiset
is α = {3}. (b) After the edge atom detaches to the upper terrace, the
step position is s(α′,m) = 3, adatoms (dark grey) are located at j = 2, 7 in
the Eulerian coordinate frame, and the corresponding Lagrangian multiset is
α′ = {−1, 4}.
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number of atoms, of the system. Thus, if m0 is the initial mass then m − m0

measures the overall mass increase because of external deposition. Finally, given the

initial position of the the site to the right of the step edge, s0, in a fixed (Eulerian)

coordinate system, we can explicitly track the step for all time t > 0.

Definition 1. (Representation of atomistic system.) The pair (α,m) defines the

state of the atomistic system: the multiset α expresses the adatom configuration and

the index m is an integer that counts the overall mass of the system. Thus, if m0 is

the initial mass then m −m0 accounts for net mass gain or loss due to deposition

and desorption events.

Definition 2. (Discrete step position.) For each state (α,m), the discrete step

position in Eulerian coordinates is s(α,m) = s0 − |α| + m − m0. For fixed mass

m, the step position is uniquely determined from the number of adatoms |α| and the

initial position of the site to the right of the step edge, s0. Accordingly, s(α,m) also

references the site to the right of the step edge; see Figure 2.1.

2.2 Master equations

In this section, we define equations governing the time-evolution of the KRSOS

model in two scenarios: When mass variable m is explicitly required, and when it is

not. In each case, the time-dependent probability distribution over atomistic con-

figurations evolves according to a master equation, of which we give three: The first,

our “full” master equation, describes the time rate-of-change of a mass-dependent

PDF; the second “marginalized” master equation is defined for marginal PDFs;
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and the final “symbolic” master equation is a restatement of the full master equa-

tion. The symbolic master equation is introduced as a pragmatic tool to be used in

Chapter 3, where certain calculations are simplified or made more transparent by

symbolic manipulation. All three master equations will be utilized at various points

in Part I of this thesis.

2.2.1 Full master equation

At this stage we introduce the full master equation describing evolution of the

atomistic system. Let pα,m(t), defined over the domain of discrete states (α,m),

denote time-dependent PDF characterizing the KRSOS model. Accordingly, the

time evolution of the system is described by master equation

ṗα,m(t) =
∑
α′,m′

T(α,m),(α′,m′)pα′,m′(t) , (2.1)

under given initial data, pα,m(0). In the above, T(α,m),(α′,m′) expresses the overall

transition of the system from state (α′,m′) to state (α,m). Master equation (2.1)

governs a Markov process with a countably infinite state space.

Next, we describe the rates T(α,m),(α′,m′). The nonzero transition rates obey
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the following rules:

T(α,m),(α′,m′) = D , if m = m′ and |α| = |α′| and |α \α′| = 1

and
∣∣∣||α \α′|| − ||α′ \α||∣∣∣ = 1; (2.2a)

T(α,m),(α′,m′) = Dφ± , if m = m′ and |α| = |α′| − 1

and α′ \ α̃ = {±1}; (2.2b)

T(α,m),(α′,m′) = Dkφ± , if m = m′ and |α| = |α′|+ 1

and α \ α̃′ = {±1}; (2.2c)

T(α,m),(α′,m′) =
1

τ
, if m = m′ − 1 and |α| = |α′| − 1

and |α′ \α| = 1; (2.2d)

T(α,m),(α′,m′) =
F

N − 1
, if m = m′ + 1 and |α| = |α′|+ 1

and |α \α′| = 1; (2.2e)

and, so that probability is conserved,

T(α′,m′),(α′,m′) = −
∑
(α,m)

(α,m)6=(α′,m′)

T(α,m),(α′,m′) , for all (α′,m′). (2.2f)

All transition rates not listed in (2.2) are zero. Here, we introduce the multiset

difference α \ α′, which itself is a multiset containing the elements in α that are

not in α′, counting multiplicity. For example, {ı̂, ̂, ̂} \ {̂} = {ı̂, ̂}. Additionally,

the symbol || · || indicates the `p-norm with p ≥ 1, and the “multiset-increment

operation”, α̃, is the multiset α after each element has been incremented by one.

Setting F = 0, τ−1 = 0, and assuming pα,m(0) = δm,m0pα(0), (2.1) reduces to the

master equation governing surface relaxation [71].
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Among the transition rates that are zero, notable examples include

T(α,m),(α′,m′) = 0 , if m = m′ and |α| < |α′| − 1 or |α| > |α′|+ 1; (2.3a)

T(α,m),(α′,m′) = 0 , if m = m′ and |α| = |α′|+ 1

and − 1 ∈ α′; (2.3b)

T(α,m),(α′,m′) = 0 , if m = m′ − 1 and |α| ≥ |α′|; (2.3c)

T(α,m),(α′,m′) = 0 , if m = m′ + 1 and |α| ≤ |α′|. (2.3d)

Equation (2.3a) indicates that no more than one atom may attach to or detach from

the step in a single transition. Equation (2.3b) asserts that no atoms may detach if

the site directly above the edge atom is occupied, Equation (2.3c) ensures that only

adatoms may desorb, and (2.3d) prevents atoms from being deposited at s(α,m).

Note that the transitions described in (2.2a)-(2.2c), along with (2.3a) and (2.3b) are

subject to detailed balance [49,71].

Master equation (2.1) along with transition rates (2.2) and (2.3) completely

govern the full mass-dependent microscale model.

2.2.2 Marginalized master equation

There is one parameter regime, i.e. F � τ−1 (including the case where

τ−1 = 0), where we make use of a master equation that describes the evolution

of a marginalized probability density function, pα(t), such that the mass variable

has been summed. For nonzero deposition flux, pα(t) amounts to a PDF over states

in a frame of reference co-moving with the step.
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Definition 3. (Marginal probability density function.) The marginal probability

density is

pα(t) =
∑
m

pα,m(t) , (2.4)

where pα,m(t) satisfies equation (2.1) with transition rates (2.2) and (2.3).

The marginal PDF in Definition 3 satisfies what what will be referred to as the

marginalized master equation, found by summing over the mass variable on both

sides of equation (2.1). It is important to note that a sum over m on the right hand

side of (2.1) requires care since both the transition rates, T(α,m),(α′,m′), and the PDF,

pα,m(t), each depend on m. This can be done by first decomposing T(α,m),(α′,m′) into

contributions from various mass states, i.e. m′ = m− 1, m, and m+ 1, or using the

symbolic master equation outlined in Section 2.2.3.

Next, we give the marginalized master equation and rules for the associated

transition rates. The master equation for the marginalized PDF of Definition 3 is

ṗα(t) =
∑
α′

Tα,α′pα′(t)

= D
∑
α′

[Aα,α′ + εBα,α′ ] pα′(t) . (2.5)

Here, Aα,α′ accounts for the atomistic processes of attachment and detachment

at the step edge, and adatom hopping on each terrace, as described in [71]; and

Bα,α′ , together with the non-dimensional parameter ε := F/D, accounts for material

deposition onto and desorption from the surface. In equation (2.5), ε plays the role

of a Péclet number, measuring the deposition rate relative to terrace diffusion. Note

that the symbol R has previously been used for the inverse ratio, R = D/F , in part
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of the physics literature [3].

The scaled, nonzero transition rates Aα,α′ and Bα,α′ can be described by rules

similar to those in (2.2). They are

Aα,α′ = 1 , if |α| = |α′| and |α \α′| = 1 and
∣∣∣||α \α′|| − ||α′ \α||∣∣∣ = 1; (2.6a)

Aα,α′ = φ± , if |α| = |α′| − 1 and α′ \ α̃ = {±1}; (2.6b)

Aα,α′ = kφ± , if |α| = |α′|+ 1 and α \ α̃′ = {±1}; (2.6c)

Bα,α′ =
∑
ı̂∈α

1

Fτ
, if |α| = |α′| − 1 and |α′ \α| = 1; (2.6d)

Bα,α′ =
1

N − 1
, if |α| = |α′|+ 1 and |α \α′| = 1; (2.6e)

Aα′,α′ = −
∑
α

α 6=α′

Aα,α′ , Bα′,α′ = −
∑
α

α 6=α′

Bα,α′ , for all α′. (2.6f)

In the spirit of [71], one may view master equation (2.5) as a kinetic hierarchy

of coupled particle equations for adatoms. Using a combinatorial argument, for fixed

number of adatoms, |α| = n, there are

ω(n) =

(
n+N − 2

n

)
(2.7)

distinct atomistic configurations on the 1D lattice of size N (N ≥ 2), where the step

site, s(α,m), is left vacant. From equation (2.7) we find

Ω(M) =
M∑
n=0

ω(n) =

(
M +N − 1

M

)
, (2.8)

which is the total number of configurations with M or fewer adatoms, |α| ≤M . By

Stirling’s formula, it can be shown that ln Ω(M) grows as O(M) for M � 1 with

M = O(N). Thus, the state space of the PDF satisfying master equation (2.5),
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or (2.1) for fixed m, grows quite rapidly with the number of particle states consid-

ered. In [70, 71] this complication is avoided by restricting attention to a “dilute”

regime, in which the dynamics of (2.5) are dominated primarily by 0- and 1-particle

states.

In this thesis, we seek to address parameter regimes for which high particle

states play an important role. Master equations (2.1) and (2.5) reflect this insofar

as |α| is unrestricted. Yet, for one case considered, when F � τ−1, we will need to

assume that the number of adatoms cannot exceed a certain bound, M : |α| ≤ M ,

where M is a fixed yet arbitrary positive integer. For this purpose, we introduce

the truncated master equation

ṗε(t) = Tpε(t)

= D(A + εB)pε(t) , (2.9)

where pε is the ε-dependent vector of dimension Ω(M) formed by pα, and the T

matrix is split into the (finite-dimensional) attachment/detachment matrix, A, and

the deposition/desorption matrix, εB, in correspondence to the Aα,α′ and εBα,α′

of (2.6). When referring to truncated master equation (2.9), we will assume ε-

independent initial data, p(0) =: p0.

2.2.3 Symbolic master equation

In this section, we represent master equation (2.1) in a form that is more

amenable to the type of analysis performed in this thesis. By doing so, it is easy to

identify how (2.5) results from marginalizing (2.1) over the mass variable m, as well
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as symbolically perform calculations involving the master equation. The symbolic

version of the master equation presented in this section is the primary tool used in

the derivation of discrete, BCF-like equations of motion presented in Chapter 3.

Before giving the alternate representation of the master equation (2.1), let us

first introduce some notation.

Definition 4. (Multiset operations)

(i) The multiset-increment operation is

α̃ = {ı̂+ 1| for all ı̂ ∈ α} , (2.10a)

i.e., an over-tilde expresses the multiset after each element is increased by one.

(ii) Analogously, the multiset-decrement operation is

α
˜

= {ı̂− 1| for all ı̂ ∈ α} . (2.10b)

(iii) The multiset α after a rightward (+) or leftward (−) detachment is

α± = α̃ ∪ {±1} . (2.10c)

In the above, {±1} is added to the Lagrangian multiset α after each element is

increased by one since the positions of adatoms on the terrace change relative to the

step after a detachment event.

(iv) The multiset α after an attachment event from the right (+) or from the

left (−) is

α± =


α
˜
\ {±1− 1} , if ± 1 ∈ α

{∅} , otherwise,

(2.10d)
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where the multiset-decrement operation is used since the positions of adatoms on the

terrace change relative to the step after an attachment event.

(v) The multiset α after an additional adatom has been placed on the surface

at (Lagrangian) site ı̂, e.g. after a deposition event, is

αı̂ = α ∪ {ı̂} . (2.10e)

(vi) The multiset α after an adatom has been removed from the surface at site

ı̂, e.g. after a desorption event, is

αı̂ =


α \ {ı̂} , if ı̂ ∈ α

{∅} , otherwise.

(2.10f)

Note that |α̃| = |α
˜
| = |α|. Also, it is the case that |α±| = |αı̂| = |α| + 1, and

|α±| = |αı̂| = |α| − 1. With regard to (2.10d) and (2.10f), we include the case

involving {∅} to prevent situations where we would remove an adatom from a site

that is vacant; p{∅} := 0 in this scenario.

In addition to the multiset operations given in Definition 4, there are a few

functions and operators that can be defined for multisets α and PDFs pα,m(t) and

pα(t) which will simplify the symbolic master equation, and any analysis thereof.

Definition 5. (Discrete functions and operators)

(i) We define the function νı̂(α) of a multiset as the number of instances of ı̂

in α. For example, if α = {ı̂, ı̂, ̂}, then νı̂(α) = 2.

(ii) The indicator function, 1(·), is 1 when its argument is true, and 0 other-

wise. Example: 1(νı̂({ı̂, ı̂, ̂}) > 0) = 1 and 1(νı̂({ı̂, ı̂, ̂}) = 0) = 0.
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(iii) The multiset difference operator, ∆α, is defined by

∆αpα,m(t) =
∑
ı̂∈α

ı̂6=0,±1

[
pαı̂

ı̂−1,m
(t)− 2pα,m(t) + pαı̂

ı̂+1,m
(t)
]

+ 1(ν1(α) > 0)
[
pα1

2,m
(t)− pα,m(t)

]
+ 1(ν−1(α) > 0)

[
pα−1
−2,m

(t)− pα,m(t)
]
. (2.11a)

This last definition allows all hopping events on the terrace, excluding attachment

and detachment events, to be represented in a compact way.

Using Definitions 4 and 5, master equation (2.1) can now be expressed sym-

bolically as follows:

ṗα,m(t) = D∆αpα,m(t) +
F

N − 1

∑
ı̂∈α

pαı̂,m−1(t)− Fpα,m(t)

+
1

τ

∑
ı̂>0

pαı̂,m+1(t)− 1

τ

∑
ı̂∈α

pα,m(t)

+Dφ−
[
1(ν−1(α) = 0)pα−,m(t)− 1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t)

]
+Dkφ− [1(ν1(α) = 0)1(ν−1(α) > 0)pα−,m(t)− 1(ν−1(α) = 0)pα,m(t)]

+Dφ+

[
1(ν−1(α) = 0)pα+,m(t)− 1(ν1(α) = 1)pα,m(t)

]
+Dkφ+ [1(ν1(α) = 1)pα+,m(t)− 1(ν−1(α) = 0)pα,m(t)] . (2.12)

In the symbolic master equation (2.12), each term corresponds to certain atom-

istic processes included in the KRSOS model. Specifically, (2.12) includes: (i) Terms

involving the multiset-difference operator correspond to hopping events on the ter-

race, not involving the step; (ii) terms involving the prefactor F correspond to

deposition from states of lower mass index or deposition into states of higher mass
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index; (iii) the second line in (2.12) corresponds to desorption events from states of

higher mass index or into states of lower mass index; (iv) the third line describes

attachment events from the left of the step; (v) the fourth line corresponds to left-

ward detachment; (vi) the fifth line describes attachment events from the right of

the step; and (vii) the last line corresponds to rightward detachment.

Remark 1. Since the multisets α use Lagrangian coordinates, both ∆α and νı̂(α)

are independent of the mass index, m. Hence, marginalizing (2.12) over m is

straightforward. By doing so, transition rates (2.6) of marginalized master equa-

tion (2.5) are easily deduced from the resulting marginalized, symbolic master equa-

tion.

2.3 Analysis of the kinetic, restricted solid-on-solid model

In this section, we expose certain properties of the KRSOS model by recourse

to master equations (2.1) and (2.5). Chief among our interests is the long-time

behavior of the KRSOS model, which will be a critical component of the analysis

carried out in Chapter 3. Accordingly, we determine explicit formulas for equilibrium

and steady-state distributions satisfying (2.1) and (2.5). For the same reason, the

“maximum principle”, proved at the end of this section, is another important result.

2.3.1 Long-time behavior

At this stage, it is useful for us to characterize the long-time behavior of sys-

tems described by master equations (2.1) and (2.5). In particular, we seek station-
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ary distributions and statistical descriptions of important quantities in the KRSOS

model. As an irreducible Markov process with countable state space, the KRSOS

model is amenable to analysis using tools from the theory of stochastic processes;

Appendix A provides an overview of results relevant to this thesis. Among the

most significant of concepts therein is detailed balance, which is well known in sta-

tistical physics communities as well as in mathematics communities. In Chapters 2

and 4, detailed balance is the critical property invoked to determine equilibrium

distributions of master equations under a variety of circumstances.

There are two parameter regimes in which equilibrium can be established in

the long-time limit of the KRSOS model, to be discussed in this chapter. The first

is the case of conservative dynamics, where no mass is added to our single-step

system through deposition (F = 0), or lost via desorption (τ−1 = 0). In that case,

the number of adatoms on the terrace, |α| and the step position (Definition 2) are

quantities of particular interest. The second parameter regime will be referred to

as the case of quasi-conservative dynamics, for which the total mass is not strictly

conserved, but for long enough times a balance between deposition and desorption

processes leads to constant 〈m〉. The equilibrium distribution in this case, found

by utilizing the detailed balance property, generalizes the equilibrium distribution

from the conservative case.

The final parameter regime we consider is the case of non-conservative dynam-

ics, i.e. F � τ−1, where mass continually increases for long times. A distinguishing

feature of this case is the non-existence of an equilibrium distribution. In fact, for

extreme values of deposition rate, we are able to show no stationary distribution
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of (2.5) exists. However, for moderate values of F , we believe a steady-state dis-

tribution describes the asymptotic behavior of the KRSOS model. Indeed, we are

able to provide empirical evidence for such a steady-state using KMC simulations

of the non-conservative KRSOS model. To complement our numerics, we heuristi-

cally derive a formula for the steady-state of truncated master equation (2.9). This

formula is essential to our analysis in Chapter (3).

2.3.1.1 Conservative dynamics

Now we consider the case without external deposition or desorption, F = 0

and τ−1 = 0, so that the total mass of the system is conserved. For this purpose we

will assume the system is initially in a state whose mass index is m0 with probability

one. Then, for ease of notation, we will suppress the m-dependence of PDF pα,m(t)

since m = m0 for all times t > 0. Accordingly, we will refer to master equation (2.5)

when dynamics are conservative, though full master equation (2.1) and marginalized

master equation (2.5) are equivalent in this case.

When dynamics are conservative, master equation (2.5) has an equilibrium

solution, peqα . The existence and uniqueness of this distribution may be deduced from

Kolmogorov’s criterion (Theorem 3 in Appendix A) [71], or from the detailed balance

property of the master equation, by Theorem 2 in Appendix A. An expression for

peqα was given in [71] by recourse to the canonical ensemble of statistical mechanics.

We will follow the same approach and complement the result of [71] in two ways:

We (i) represent peqα in closed form, and (ii) provide an alternate derivation of peqα
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by inspection of transition rates (2.6).

Recall that Dkφ± is the detachment rate, where k = exp[−EN/(kBT )] and EN

measures the energy of the adatom resulting from detachment of an edge atom. We

apply the formalism of the canonical ensemble to particle states of our system [33].

In the KRSOS model, the energy of each adatom configuration, α, is simply

|α|EN . By applying the Boltzmann-Gibbs distribution at equilibrium, we can assert

that the probability of having n adatoms follows P (|α| = n) ∝ exp[−nEN/(kBT )].

Consequently, the partition function, Z, for adatoms is computed by

Z =
∑
α

e−|α|EN/(kBT )

=
∞∑
n=0

ω(n) e−nEN/(kBT ) =
1

(1− k)N−1
, (2.13)

by using (2.7) and the binomial theorem. Thus, the equilibrium solution is

peqα =
1

Z
e−|α|EN/T = (1− k)N−1k|α| . (2.14)

Alternatively, equilibrium distribution (2.14) can be deduced directly from the

detailed balance property of master equation (2.5); see Theorem 2 in Appendix A.

Specifically, the transition rates (2.2) for F = 0 and τ−1 = 0 satisfy

Tα,α′k
|α′| = Tα′,αk

|α| . (2.15)

Normalizing {k|α|} reproduces (2.14).

With partition function (2.13) and equilibrium distribution (2.14) at hand, we

can compute important statistics for the KRSOS model in equilibrium, e.g. the mean

and variance for the number of adatoms. First, the expected number of adatoms is

〈n〉 =
k

Z

dZ

dk
=

(N − 1)k

1− k
. (2.16)
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Figure 2.3: The average particle number, 〈n〉, versus time t computed from
KMC simulations of the KRSOS model with conservative dynamics, where
F = 0 and τ−1 = 0. Simulation data (black circles) agrees with the predicted
value (red line) found from equation (2.16) when (a) k = 0.0001 and (b)
k = 0.1. In both cases N = 50, D = 1010 and φ± = 1. Averages were
obtained using (a) 108 and (b) 106 simulations.

The second moment is computed similarly, resulting in the variance in n:

〈n2〉 − 〈n〉2 =
(N − 1)k

(1− k)2
. (2.17)

KMC simulations verifying the expected number of adatoms, 〈n〉, equation (2.16),

are shown in Figure 2.3.

Interestingly, when k � 1, (2.16) and (2.17) indicate the mean and variance

in particle number n are both given by (N−1)k, which is reminiscent of the Poisson

distribution. Indeed, we can show that the distribution of particle states is Poisson

in the limit of large N . The probability of n-particle states is given by

P (|α| = n) =
1

Z

(
n+N − 2

n

)
kn . (2.18)

Let us assume χ = Nk = O(1) as N → ∞, i.e. χ is finite in the limit of large
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lattice size, then equation (2.18) implies

P (|α| = n) = (1− k)N−1 (n+N − 2)!

(N − 2)!n!
kn

∼ Nnk
n

n!
(1− k)N

=
χn

n!
(1− χ

N
)N

∼ χn

n!
e−χ as N →∞ . (2.19)

In the above, we made use of Stirling’s formula for the factor (n+N−2)!
(N−2)!

to reach the

second line, and the limit definition of the exponential to find the final result.

Equations (2.16)-(2.19) give us a great deal of insight about the long-time

behavior of particle number in the conservative KRSOS model. Even more inter-

esting conclusions, perhaps, can be drawn regarding the step position. By recourse

to Definition 2, in the conservative case, the step position is s0− |α|, s0 a constant.

Thus, the average step position is s0 − (N−1)k
(1−k)

, and its variance is the same as the

one in (2.17). Consequently, for fixed k � 1, the relative importance of fluctuations

compared to overall change in step position is [(N − 1)k]−1/2, which vanishes as

N →∞. Hence, the equilibrium position of a 1D step is deterministic [49].

2.3.1.2 Quasi-conservative dynamics

In this section we consider a “quasi-conservative” parameter regime, where the

external deposition rate and adatom desorption rate are compatible in magnitude.

We will show that it is possible to choose F and τ−1 such that adatoms on the

terrace establish equilibrium with the above vapor. In particular, when F and τ−1

are nonzero, the full, mass-dependent, master equation (2.1) obeys detailed balance
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since deposition and desorption are reverse processes. In this scenario, the long time

dynamics of the KRSOS model conserve mass on average. The quasi-conservative

case, therefore, provides a meaningful extension of the results in Section 2.3.1.1.

The quasi-conservative case occupies an interesting position in the spectrum

of dynamical behavior of the KRSOS model. On one hand, dynamics are not con-

servative, so it is not clear that equilibrium can be established. On the other, the

detailed balance property, as demonstrated in Section 2.3.1.1, is an extremely useful

tool for identifying potential equilibrium distributions satisfying the KRSOS master

equation. The deciding factor whether or not an equilibrium exists is suggested by

Theorem 2 in Appendix A: An equilibrium distribution exists only if a candidate

distribution satisfying the detailed balance conditions is normalizable. If the nor-

malization constant is infinite, no equilibrium exists1. With this in mind, consider

the following distribution that satisfies the detailed balance conditions for master

equation (2.1) with transition rates (2.2):

T(α,m),(α′,m′)k
|α′|
(

Fτ

(N − 1)k

)m′
= T(α′,m′),(α,m)k

|α|
(

Fτ

(N − 1)k

)m
. (2.20)

The normalization constant is

Z =
∑
α

k|α|
∞∑

m=m0

(
Fτ

(N − 1)k

)m
=

1

(1− k)N−1

Rm0

1−R
, (2.21)

where R := Fτ
(N−1)k

is a dimensionless factor measuring the ratio of deposition rate

and mean desorption rate. In the above calculation, we assume R < 1 and that the

1This does not preclude existence of a steady-state distribution satisfying the master equation.
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infinite sum over the mass index is one-sided, i.e. starting from m = m0 instead

of m = −∞, resulting in a convergent geometric series. Thus, an equilibrium

distribution exists for appropriately chosen parameters. It is

peqα,m = (1− k)N−1k|α|(1−R)Rm−m0 . (2.22)

Reconciling (2.22) with the grand canonical ensemble of statistical mechanics, which

postulates that the equilibrium probability of configuration (α,m) is proportional

to exp([mµ − |α|EN ]/kBT ), we identify the chemical potential of the system as

µ = kBT lnR.

We now fully define the quasi-conservative parameter regime.

Definition 6. (Quasi-conservative dynamics) The KRSOS model described by mas-

ter equation (2.1) and transition rates (2.2) is considered quasi-conservative if mass

is bounded below, m ≥ m0, and

1

τ
≤ F <

(N − 1)k

τ
(2.23)

with 0 < k < 1, F > 0, and τ−1 > 0. In this case, an equilibrium distribution exists

and is given by equation (2.22).

Definition 6 includes a lower bound on the deposition rate, F ≥ τ−1, which

we impose for physical reasons. Specifically, it does not make sense to require m ≥

m0 in a parameter regime where the desorption rate is larger than the deposition

rate. In this vein, we should mention that the KRSOS model with an upper bound

on mass and R > 1 could be an interesting starting point to study evaporation
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Figure 2.4: The average particle number, 〈n〉, versus time t computed from
KMC simulations of the KRSOS model with quasi-conservative dynamics,
where F , τ−1, and m0 satisfy Definition 6. Simulation data (black circles)
agrees with the predicted value (red line) found from equation (2.16) when
(a) F = 107 and (b) F = 2 × 107. In particular, note that 〈n〉 tends to the
same value in both plots as t increases, even though the deposition rate is
doubled. In both cases τ−1 = 107, N = 50, k = 0.1, D = 1010 and φ± = 1.
Averages were obtained using 106 simulations.

dynamics. Since we are mainly interested in the effects of external deposition, cf.

Section 2.3.1.3, we do not entertain this idea further.

Next, we seek to understand the consequences of partition function (2.21)

on the average particle number and step position, as well as their fluctuations in

equilibrium. Notice that the leading factor on the right hand side of (2.21) is Z,

partition function (2.13) of the conservative case. This factorization of Z implies

that 〈n〉 and 〈n2〉 − 〈n〉2 result in formulas identical to ones in equations (2.16)

and (2.17). See Figure 2.4 for numerical evidence of this fact.

Before obtaining formulas for step position, let us calculate the first and second

moment of the mass. Using appropriate derivatives of partition function (2.21), we
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find that

〈m〉 = m0 +
R

1−R
, (2.24)

and

〈m2〉 − 〈m〉2 =
R

(1−R)2
, (2.25)

where R = Fτ
(N−1)k

. Finally, by Definition 2 and equations (2.16), (2.17), (2.24)

and (2.25), it is straightforward to obtain the mean and variance of step position,

i.e.

〈s〉 = s0 −
(N − 1)k

1− k
+
R

1−R
, (2.26)

and

〈s2〉 − 〈s〉2 =
(N − 1)k

(1− k)2
+

R
(1−R)2

. (2.27)

Average step position (2.26) is the initial step position, less the expected number

of adatoms on the terrace, plus a term accounting for any additional mass result-

ing from the competition between deposition and desorption processes. The vari-

ance (2.27) is just the sum of (2.17) and (2.25), as expected. Figure 2.5 demonstrates

the prediction (2.26) for the equilibrium step position in the quasi-conservative case.

2.3.1.3 Non-conservative dynamics

In this subsection, we discuss a plausible steady-state solution of the KRSOS

model in a parameter regime there (N−1)k
τ

< F � D. That is, the external deposition

rate is large enough that it cannot be balanced by desorption, cf. Definition 6,

but is small enough that dynamics are primarily dictated by diffusion (the Péclet
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Figure 2.5: The average step position, 〈s〉, versus time t computed from KMC
simulations of the KRSOS model with quasi-conservative dynamics, where F ,
τ−1, and m0 satisfy Definition 6. Simulation data (black circles) agrees with
the predicted value (red line) found from equation (2.26) when (a) F = 107

and (b) F = 2 × 107. In both cases τ−1 = 107, N = 50, k = 0.1, D = 1010

and φ± = 1. Averages were obtained using 106 simulations.

number ε = F/D is small). To this end, we employ a formal argument based on the

assumption that only a finite number of particle (adatom) states contribute to the

system evolution; |α| ≤M for arbitrary yet fixed M .

In contrast to the quasi-conservative case, for which the detailed balance condi-

tions (2.20) imply existence of equilibrium distribution (2.22), the non-conservative

case is defined by the nonexistence of equilibrium. The lack of an equilibrium distri-

bution can be brought about in one of two ways: Either (i) F > 0 and τ−1 > 0, but

partition function (2.21) is infinite, or (ii) F > 0 and τ−1 = 0, so that microscopic

reversibility is lost. A further complication of the non-conservative case is that no

steady-state solutions to the master equation (2.5) may exist for large enough depo-

sition rate. In Appendix B, it is proven that no steady-state of the KRSOS model

can be established in the kinetic regime with F > D(φ+ + φ−) + N−1
τ

. This condi-
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Figure 2.6: The average particle number, 〈n〉, versus time t computed from
KMC simulations of the KRSOS model with Non-conservative dynamics,
where F > (N−1)k/τ . These plots indicate that the mean number of adatoms
on the terrace tend to a finite value for long times. Parameters in each case
include: (a) F = 106, τ−1 = 105, φ± = 1; (b) F = 106, τ−1 = 0, φ± = 1;
(c) F = 107, τ−1 = 0, φ± = 1; (d) F = 106, τ−1 = 105, φ± = 0.01; (e)
F = 106, τ−1 = 0, φ± = 0.01; and (f) F = 107, τ−1 = 0, φ± = 0.01. In all
cases N = 50, D = 1010, and k = 0.0001. The computed values of 〈n〉 at time
t = 10−5 are (a) 0.0262, (b) 0.0263, (c) 0.219, (d) 0.264, (e) 0.271, and (f)
2.92, obtained using 107 simulations in all cases.

tion implies that adatoms enter the system via deposition at a faster rate than they

leave through attachment and desorption; consequently, from a physical viewpoint,

a steady accumulation of adatoms on the terrace occurs for long times.

In the remainder of this section, we make the conjecture (but do not prove) that

a finite number of particle states contribute to the system evolution. Accordingly,

we restrict attention to the kinetic regime with sufficiently small ε (ε � 1). This

conjecture is favored by KMC simulations, a sample of which are shown in Figure 2.6.
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By enforcement of restriction |α| ≤ M , master equation (2.5) reduces to the

truncated master equation, (2.9). The approximation of the full microscopic model

by the truncated master equation offers a few obvious advantages. First, the solu-

tion of (2.9) always exists since the system is finite dimensional [39, 104]. Second,

the time-dependent solution can be expressed conveniently in terms of a matrix

exponential. And third, the steady-state distribution of this formulation is the nor-

malized eigenvector of the T matrix with zero eigenvalue.

We proceed to formally express the steady-state solution, pss,ε, of (2.9) as an

appropriate series expansion in ε. This task can be carried out in several ways;

for example, through the conversion of (2.9) to a Volterra integral equation, an

approach that we choose to apply here. By treating εDBpε(t) as a forcing term

in (2.9), variation of parameters yields

pε(t) = Φ(t)

[
p0 + εD

∫ t

0

Φ−1(t′)Bpε(t′)dt′
]
, (2.28)

where Φ(t) := exp(DA t). We mention in passing that, by the usual theory of

Volterra equations, (2.28) has a unique solution locally in time [103].

The matrix A is diagonalizable because it corresponds to the transition matrix

of a Markov process satisfying detailed balance [104]. Thus, we apply the decompo-

sition A = V ΛV −1 where Λ = diag{λj}Ω(M)
j=1 , {λj} are the (non-dimensional) eigen-

values of A, and V is a matrix whose column vectors are the respective eigenvectors.

Let {λj}Ω(M)
j=1 be ordered, 0 = λ1 > λ2 ≥ · · · ≥ λΩ(M) [104]. By Φ(t) = V eDtΛV −1,

we have Φ−1(t) = V e−DtΛV −1. Hence, (2.28) is recast as

pε(t) = V eDtΛV −1p0 + εD

∫ t

0

V eD(t−t′)ΛV −1Bpε(t′)dt′ . (2.29)
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At this stage, a formula for pε(t) ensues by standard methods. We resort to the

Laplace transform, p̂ε(s) =
∫∞

0
e−st pε(t) dt, of pε(t) with Re s > c > 0 for some

positive number c; by (2.29), we directly obtain

p̂ε(s) =
[
I − εD VD(s)V −1B

]−1
VD(s)V −1p0 , (2.30)

where D(s) := diag{(s−Dλj)−1}Ω(M)
j=1 and I is the unit matrix. In (2.30), we assume

that ε is small enough so that the requisite inverse matrix makes sense.

The next step in this approach is to compute the inverse transform of (2.30).

However, in principle, this choice requires carrying out in the right half of the s-

plane the inversion of the matrix I − εD VD(s)V −1B for arbitrary M . This task

is considerably simplified for the steady-state solution, pss,ε, in the limit t→∞, as

shown in Appendix C. The resulting formula reads

pss,ε = p0 +
∞∑
l=1

(
−εA†B

)l
p0 . (2.31)

In the above, p0 corresponds to the equilibrium solution in the absence of external

deposition (ε = 0), and A† denotes the Moore-Penrose pseudoinverse of A [15]. Equa-

tion (2.31) indicates the relative contributions of external deposition/desorption

processes and diffusion/attachment/detachment processes to the steady-state of the

hypothetical M -particle KRSOS model underlying this calculation.

Our heuristics leaves several open questions regarding the meaning of (2.31)

for large particle number M . For instance, the behavior with M of the bound for ε

needed for convergence has not been addressed. A related issue is to estimate the

error by the truncation of series (2.31), after a finite number of terms are summed.

We expect that (2.31) ceases to be meaningful as M →∞
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2.3.2 “Maximum principle”

In this section, we state and prove a “maximum principle” that applies to

a wide class of Markov processes described by master equations. In particular, it

applies to master equations (2.1) and (2.5), and allows us to estimate time-dependent

PDFs, describing KRSOS evolution, with corresponding stationary distributions.

This forms an extension of the “maximum principle” in [71]. The proof only relies on

the existence of a steady-state solution and the conservation of probability property

of transition rates of master equations, i.e. (2.2f), making it quite general.

On account of the generality of the ensuing proposition, we will use slightly

more general notation: Instead of indexing PDFs and transition rates with (α,m),

or α in the case of marginal master equation (2.5), we will make use of the indices

i, j ∈ S as is done in Appendix A. Here S denotes the discrete, countable state

space of the process.

Proposition 1. (“Maximum principle”) If a non-trivial steady-state solution, pssi ,

of master equation (A.2) exists, then any solution pi(t) satisfies

max
i∈S

pi(t)

pssi
≤ max

i∈S

pi(0)

pssi
, t > 0 . (2.32)

Proof. We proceed to prove Proposition 1 by invoking the identity

∑
j∈S

Tijp
ss
j = 0 . (2.33)
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Equation (A.2) can be written as

ṗi(t) =
∑
j∈S

Tijpj(t)

= Tiipi(t) +
∑
j 6=i

Tijpj(t)

= Tiip
ss
i

pi(t)

pssi
+
∑
j 6=i

Tijp
ss
j

pj(t)

pssj

=
∑
j 6=i

Tijp
ss
j

{
pj(t)

pssj
− pi(t)

pssi

}
. (2.34)

Note that Tijp
ss
j ≥ 0 for all j 6= i. Thus, the sign of ṗi(t) is determined by the

quantity in brackets. In particular, if i maximizes (minimizes) pj(t)/p
ss
j over all j,

then ṗi(t) ≤ 0 (ṗi(t) ≥ 0). This assertion implies the desired “maximum principle”

(and corresponding “minimum principle”), thus concluding the proof. �

A few remarks are in order regarding Proposition 1 and its application.

Remark 2. If the initial data pi(0) satisfies

max
i∈S

pi(0)

pssi
≤ C , (2.35)

for a parameter-independent constant C, then Proposition 1 implies that pi(t) . pssi

for all t > 0. Here we introduce the symbol . to indicate boundedness up to a

positive constant factor. This property will enable us to estimate certain averages in

Section 3.3.

Remark 3. Proposition 1 and Remark 2 apply to master equation (2.1) in both

the conservative and quasi-conservative cases since they each possess equilibrium

distributions.
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Remark 4. In the non-conservative case, Proposition 1 and Remark 2 only apply

to the marginalized master equation, (2.5). The “maximum principle” cannot be

applied to full, mass-dependent master equation (2.1) in the non-conservative case

since the assumption of existence of a steady-state, and therefore equation (2.33), is

violated when ε > 0; as t→∞, the mass of the system increases without bound.

Remark 5. Proposition 1 and Remark 2 apply to the truncated master equation (2.9)

unconditionally since a steady-state is guaranteed to exist. Note that S is finite di-

mensional in this case.

2.4 Summary

In this chapter, we define an atomistic SOS-type model of a single step as a

Markov process described by three master equations: (i) Full master equation (2.1),

which governs the evolution of mass-dependent PDF, pα,m(t); (ii) marginalized mas-

ter equation (2.5), for which mass dependence has been summed out; and (iii) sym-

bolic master equation (2.12), which is a convenient restatement of the full master

equation.

We also define three parameter regimes for the KRSOS model that correspond

to conservative, quasi-conservative, and non-conservative dynamics. For conserva-

tive dynamics, we obtain equilibrium distribution (2.14) and determine that particle

states in equilibrium follow a Poisson distribution with parameter Nk = O(1) in

the limit of large N . In the case of quasi-conservative dynamics, we invoke the

detailed balance property of the full master equation to determine equilibrium dis-
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tribution (2.22), which generalizes the equilibrium distribution for the conservative

case. To make progress in the case of non-conservative dynamics, we convert a trun-

cated version of marginalized master equation (2.9) into an integral equation, for

which asymptotic analysis of the Laplace transform results in a formal power-series

expansion in ε = F/D for the steady-state distribution.

Finally, we state and prove the “maximum principle”, Proposition 1, which

applies to: (i) The full master equation for conservative and quasi-conservative

dynamics; (ii) the marginalized master equation for non-conservative dynamics; and

(iii) the truncated master equation in all cases. This result, in conjunction with the

equilibrium and steady state solutions found in this chapter, is a key element in the

estimation of discrete corrections to the BCF-like model derived in the next chapter.
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Chapter 3: Discrete BCF equations and their continuum limit

In this chapter, we systematically derive the BCF model of a single step in 1D.

To do so, we first define discrete versions of BCF variables, including: (i) adatom

flux at the step edge, (ii) adatom density, and (iii) step position. From (i), we

are able to obtain exact expressions for discrete adatom fluxes at the step edge

that make explicit a discrete, BCF-like kinetic relation for adatom fluxes at the

step. For (ii) and (iii), we derive discrete equations of motion using symbolic master

equation (2.12). In all three cases we find corrections to discrete BCF-like equations.

Using results from Chapter 2, in particular Proposition 1, we are able to estimate

the relative size of these corrections. Then, assuming appropriate scaling of KRSOS

parameters, the discrete correction terms can be neglected in the continuum limit

of our atomistic model. The result is a mesoscale BCF model.

Aside from deriving BCF, another important result of this chapter is our char-

acterization of corrections. In addition to capturing corrections numerically using

KMC, we are also able to relate the specific forms of the corrections to aspects of

the KRSOS model. We find two types of corrections emerging from our analysis:

The first type are corrections to the discrete analog of the linear kinetic relation for

adatom flux. These corrective fluxes result from the KRSOS rules for attachment
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and detachment of atoms at the step edge. The second type of corrections stem

from atomistic configurations with multiple adatoms at a single lattice site. These

high-occupancy corrections are brought about by the KRSOS rule for adatom hop-

ping on the terrace that only allows the top adatom in a stack to move; cf. (2.2a)

and Figure 2.1(d). We view this feature of the KRSOS model as inducing kinetic

interactions between adatoms that are responsible for corrections to adatom diffu-

sion.

The goal of this chapter is not unlike the objectives of [49,70,71,117]. However,

in those works, the authors’ focus is on near-equilibrium processes, whereas our

interests include kinetic regimes that may be far from equilibrium. A similar task

is undertaken in [72], albeit via a (coarse-grained) phenomenological “terrace-step-

kink” model [14]. In this chapter, we avoid a priori approximations associated with

the diluteness of the adatom system, which is a key, explicit assumption in [49,70,71].

Furthermore, our study has a perspective distinct from that of [1, 83, 116] in which

extensive computations are carried out in 2+1 dimensions. In particular, in [1,116]

the authors derive a set of refined boundary conditions at the step edge that depend

on the local environment on the basis of a discrete diffusion equation with a fixed step

position. In [83], only numerical comparisons of KMC simulations to aspects of the

BCF model are shown. A different view is adopted in [115], where a high-dimensional

master equation is reduced to a Langevin-type equation for height columns on the

crystal lattice. We should also mention the probabilistic approach in [53], which

addresses the passage from an atomistic description within a solid-on-solid model

to a fully continuum picture.
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One result we have yet to mention is an empirically deduced nonlinear relation

for adatom flux at steps, cf. Section 3.5. Examples of works discussing situations

where the mass flux toward the step edge may exhibit nonlinear behavior include [5,

18]. Specifically, in [5], the authors carry out numerical simulations of a terrace-step-

kink model that reveal nonlinear behavior of adatom flux, and relate this behavior to

the step-continuum thermodynamic approach of [18]. In the present treatment, we

point out such a nonlinearity at the mesoscale from a kinetic atomistic perspective,

in an effort to avoid continuum thermodynamic principles. By recourse to atomistic

mechanisms, we argue that nonlinear terms in the boundary conditions for the mass

flux naturally emerge as the system is driven farther from equilibrium.

This chapter can be outlined as follows: To begin, in Section 3.1, we review

the BCF model of a single step in 1 + 1 dimensions. Next, in Section 3.2, we derive

a discrete BCF-like model for the evolution of averages of atomistic configurations.

Correction terms that emerge alongside the discrete version of the BCF model are

then estimated in Section 3.3 in terms of KRSOS model parameters. Section 3.4

demonstrates that a mesoscale BCF-like picture emerges from coarse graining our

discrete equations, provided atomistic parameters are chosen such that the discrete

corrections are negligible in the continuum limit. Finally, we characterize corrections

using KMC simulations in Section 3.5, and offer some discussion in Section 3.6.
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Figure 3.1: Mesoscale picture: Schematic of a step with atomic height a′

ajoining two terraces. The dependent variable ρ(x, t) is the adatom con-
centration field on each terrace in the laboratory frame. The step velocity,
v = ς̇(t), is determined by the adatom fluxes J± at the step edge on the lower
(+) or upper (−) terrace via mass conservation; cf. (3.1).

3.1 Review of BCF model

The BCF model is a mesoscale description of crystal surfaces insofar as it

retains discreteness in the vertical direction to resolve steps, yet represents adatoms

as a mean-field density [12, 36]. Naturally, in 1D settings like the one addressed in

this chapter, a step is represented by a single point. In either 1 or 2 dimensions,

the BCF theory is comprised of the following major elements: (a) A step velocity

law, which expresses mass conservation for adatoms; (b) a diffusion equation for the

density of adatoms; and (c) a linear kinetic relation for the adatom flux normal to

the step edge. It is important to point out that the latter two elements may be

poor approximations of reality in systems where adatom-adatom interactions are

significant.
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The geometry of a step adjoining two terraces is depicted in Fig. 3.1. The

upper (−) terrace, on the left of the step edge, and lower (+) terrace, on the right of

the step edge, differ in height by a′, an atomic length. Let ς(t) be the position of the

step edge. We apply screw-periodic boundary conditions in the spatial coordinate,

x. In this view, the adatoms are represented by the density field ρ(x, t).

Now consider the motion of the step. The step velocity, v(t) = ς̇(t), is deter-

mined by mass conservation:

v =
Ω

a′
(J− − J+) , (3.1)

where J± denotes the x-directed mass flux at the step edge on the upper (−) or

lower (+) terrace, Ω = aa′ is the atomic area, and a is the lattice spacing in the

lateral (x-) direction.

For later algebraic convenience, we define x̂ := x− ς(t) which is the coordinate

relative to the step edge. On each terrace, the variable C(x̂, t) = ρ(x, t) satisfies the

diffusion equation [12]

∂C
∂t

= D∂
2C
∂x̂2

+ v
∂C
∂x̂

+ F − 1

τ
C , (3.2)

where D is the macroscopic adatom diffusivity, τ is the mean desorption time, and F

is the mesoscopic external deposition flux [36,74]. Note the presence of the advection

term, v(∂C/∂x̂), on the right-hand side of (3.2); this term originates from ∂ρ/∂t in

the corresponding diffusion equation for ρ(x, t), viz.,∂ρ/∂t = D(∂2ρ/∂x2)+F . Thus,

the flux at the step edge consistent with Fick’s law is

J± = −D(∂C/∂x̂)± − vC± = −D(∂ρ/∂x)± − vρ± . (3.3)
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The remaining ingredient of the BCF model is a set of boundary conditions for

C, or ρ, at the step edge through the mass flux, J(x, t). BCF originally introduced

Dirichlet boundary conditions, by which the restriction C± of C at the step edge is

set equal to an equilibrium value, ceq [12]. Later on, a Robin boundary condition was

imposed [20]. Note that the Robin boundary condition is typically a linear relation

between the solution of a partial differential equation and its normal derivative at

a domain boundary. This condition was later improved by incorporation of the

Ehrlich-Schwoebel barrier [24, 88]; see [74]. The linear kinetic relation for the mass

flux at the step is

J± = ∓κ± (C± − ceq) , (3.4)

where κ± describes the rate of attachment/detachment of atoms at the step in the

presence of an Ehrlich-Schwoebel barrier.

The BCF model described here assumes that adatom density is low, and that

evolution takes place near equilibrium [12,74]. Situations may arise, however, where

adatom density is high, or the surface is driven far from equilibrium. For these

cases, the model might need to include corrections. In particular, corrections to the

diffusion equation on terraces or in the linear kinetic relation are expected when

adatom densities are high. For example, with regard to the linear kinetic relation,

numerical simulations in [5] based on a “terrace-step-kink” model suggest a nonlinear

dependence of J± on C± − ceq. The authors argue that this can be explained by

the thermodynamic approach of [18]. The observation of such a nonlinear effect
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motivates one to conjecture a generalized relation of form

J± = ∓
∑
n

κ
(n)
± (C± − ceq)n , (3.5)

where the terms corresponding to n ≥ 2 account for far-from-equilibrium or high-

density corrections to the traditional linear kinetic law (3.4). In Section 3.5, we

provide evidence for (3.5) as well as corrections to the diffusion equation (3.2) that

emerge from kinetic aspects of our simplified 1D atomistic model.

3.2 Discrete equations of motion

In this section, we heuristically show how discrete variables that form averages

of microscale quantities on the lattice are plausibly related to mesoscale BCF-type

observables of physical interest. In particular, we derive the discrete counterparts

of (i) linear kinetic relation (3.4), (ii) diffusion equation (3.2), (iii) Fick’s law (3.3),

and (iv) step velocity law (3.1). A noteworthy finding of our approach is that the

discrete versions of (i)-(iii) involve corrections that are related to certain aspects

of the KRSOS model. Later in this section, we determine a priori upper bounds

for these corrections, as well as numerical calculations of their values via KMC

simulations. Our analytical estimates for the size of corrections motivate a sufficient

scaling of model parameters that yield BCF-like equations in the continuum limit.

One consequence of our approach, which involves the derivation of a discrete

diffusion equation in Eulerian coordinates, is that a discrete counterpart of the

advection term appearing in (3.2) is not made explicit. We address this deficiency

by providing a plausibility argument for discrete advection terms consistent with
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the one appearing in (Lagrangian) BCF diffusion equation (3.2).

3.2.1 Microscale averages

Before proceeding to the derivation of discrete BCF equations, we must define

certain discrete averages over microscale states (α,m) via PDFs pα,m(t).

Definition 7. (Average step position) The average step position is

ς(t) = a
∑
α,m

s(α,m)pα,m(t) , (3.6)

where s(α,m), given in Definition 2 (Chapter 2), is the integer that denotes the site

to the right of the step edge in the fixed reference frame of the 1D lattice.

Note that, in Definition 7,
∣∣|α|− (m−m0)

∣∣ is the number of adatoms that are

exchanged with the step edge and, thus, solely contribute to step motion.

Next, we define the adatom number per lattice site, which plays the role of

the adatom density in the mesoscale picture. We use the following two interrelated

variables: (i) The density, c̂(t), of adatoms relative to the step, where ̂ counts the

lattice sites to the right of the step (a Lagrangian variable); and (ii) the Eulerian

density, ρj(t), at site j in the fixed coordinate frame.

Definition 8. (Adatom density)

(i) The Lagrangian-type adatom density is defined by

c̂(t) =
∑
α,m

ν̂(α)pα,m(t)/a

=
∑
α

ν̂(α)pα(t)/a, (3.7a)
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where ν̂(α) is the number of adatoms at site ̂ for a system with adatom configura-

tion α.

(ii) The Eulerian adatom density is

ρj(t) =
∑
α,m

νj−s(α,m)(α)pα,m(t)/a , (3.7b)

where j − s(α,m) is the Lagrangian coordinate corresponding to Eulerian j.

Regarding the above definition, it is important to note that ν̂(α) is a function

counting the number of instances of ̂ in multiset α. Since both ̂ and α use the

same coordinate system, ν̂(α) is independent of m, allowing for c̂(t) to be expressed

in terms of the marginal PDF pα(t). In contrast, the definition of ρj(t) cannot be

written in terms of pα(t) based on the mass dependence in the index of νj−s(α,m)(α)

required to change coordinates.

It should be noted that the prefactors ν̂(α) weighting the distribution pα,m(t)

in Definition 8 were not included in [71]. Instead, the authors define an adatom

density that measures only the presence of adatoms at a lattice site, not the number

of adatoms. Since [70, 71] focus on a parameter regime dominated by 0- and 1-

particle states, the so-called “dilute limit” of the adatom gas, the difference in

definitions is insignificant. Interestingly, dilute versions of densities (3.7) will play

a significant role in equations for ċj(t) and ρ̇j(t). Accordingly, we define the dilute

densities c̂(t) and %j(t) as follows:

Definition 9. (Dilute-adatom density)
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(i) The dilute-adatom density in Lagrangian coordinates is defined by

c̂(t) =
∑
α

1(ν̂(α) > 0)pα(t)/a . (3.8a)

(ii) The dilute-adatom density in Eulerian coordinates is

%j(t) =
∑
α,m

1(νj−s(α,m)(α) > 0)pα,m(t)/a . (3.8b)

The variables c̂(t) and c̂(t) are most useful in discrete equations for fluxes

and boundary conditions at the step. On the other hand, ρj(t) and %j(t) are more

convenient to use in the derivation of the discrete diffusion equation, at lattice sites

sufficiently away from the step edge.

Remark 6. The equilibrium adatom density, ceq, at any lattice site can be computed

using the definition of density (3.7a) and either (2.14) or (2.22); or, alternatively,

directly from either partition function (2.13) or (2.21). The equilibrium density is

ceq =
〈n〉

(N − 1)a
=

k/a

1− k
, (3.9)

where 〈n〉 is given by (2.16).

We now proceed to define the adatom fluxes at the step edge by virtue of our

rules for atomistic transitions.

Definition 10. (Adatom flux at the step edge) The flux J± on the right (+, lower

terrace) or left (−, upper terrace) of the step edge is

J±(t) =±
∑
α,m

1(ν−1(α) = 0)
[
T(α±,m),(α,m)pα,m(t)− T(α,m),(α±,m)pα±,m(t)

]
. (3.10)
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Here, α±, defined in (2.10c) denotes the adatom configuration resulting from a

rightward (+) or leftward (−) detachment. The factor 1(ν−1(α) = 0) excludes

configurations that involve adatoms on top of the edge atom, i.e. those for which

detachment is forbidden and are inaccessible via attachment events. Additionally,

the external deposition of adatoms does not contribute to the mass flux J±, and

therefore only a single value of m enters (3.10); see (2.2) and (2.3).

3.2.2 Flux at the step edge

In this section, we derive exact expressions for the discrete flux at the left

and right of the step edge. These expressions form the basis for characterizing

corrections to linear kinetic law (3.4) in the discrete setting, which we pursue later,

in Sections 3.3 and 3.5.

Proposition 2. (Discrete fluxes at the step edge) The discrete fluxes, J±(t), defined

in (3.10), can be written as

J±(t) = ∓Dφ±a [c±1(t)− ceq]∓Dφ±af±(t) . (3.11)

The terms f±(t) are defined by

f+(t) = k

[
ceq +

∑
α

1(ν−1(α) > 0)pα(t)/a

]

−
∑
α

1(ν1(α) > 1)ν1(α)pα(t)/a (3.12a)
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and

f−(t) = k

[
ceq +

∑
α

1(ν−1(α) > 0)pα(t)/a

]

−
∑
α

1(ν1(α) > 0)ν−1(α)pα(t)/a

−
∑
α

1(ν1(α) = 0)1(ν−1(α) > 1)

× [ν−1(α)− 1] pα(t)/a . (3.12b)

The formulas (3.11) include the discrete analog of the linear kinetic relation of the

BCF model, cf. (3.4), as well as corrective fluxes (3.12).

Proof. To derive (3.11), we must manipulate the formulas (3.10) to make manifest

the differences c±1(t)− ceq. We begin with J+(t), i.e.,

J+(t) =
∑
α,m

1(ν−1(α) = 0)
[
T(α+,m),(α,m)pα,m(t)− T(α,m),(α+,m)pα+,m(t)

]
=Dkφ+

∑
α,m

1(ν−1(α) = 0)pα,m(t)−Dφ+

∑
α,m

1(ν1(α) = 1)pα,m(t)

=Dkφ+

∑
α

1(ν−1(α) = 0)pα(t)−Dφ+

∑
α

1(ν1(α) = 1)pα(t)

=Dkφ+

[
1−

∑
α

1(ν−1(α) > 0)pα(t)

]

−Dφ+

∑
α

1(ν1(α) = 1)ν1(α)pα(t)

=Dφ+a

[
k/a

1− k
(1− k)− k

∑
α

1(ν−1(α) > 0)pα(t)/a

]

−Dφ+a

[
c1(t)−

∑
α

1(ν1(α) > 1)ν1(α)pα(t)/a

]

=−Dφ+a [c1(t)− ceq]−Dφ+af+(t) . (3.13a)
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In the above, the second equality results from substitution of transition rates (2.2);

the third equality results from summing the mass variable; the fourth equality makes

use of the complement rule, 1(ν−1(α) = 0) = 1 − 1(ν−1(α) > 0); and the fifth

equality involves adding and subtracting the last sum to make c1(t) appear. Similar

steps are used to derive the corresponding formula for J−(t), viz.,

J−(t) =
∑
α,m

1(ν−1(α) = 0)
[
T(α,m),(α−,m)pα−,m(t)− T(α−,m),(α,m)pα,m(t)

]
=Dφ−

∑
α,m

1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t)−Dkφ−
∑
α,m

1(ν−1(α) = 0)pα,m(t)

=Dφ−
∑
α

1(ν1(α) = 0)1(ν−1(α) > 0)pα(t)−Dkφ−
∑
α

1(ν−1(α) = 0)pα(t)

=Dφ−a

[
c−1(t)−

∑
α

1(ν1(α) > 0)ν−1(α)pα(t)/a

]

−Dφ−a
∑
α

1(ν1(α) = 0)1(ν−1(α) > 1) [ν−1(α)− 1] pα(t)/a

−Dφ−a

[
k/a

1− k
(1− k)− k

∑
α

1(ν−1(α) > 0)pα(t)/a

]

=Dφ−a [c−1(t)− ceq] +Dφ−af−(t) . (3.13b)

Equations (3.13) demonstrate the intended result. �

Remark 7. These averages f±, defined in (3.12), measure the frequency by which

the atomistic system visits configurations that forbid detachment of the edge atom or

attachment of an adatom from the right (+) or left (−) of the step edge. We expect

that the magnitudes of correction terms f± are negligibly small in the appropriate

low-density regime for adatoms [70, 71].
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3.2.3 Evolution equation for ρj(t)

We now derive an evolution equation for adatom density in Eulerian coordi-

nates. Our approach involves taking the time derivative of ρj(t), defined in (3.7b),

and formally applying symbolic master equation (2.12). In the resulting equation,

there is a clear separation between (i) a discrete diffusion equation valid away from

the step, and (ii) boundary conditions at the left and right of the step. Corrections

to the discrete diffusion equation and the discrete version of Fick’s law also become

readily apparent in the equation for ρ̇j(t). Each of the aforementioned aspects of

the evolution equation for discrete density are discussed later, in Sections 3.2.3.1

and 3.2.3.2. First, we state and derive the equation for ρ̇j(t), which is the focus of

the next proposition.

Proposition 3. (Evolution of discrete density) The time evolution of the discrete

adatom density, ρj(t), defined in (3.7b), is described by

ρ̇j(t) = D [%j−1(t)− 2%j(t) + %j+1(t)] +
F

(N − 1)a
− 1

τ
%j(t)

−
∑
α,m

{
δj,s(α,m)

[
D1(ν−1(α) > 0) +D1(ν1(α) > 0) +

F

N − 1

]
− δj,s(α,m)−1

[
D1(ν−1(α) > 0) +Dkφ−1(ν−1(α) = 0)

−Dφ−1(ν1(α) = 0)1(ν−1(α) > 0)
]

− δj,s(α,m)+1

[
D1(ν1(α) > 0) +Dkφ+1(ν−1(α) = 0)

−Dφ+1(ν1(α) = 1)
]}
pα,m(t)/a . (3.14)
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Equation (3.14) is a direct consequence of Definition 8 and the time evolution of the

microscale KRSOS model.

Proof. We derive equation (3.14) directly via symbolic master equation (2.12). The

time derivative of the discrete density ρj(t) is

ρ̇j(t) =
∑
α,m

νj−s(α,m)

{
D∆αpα,m(t) +

F

N − 1

∑
ı̂∈α

pαı̂,m−1(t)− Fpα,m(t)

+
1

τ

∑
ı̂>0

pαı̂,m+1(t)− 1

τ

∑
ı̂∈α

pα,m(t)

+Dφ−
[
1(ν−1(α) = 0)pα−,m(t)− 1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t)

]
+Dkφ− [1(ν1(α) = 0)1(ν−1(α) > 0)pα−,m(t)− 1(ν−1(α) = 0)pα,m(t)]

+Dφ+

[
1(ν−1(α) = 0)pα+,m(t)− 1(ν1(α) = 1)pα,m(t)

]
+Dkφ+ [1(ν1(α) = 1)pα+,m(t)− 1(ν−1(α) = 0)pα,m(t)]

}
/a . (3.15)

In (3.15), we simply re-write ṗα,m(t) using symbolic master equation (2.12). The

remainder of this proof is devoted to simplifying the above formula for ρ̇j(t) by

expressing the right hand side of (3.15) in terms of averages over pα,m(t) instead

of “modified”, yet related, states (i.e. αı̂, αı̂, etc.). This is done for five types of

microscale dynamics: (I) diffusion, (II) deposition, (III) desorption, (IV) attach-

ment/detachment on the left of the step and (V) attachment/detachment on the

right of the step. The ensuing calculations, for each case, involve (a) application

of appropriate change-of-variable formulas to the functions νı̂(α) and indicators

thereof, and (b) re-indexing certain sums over states (α,m).

Case I: Diffusion terms. First, let us expand the terms in (3.15) corresponding
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to diffusive processes. By (2.11a), we may write

∑
α,m

νj−s(α,m)(α)∆αpα,m(t)

=
∑
α,m

νj−s(α,m)(α)
{ ∑

ı̂∈α
ı̂6=0,±1

[
pαı̂

ı̂−1,m
(t)− 2pα,m(t) + pαı̂

ı̂+1,m
(t)
]}

+ 1(ν1(α) > 0)
[
pα1

2,m
(t)− pα,m(t)

]
+ 1(ν−1(α) > 0)

[
pα−1
−2,m

(t)− pα,m(t)
]

=
∑
ı̂ 6=0,±1

∑
α,m

1(νı̂(α) > 0)νj−s(α,m)(α)
{[

pαı̂
ı̂−1,m

(t)− 2pα,m(t) + pαı̂
ı̂+1,m

(t)
]

+ 1(ν1(α) > 0)
[
pα1

2,m
(t)− pα,m(t)

]
+ 1(ν−1(α) > 0)

[
pα−1
−2,m

(t)− pα,m(t)
]}

. (3.16)

When ı̂ 6= 0,±1, the averages involving pαı̂
ı̂±1,m

(t) in (3.16) can be expressed as

follows:

∑
α,m

1(νı̂(α) > 0)νj−s(α)pαı̂
ı̂±1,m

(t)

=
∑
α,m

1(νı̂±1(αı̂
ı̂±1) > 0)

[
νj−s(α

ı̂
ı̂±1) + δı̂,j−s − δı̂±1,j−s

]
pαı̂

ı̂±1,m
(t)

=
∑

αı̂
ı̂±1,m

1(νı̂±1(αı̂
ı̂±1) > 0)

[
νj−s(α

ı̂
ı̂±1) + δı̂,j−s − δı̂±1,j−s

]
pαı̂

ı̂±1,m
(t)

=
∑
α,m

1(νı̂±1(α) > 0) [νj−s(α) + δı̂,j−s − δı̂±1,j−s] pα,m(t) , (3.17)

where s = s(α,m) = s(αı̂
ı̂±1,m). The above calculation relies on two key steps:

(a) A change-of-variable formula (first equality), and (b) a re-indexing of the sum

over states (second equality). The latter is valid because there is a one-to-one

correspondence between states α and αı̂
ı̂±1. After re-indexing, the last equality

in (3.17) reiterates the previous line with simplified notation.
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Now we can re-write (3.16) using (3.17), and, at the same time, complete the

sum over ı̂ 6= 0,±1 by adding and subtracting the appropriate terms, i.e.,

∑
α,m

νj−s(α)∆αpα,m(t)

=
∑
ı̂

∑
α,m

{
νj−s(α) [1(νı̂−1(α) > 0)− 21(νı̂(α) > 0) + 1(νı̂+1(α) > 0)]

+ 1(νı̂−1(α) > 0) [δı̂,j−s − δı̂−1,j−s]

+ 1(νı̂+1(α) > 0) [δı̂,j−s − δı̂+1,j−s]
}
pα,m(t)

+
∑
α,m

{
νj−s(α) [1(ν2(α) > 0)− 1(ν1(α) > 0) + 1(ν−2(α) > 0)− 1(ν−1(α) > 0)]

+ 1(ν2(α) > 0) [δj,s+1 − δj,s+2] + 1(ν−2(α) > 0) [δj,s−1 − δj,s−2]
}
pα,m(t)

−
∑
α,m

{
νj−s(α)

[
1(ν−2(α) > 0)− 21(ν−1(α) > 0) + 1(ν0(α) > 0)

+ 1(ν−1(α) > 0)− 21(ν0(α) > 0) + 1(ν1(α) > 0)

+ 1(ν0(α) > 0)− 21(ν1(α) > 0) + 1(ν2(α) > 0)
]

+ 1(ν−2(α) > 0) [δj,s−1 − δj,s−2] + 1(ν0(α) > 0) [δj,s−1 − δj,s]

+ 1(ν−1(α) > 0) [δj,s − δj,s−1] + 1(ν1(α) > 0) [δj,s − δj,s+1]

+ 1(ν0(α) > 0) [δj,s+1 − δj,s] + 1(ν2(α) > 0) [δj,s+1 − δj,s+2]
}
pα,m(t) .

(3.18)

Considerable simplification in the above formula leads to our final equation for the
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diffusion terms in (3.15), viz.,

∑
α,m

νj−s(α)∆αpα,m(t)

=
∑
α,m

{
1(νj−s−1(α) > 0)− 21(νj−s(α) > 0) + 1(νj−s+1(α) > 0)

+ 1(ν−1(α) > 0) [δj,s−1 − δj,s] + 1(ν1(α) > 0) [δj,s+1 − δj,s]
}
pα,m(t)

= a [%j−1(t)− 2%j(t) + %j+1(t)]

+
∑
α,m

{
1(ν−1(α) > 0) [δj,s−1 − δj,s] + 1(ν1(α) > 0) [δj,s+1 − δj,s]

}
pα,m(t) ,

(3.19)

where again we simplify the notation by using s = s(α,m). Here, (3.19) is written

concisely with the use of dilute density (3.8b). The final expression involves a

discrete diffusion-type difference scheme for %j(t) when j is sufficiently away from

the step, plus terms which account for the presence of the step via Kronecker delta

functions.

Case II: Deposition terms. Next, we address contributions from deposition in

our derivation of an evolution equation for ρj(t). As in the previous case, we must

re-write any averages in (3.15) that do not explicitly involve pα,m(t). For the case
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of deposition, we have

∑
α,m

νj−s(α)
∑
ı̂∈α

pαı̂,m−1(t) =
∑
ı̂>0

∑
α,m

1(νı̂(α) > 0)νj−s(α)pαı̂,m−1(t)

=
∑
ı̂>0

∑
α,m

[1− 1(νı̂(α) = 0)] νj−s(α)pαı̂,m−1(t)

=
∑
ı̂>0

∑
α,m

[
νj−s(α

ı̂) + δı̂,j−s
]
pαı̂,m−1(t)

−
∑
ı̂>0

∑
α,m

νj−s(α)1(νı̂(α) = 0)pαı̂,m−1(t)

=
∑
ı̂>0

∑
α,m

[νj−s(α) + δı̂,j−s] pα,m(t)

= (N − 1)
∑
α,m

νj−s(α)pα,m(t) + 1−
∑
α,m

δj,spα,m(t) . (3.20)

The above calculation makes use of the complement rule for probability and (2.10f).

By (3.20), the contribution to ρ̇j(t) from deposition in (3.15) may be written as

∑
α,m

νj−s(α)
{ 1

N − 1

∑
ı̂∈α

pαı̂,m−1(t)− pα,m(t)
}

=
1

N − 1
− 1

N − 1

∑
α,m

δj,spα,m(t) . (3.21)

The term involving the Kronecker delta in (3.21) implies that there is no contribution

from deposition at the step edge, as expected. On the other hand, away from

the step, the contribution to the evolution equation for ρj(t) from deposition is a

constant: F
(N−1)a

, or the deposition rate per terrace length.

Case III: Desorption terms. The derivation of terms pertaining to desorp-

tion follow the same pattern as the deposition terms in Case II. We write the first
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desorption term in (3.15) as

∑
α,m

νj−s(α)
∑
ı̂>0

pαı̂,m+1(t)

=
∑
ı̂>0

∑
α,m

νj−s(α)1(νı̂(αı̂) > 0)pαı̂,m+1(t)

=
∑
ı̂>0

∑
α,m

[νj−s(αı̂)− δı̂,j−s] 1(νı̂(αı̂) > 0)pαı̂,m+1(t)

=
∑
ı̂>0

∑
α,m

[νj−s(α)− δı̂,j−s] 1(νı̂(α) > 0)pα,m(t) . (3.22)

Since desorption events do not change the step position, s = s(α,m+ 1) = s(αı̂,m)

in the above. Notice that (3.22) and the second desorption term in (3.15) simplify

to

−
∑
ı̂>0

∑
α,m

δı̂,j−s1(νı̂(α) > 0)pα,m(t)

= −
∑
ı̂

∑
α,m

δı̂,j−s1(νı̂(α) > 0)pα,m(t)

= −a%j(t) . (3.23)

Here we have used the fact that 1(ν0(α) > 0) = 0. The final contribution of

desorption, therefore, is proportional to the dilute density.

Case IV: Attachment/detachment terms (left of step). Next, using similar

techniques as the previous three cases, we derive explicit averages corresponding to

attachment and detachment terms on the left of the step, most easily identified by
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the prefactor φ− in (3.15). For attachment, consider

∑
α,m

νj−s(α,m)(α)1(ν−1(α) = 0)pα−,m(t)

=
∑
α,m

[
νj−s(α−,m)(α−)− δj,s(α−,m)−1

]
1(ν1(α−) = 0)1(ν−1(α−) > 0)pα−,m(t)

=
∑
α,m

νj−s(α,m)(α)1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t)

−
∑
α,m

δj,s(α,m)−11(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t) . (3.24)

Similarly, for detachment we have

∑
α,m

νj−s(α,m)(α)1(ν1(α) = 0)1(ν−1(α) > 0)pα−,m(t)

=
∑
α,m

[
νj−s(α−,m)(α

−) + δj,s(α−,m)−1

]
1(ν−1(α−) = 0)pα−,m(t)

=
∑
α,m

νj−s(α,m)(α)1(ν−1(α) = 0)pα,m(t)

+
∑
α,m

δj,s(α,m)−11(ν−1(α) = 0)pα,m(t) . (3.25)

Equations (3.24) and (3.25), along with the remaining attachment and detachment

terms in (3.15), on the left of the step only, yield

∑
α,m

δj,s(α,m)−1

[
Dkφ−1(ν−1(α) = 0)

−Dφ−1(ν1(α) = 0)1(ν−1(α) > 0)
]
pα,m(t) , (3.26)

which, with recourse to Definition 10, reduces to −J−(t) when j = s−1, and is zero

otherwise.

Case V: Attachment/detachment terms (right of step). Finally, we simplify

attachment and detachment terms on the right of the step, all of which include the
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prefactor φ+ in (3.15). First, the attachment terms are

∑
α,m

νj−s(α,m)(α)1(ν−1(α) = 0)pα+,m(t)

=
∑
α,m

[
νj−s(α+,m)(α+)− δj,s(α+,m)+1

]
1(ν1(α+) = 1)pα+,m(t)

=
∑
α,m

νj−s(α,m)(α)1(ν1(α) = 1)pα,m(t)

−
∑
α,m

δj,s(α,m)+11(ν1(α) = 1)pα,m(t) . (3.27)

Second, the detachment terms are

∑
α,m

νj−s(α,m)(α)1(ν1(α) = 1)pα+,m(t)

=
∑
α,m

[
νj−s(α+,m)(α

+) + δj,s(α+,m)+1

]
1(ν−1(α+) = 0)pα+,m(t)

=
∑
α,m

νj−s(α,m)(α)1(ν−1(α) = 0)pα,m(t)

+
∑
α,m

δj,s(α,m)+11(ν−1(α) = 0)pα,m(t) . (3.28)

Similar to the result in Case IV, equations (3.27) and (3.28), along with at-

tachment and detachment terms in (3.15) on the right of the step only, give

∑
α,m

δj,s(α,m)+1

[
Dkφ+1(ν−1(α) = 0)

−Dφ+1(ν1(α) = 1)
]
pα,m(t) . (3.29)

By Definition 10, equation (3.29) reduces to J+(t) when j = s + 1, and is zero

otherwise. This completes the proof of Proposition 3. �

The approach in Proposition 3 contrasts what was previously done in [71] in

two essential ways: First, by focusing on the Eulerian density, we do not introduce
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discrete advection terms that are always present away from the step in Lagrangian

coordinates; such terms cannot be readily expressed in closed form, e.g. in terms

of adatom densities, and therefore do not make the corresponding continuum terms

apparent [71]. Second, the use of symbolic master equation (2.12) allows for the

isolation of each atomistic process, and thus makes manifest non-trivial cancellations

imparted by the microscale KRSOS model.

3.2.3.1 Discrete diffusion equation

One of the important consequences of Proposition 3 is that the adatom density,

ρj(t), evolves according to a discrete diffusion-type scheme when j is sufficiently far

from the step. This discrete scheme is not exact, however; corrections resulting from

multiply-occupied lattice sites are evident in (3.14).

When j is away from the step, equation (3.14) reduces to

ρ̇j(t) = D∆j%j(t) +
F

(N − 1)a
− 1

τ
%j(t) , (3.30)

where ∆j is the second-order finite difference operator, i.e. ∆j%j = %j−1−2%j+%j+1.

The above equation involves the dilute density, %j(t), on the right-hand side. On

the other hand, in an exact discrete scheme, we would expect ρj(t) to appear. In

fact, it turns out that correction terms are differences in densities ρj(t)− %j(t).

At this stage it is useful to point out that the form of these corrections should

not depended on choice of the coordinate system. Indeed, the entire derivation of

diffusion terms, i.e. those involving ∆αpα,m(t), in the proof of Proposition 3 could

be repeated for Lagrangian density, cj(t). The resulting discrete scheme involves
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second-order differences ∆jcj(t). Accordingly, we define the“high-occupancy” cor-

rections as

R̂̂(t) =
∑
α

[ν̂(α)− 1(ν̂(α) > 0)] pα(t)/a . (3.31)

The high-occupancy effect measured by (3.31) can be seen in the difference ν̂(α)−

1(ν̂(α) > 0), which is nonzero only when two or more adatoms are at site ̂. In

the following remark, we identify the feature of the KRSOS model that induces

corrections of the form (3.31).

Remark 8. The corrections (3.31) associated with discrete diffusion arise from the

fact that the KRSOS model includes constant adatom hopping rates, regardless of the

number of adatoms present at a given lattice site. In effect, atomistic configurations

with multiple adatoms at the same lattice site introduce kinetic interactions between

adatoms since only one adatom, e.g. the top adatom in a stack, is able to move [71].

High-occupancy corrections (3.31) will be analyzed in Section 3.3.

3.2.3.2 Boundary conditions

In this section, we complement Proposition 2 with a mass-transport relation

between discrete fluxes and densities near the step edge, which forms a discrete

analog of Fick’s law for diffusion. As the second main consequence of Proposition 3,

high-occupancy corrections (3.31) play an important role. The effect of advection,

which comes from step motion, is conspicuously absent from the discrete boundary

conditions at the step edge; we attribute this absence to forbidden transitions in the
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KRSOS model. It should be noted, however, that transitions at the step should not

drastically alter the effect of advection away from the step; see Section 3.2.4.

To start, we note that the third and fourth lines of (3.14), multiplied by

Kronecker delta δj,s(α,m)−1, correspond to

D
∑
α,m

[
1(ν−2(α) > 0)− 1(ν−1(α) > 0)

+ kφ−1(ν−1(α) = 0)− φ−1(ν1(α) = 0)1(ν−1(α) > 0)

= D [c−2(t)− c−1(t)]− a−1J−(t) +D
[
R̂−2(t)− R̂−1(t)

]
. (3.32a)

Here, J− is defined by (3.10). The analogous result for terms associated with J+

can be reached for the last two lines of (3.14), which are multiplied by δj,s(α,m)+1.

At the right of the step edge, we identify

D
∑
α,m

[
1(ν2(α) > 0)− 1(ν1(α) > 0)

+ kφ+1(ν−1(α) = 0)− φ+1(ν1(α) = 1)

= D [c2(t)− c1(t)] + a−1J+(t) +D
[
R̂2(t)− R̂1(t)

]
. (3.32b)

It should be noted that the terms R̂̂(t) found in equations (3.32) are consistent with

those present in the discrete analog of the diffusion equation.

In view of (3.32), we now extract appropriate discrete boundary conditions at

the left (j = s(α,m)− 1) and right (j = s(α,m) + 1) of step edge from (3.14). We

find

J±(t) = ∓Da [c±2(t)− c±1(t)]∓Da
[
R̂±2(t)− R̂±1(t)

]
. (3.33)

Equations (3.33) are a discrete version of Fick’s law including corrections to diffusive

fluxes at each side of the step edge.
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Remark 9. In contrast to (3.3), the advection term at the step edge does not appear

in (3.33). We have not been able to derive this term from the atomistic model. We

attribute this inability to the fact that certain atomistic configurations inhibit the

motion of the step edge. Specifically, transitions where the step would advance by

more than one lattice spacing or retreat when adatoms are present on top of the edge

atom are forbidden, as seen in rates (2.3a) and (2.3b), respectively. In effect, these

forbidden processes can cause adatoms to pile up in front of the step edge, thereby

conserving mass at the atomistic scale. On the other hand, at the mesoscale, the step

accumulates mass continuously as it moves past regions of nonzero adatom density.

This mechanism is not captured in the KRSOS model.

3.2.4 Advection away from the step

In this section, we develop a plausibility argument for the extraction of a

discrete counterpart to the continuum-scale advection term, v ∂C
∂x̂

, which enters dif-

fusion equation (3.2), from the atomistic model. This argument provides a heuristic

reconciliation of continuum-scale advection with the atomistic and probabilistic per-

spectives of the master equation approach followed in in this thesis. We will invoke

the notation v = ς̇(t) for the average step velocity; ς(t) is the average step position

introduced in Definition 7.

Consider the Eulerian adatom density of (3.7b), Definition 8. First, note that

the corresponding sum can be conveniently rewritten as

ρj(t) =
∑
n∈Z

∑
(α,m)∈S(n)

νj−s0+n(α) p(α,m; t)/a , (3.34)
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where |n| counts the total number of adatoms detached from (n > 0) or attached

to (n < 0) the step edge and, thus, determines the microscopic position, s0 − n,

of the step on the lattice; p(α,m; t) := pα,m(t) for notational convenience; and

S(n) := {(α,m)
∣∣ |α| = n + (m −m0)}, the set of all allowed values of (α,m) for

fixed n.

In order to extract the advection term sufficiently away from the step edge,

we take into account the decomposition of p(α,m; t) into products of the form

p(α,m
∣∣n; t)℘(n; t). In this product, ℘(n; t) is the probability that the microscopic

step lies at the lattice site s0 − n at time t, and p(α,m
∣∣n; t) is the conditional

probability for state (α,m) to occur given that the step edge is at site s0 − n.

Hence, (3.34) is recast to the formula

ρj(t) =
∑
n

℘(n; t)
∑

(α,m)∈S(n)

νj−s0+n(α) p(α,m
∣∣n; t)/a , (3.35)

for fixed j. Clearly, the right-hand side of (3.35) becomes the discrete Lagrangian

density c̂(t) if j − s0 + n under the summation sign is replaced by the index ̂;

cf. (3.7a) in Definition 8.

At this stage, by inspection of (3.35), we define

c(̂
∣∣N; t) :=

∑
(α,m)∈S(N)

νj−s0+N(α) p(α,m
∣∣N; t)/a . (3.36)

This formula expresses the (conditional) Lagrangian adatom density at fixed site ̂

given that the step position is at site s0−N. Here, N is the discrete random variable

with values n ∈ Z that represents the number of adatoms detached from the step
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edge. Accordingly, we compute

ċ̂(t) =
∑
n

℘̇(n; t)c(̂
∣∣n; t) + 〈ċ(̂

∣∣N; t)〉, (3.37)

where 〈f(N; t)〉 is the expectation of the random variable f(N; t) under the probabil-

ity distribution ℘(n; t), viz., 〈f(N; t)〉 :=
∑

n ℘(n; t)f(n; t), with f( · ; t) = ċ(̂
∣∣ · ; t).

Next, we show that (3.37) plausibly generates a discrete version of the antic-

ipated advection term at long times. For this purpose, we hypothesize that ℘(n; t)

is well approximated by the Poisson distribution with parameter ς(t)/a. This was

demonstrated for case of conservative dynamics on large lattices (N � 1) in equi-

librium; see (2.19). On the other hand, ℘(n; t) should be approximately Poisson for

sufficiently long times in the non-conservative case with F > 0 and τ−1 = 0. To see

this, consider (2.1) after marginalizing by α. The resulting equation,

ṗm(t) =
∑
m

Tm,m′pm′(t), (3.38)

subject to p0(0) = 1, is satisfied by the Poisson distribution pm(t) = (Ft)me−Ft

m!
. Then,

for t � F−1, the Poisson hypothesis for ℘(n; t) is expected to hold. At this stage,

we do not have a quantitative argument supporting our hypothesis regarding ℘(n; t)

when τ−1 > 0.

Assuming the Poisson hypothesis is true, we may write ℘̇(n; t) ≈ [ς̇(t)/a]{℘(n−

1; t)−℘(n; t)}, bearing in mind that correction terms neglected in this formula should

account for finite times and the effect of higher adatom numbers per site, controlled

by k and F . By applying summation by parts in the screw-periodic setting of our
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system we obtain

∑
n

℘̇(n; t)c(̂
∣∣n; t) ≈ [ς̇(t)/a]

∑
n

℘(n; t){c(̂
∣∣n+ 1; t)− c(̂

∣∣n; t)}

= ς̇(t)a−1
{
〈c(̂
∣∣N + 1; t)〉 − 〈c(̂

∣∣N; t)〉
}
. (3.39)

Were it true that 〈c(̂
∣∣N + `; t)〉 ≈ 〈c(̂ − `

∣∣N; t)〉 for any integer `, expressing the

translation invariance of the adatom system relative to the step edge, (3.39) would

imply

∑
n

℘̇(n; t)c(̂
∣∣n; t) ≈ −ς̇(t)a−1

{
〈c(̂
∣∣N; t)〉 − 〈c(̂− 1

∣∣N; t)〉
}
, (3.40)

which is the discrete counterpart to v ∂C
∂x̂

we seek. We leave it as an open question

to what extent this approximation is true.

3.2.5 Step velocity law

In this section, we derive the anticipated mass conservation statement that

involves the average step velocity, ς̇(t); see Definition 7. This average is computed

explicitly by differentiating (3.6) with respect to time, and formal application of

master equations (2.1) and (2.12). The result is a step velocity law involving the

difference of the fluxes J±, which are defined in (3.10).

Proposition 4. (Discrete step velocity law) The time evolution of the average step

position, ς(t), defined in (3.6), is given by

ς̇(t) = a [J−(t)− J+(t)] . (3.41)

Hence, the BCF step velocity law (3.1) is a direct consequence of Definition 7 and

the microscale dynamics of the KRSOS model.
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Proof. We prove the proposition in two parts: (i) Using properties of the full master

equation (2.1), we will show that deposition, desorption, and terrace hopping cannot

contribute to step velocity; and (ii) we will calculate the contributions to ς̇(t) from

attachment and detachment using symbolic master equation (2.12).

First, by Definition 7 and master equation (2.1), the time evolution of ς(t) is

described by

ς̇(t) = a
∑
α,m

s(α,m)ṗα,m(t)

= a
∑
α,m

∑
(α′,m′)
6=(α,m)

s(α,m)
[
T(α,m),(α′,m′)pα′,m′(t)− T(α′,m′),(α,m)pα,m(t)

]

= a
∑
α,m

∑
α′,m′

[s(α,m)− s(α′,m′)]T(α,m),(α′,m′)pα′,m′(t) . (3.42)

In (3.42) we invoke property (2.2f) of the transition rates to make the difference

s(α,m) − s(α′,m′) appear. This formula makes it clear that any transition from

state (α′,m′) to (α,m) where the step position does not change cannot contribute

to the step velocity. In the KRSOS model described in Section 2.1, the transitions

that do not contribute to step velocity include deposition, desorption, and terrace

diffusion.

Second, we isolate the attachment and detachment terms in (2.12) in the
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following formula for ς̇(t):

ς̇(t) = a
∑
α,m

s(α,m)
{
Dφ−

[
1(ν−1(α) = 0)pα−,m(t)− 1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t)

]
+Dkφ− [1(ν1(α) = 0)1(ν−1(α) > 0)pα−,m(t)− 1(ν−1(α) = 0)pα,m(t)]

+Dφ+

[
1(ν−1(α) = 0)pα+,m(t)− 1(ν1(α) = 1)pα,m(t)

]
+Dkφ+ [1(ν1(α) = 1)pα+,m(t)− 1(ν−1(α) = 0)pα,m(t)]

}
. (3.43)

Equation (3.43) can be simplified using appropriate change-of-variable formulas and

re-indexing the resulting sums. We perform each calculation separately in what

follows:

∑
α,m

s(α,m)1(ν−1(α) = 0)pα−,m(t)

=
∑
α,m

[s(α−,m) + 1] 1(ν1(α−) = 0)1(ν−1(α−) > 0)pα−,m(t)

=
∑
α−,m

[s(α−,m) + 1] 1(ν1(α−) = 0)1(ν−1(α−) > 0)pα−,m(t)

=
∑
α,m

[s(α,m) + 1] 1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t) , (3.44a)

where the change of variable occurs in the first equality, re-indexing in the second,

and the final equality restates the result with more concise notation. The remaining
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terms follow similarly. They are

∑
α,m

s(α,m)1(ν1(α) = 0)1(ν−1(α) > 0)pα−,m(t)

=
∑
α,m

[
s(α−,m)− 1

]
1(ν−1(α−) = 0)pα−,m(t)

=
∑
α−,m

[
s(α−,m)− 1

]
1(ν−1(α−) = 0)pα−,m(t)

=
∑
α,m

[s(α,m)− 1] 1(ν−1(α) = 0)pα,m(t) , (3.44b)

∑
α,m

s(α,m)1(ν−1(α) = 0)pα+,m(t)

=
∑
α,m

[s(α+,m) + 1] 1(ν1(α+) = 0)1(ν−1(α+) > 0)pα+,m(t)

=
∑
α+,m

[s(α+,m) + 1] 1(ν1(α+) = 0)1(ν−1(α+) > 0)pα+,m(t)

=
∑
α,m

[s(α,m) + 1] 1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t) , (3.44c)

and

∑
α,m

s(α,m)1(ν1(α) = 1)pα+,m(t)

=
∑
α,m

[
s(α+,m)− 1

]
1(ν−1(α+) = 0)pα+,m(t)

=
∑
α+,m

[
s(α+,m)− 1

]
1(ν−1(α+) = 0)pα+,m(t)

=
∑
α,m

[s(α,m)− 1] 1(ν−1(α) = 0)pα,m(t) . (3.44d)

Finally, substitution of equations (3.44) into (3.43), with recourse to Definition 10,
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yields

ς̇(t) = a
∑
α,m

[
Dφ−1(ν1(α) = 0)1(ν−1(α) > 0)−Dkφ−1(ν−1(α) = 0)

+Dφ+1(ν1(α) = 1)−Dkφ+1(ν−1(α) = 0)
]
pα,m(t)

= a [J−(t)− J+(t)] . (3.45)

This completes the proof. �

3.3 Estimates for discrete corrections

In this section, we investigate the behavior of discrete corrections to the linear

kinetic relation for flux at the step edge and adatom diffusion on the terrace; see

Proposition 2 and equations (3.30)-(3.33). To do so, we invoke the “maximum

principle”, Proposition 1 (Chapter 2), to determine L∞-bounds for two types of

corrections: The corrective fluxes f±(t), found in (3.11), and the high-occupancy

corrections to discrete density, R̂̂(t), in (3.31). The resulting estimates reveal the

dependence of each type of correction on the parameters of the KRSOS model,

particularly k and ε = F/D.

Our approach can be outlined as follows: First, in view of Remark 2 (Chap-

ter 2) for the initial data pα(0), we estimate f±(t) and R̂̂(t) in terms of the steady-

state solution pss,εα of marginalized master equation (2.5). Second, by invoking the

ε-series expansion of Section 2.3.1.3 for pss,εα , we derive estimates for f±(t) and R̂̂(t);

these signify corrections to the linear kinetic law for the adatom fluxes, J±, and high-

occupancy corrections to the discrete diffusion equation on the terrace, respectively.
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This second stage of our derivation of bounds on discrete corrections makes use of

the equilibrium distribution peqα , equation (2.14), for ε0-terms in our formal expan-

sion, and the ε1-terms found in (2.31). In principle, higher order terms can also be

computed, but are neglected in our analysis.

Proposition 5. (Estimates for discrete correction terms) If F ≥ τ−1, the corrective

fluxes (3.12) at the step edge satisfy the estimate

f±(t) = O
(

k2

(1− k)a

)
+O

(
εN

(1 + φ)a

)
, (3.46)

where φ = φ+ or φ−. Similarly, the high-occupancy corrections (3.31) to densities

satisfy

R̂̂(t) = O
(

k2

(1− k)a

)
+O

(
εN

a

)
. (3.47)

In (3.46) and (3.47), we write f = O(g) to indicate that as a→ 0, |f/g| is bounded

by a constant that is independent of time and the parameters of the KRSOS model.

Proof. We proceed to derive (3.46) and (3.47) through heuristics. Define

f̃ ss,ε+ := k

[
ceq +

∑
α

1(ν−1(α) > 0)pss,εα /a

]

+
∑
α

1(ν1(α) > 1)ν1(α)pss,εα /a , (3.48a)

f̃ ss,ε− := k

[
ceq +

∑
α

1(ν−1(α) > 0)pss,εα /a

]

+
∑
α

1(ν1(α) > 0)ν−1(α)pss,εα /a

+
∑
α

1(ν1(α) = 0)1(ν−1(α) > 1) [ν−1(α)− 1] pss,εα /a , and (3.48b)

R̂ss,ε
̂ :=

∑
α

[ν̂(α)− 1(ν̂(α) > 0)] pss,εα /a . (3.48c)
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By Remark 2 (Chapter 2) and exact formulas (3.12) and (3.31) for f±(t) and R̂̂(t),

respectively, we have

|f±(t)| . f̃ ss,ε± , and |R̂̂(t)| . R̂ss,ε
̂ , t > 0 . (3.49)

Inequalities (3.49) are not particularly useful since they do not explicitly man-

ifest the dependence on the kinetic parameters of interest. We need to use some

results from Chapter 2 in order to refine these estimates.

In correspondence to (2.31) for the truncated system, we write pss,εα = p
ss,(0)
α +

εp
ss,(1)
α +O(ε2), where p

ss,(l)
α is the l-th order term of the underlying series expansion

in ε = F/D; in particular, p
ss,(0)
α = peqα is the zeroth-order contribution to the steady

state. The constant entering the term O(ε2) may depend on parameters of the

problem but is immaterial for our purposes. We will neglect terms with l ≥ 2 in the

ε-expansion for pss,εα .

By inspection of (3.48), we define the following sums.

S
(l)
1 :=

∑
α

1(ν−1(α) > 0)pss,(l)α , (3.50a)

S
(l)
2 :=

∑
α

1(ν1(α) > 1)ν1(α)pss,(l)α , (3.50b)

S
(l)
3 :=

∑
α

1(ν1(α) > 0)ν−1(α)pss,(l)α , (3.50c)

S
(l)
4 :=

∑
α

1(ν1(α) = 0)1(ν−1(α) > 1) [ν−1(α)− 1] pss,(l)α , (3.50d)

S
(l)
5 :=

∑
α

[ν̂(α)− 1(ν̂(α) > 0)] pss,(l)α . (3.50e)
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Accordingly, formulas (3.48) are recast to the forms

f̃ ss,ε+ = kceq +
k

a

[
S

(0)
1 + εS

(1)
1

]
+

1

a

[
S

(0)
2 + εS

(1)
2

]
+O(ε2) , (3.51a)

f̃ ss,ε− = kceq +
k

a

[
S

(0)
1 + εS

(1)
1

]
+

1

a

[
S

(0)
3 + εS

(1)
3

]
+

1

a

[
S

(0)
4 + εS

(1)
4

]
+O(ε2) . (3.51b)

First, we compute S
(0)
i (i = 1, 2, 3, 4, 5), which amount to contributions from

the equilibrium solution of the master equation, for F = 0. By (2.14) and 0 < k < 1,

we write

S
(0)
1 =

1

Z

∑
α

1(ν−1(α) > 0)k|α|

=
1

Z

∞∑
n=1

 n+N − 3

n− 1

 kn = k . (3.52)

The binomial coefficient in (3.52) is the number of n-particle configurations with at

least one adatom in the site immediately to the left of the step. Similarly, we have

S
(0)
2 =

1

Z

∑
α

1(ν1(α) > 1)ν1(α)k|α|

=
1

Z

∞∑
l=2

lkl
∞∑
n=l

 n− l +N − 3

n− l

 kn−l

= (1− k)
∞∑
l=2

lkl =
2k2 − k3

1− k
, (3.53)
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S
(0)
3 =

1

Z

∑
α

1(ν1(α) > 0)ν−1(α)k|α|

=
k

Z

∞∑
l=1

lkl
∞∑

n=l+1

 n− l − 1 +N − 3

n− l − 1

 kn−l−1

= k(1− k)
∞∑
l=1

lkl =
k2

1− k
, (3.54)

S
(0)
4 =

1

Z

∑
α

1(ν1(α) = 0)1(ν−1(α) > 1) [ν−1(α)− 1] k|α|

=
k

Z

∞∑
l=2

(l − 1)kl−1

∞∑
n=l

 n− l +N − 4

n− l

 kn−l

= k(1− k)2

∞∑
l=1

lkl = k2 , (3.55)

and

S
(0)
5 =

1

Z

∑
α

[ν̂(α)− 1(ν̂(α) > 0)] k|α|

=
1

Z

∞∑
l=2

(l − 1)kl
∞∑
n=l

 n− l +N − 3

n− l

 kn−l

= k(1− k)
∞∑
l=1

lkl =
k2

1− k
. (3.56)

We have followed the convention that the index l is used to account for restrictions

on states coming from indicator functions and the index n replaces the number of

adatoms, |α|.

All that remains is to compute terms proportional to ε. This task calls for

estimating the sums S
(l)
i , defined in (3.50), for l = 1. Hence, we would need to invoke

the first-order steady-state solution, p
ss,(1)
α , of marginalized master equation (2.5).
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As alluded to in Section 2.3.1.3, we do not have, strictly speaking, a simple closed-

form solution. Instead, by restricting attention to a finite number of particle states

(|α| ≤ M), we provide approximations for the requisite (infinite) sums over α in

averages (3.50) by finite sums when l = 1. This approximation amounts to replacing

the sums S
(1)
i with quadratic forms of appropriately defined vectors, yi ∈ RΩ(M);

thus, we write S
(1)
i ≈ yTi A

†z, where the vectors yi have entries that correspond to

the indicator functions and/or ν±1(α) according to (3.50) and z = −Bp0.

Next, we obtain estimates for S
(1)
i as follows:

|S(1)
i | ≈ |yTi A†z|

=

∣∣∣∣∣∣
[(

yTi
yTi yi

)T]†
A†
[

zT

zTz

]†∣∣∣∣∣∣
=

[ ∣∣zTAyi
∣∣

yTi yi zTz

]†
=

yTi yi z
Tz

|zTAyi|

.
∣∣zTAyi

∣∣−1
, (3.57)

whenever zTAyi 6= 0. The above calculation uses several properties of the Moore-

Penrose pseudoinverse, i.e. y† = yT/(yTy) provided y 6= 0 (second line), (AB)† =

B†A† (third line), and the pseudoinverse of a nonzero constant is its multiplicative

inverse (fourth line). The last line of (3.57) results from observing that the numer-

ator contributes a constant independent of model parameters for each i, provided

F ≥ τ−1. Since A, B, p0, and yi are known, (3.57) is a computable estimate.

Straightforward matrix-vector products yield

|S(1)
i | .


N

1+φ
, i = 1, 2, 3, 4,

N , i = 5;

(3.58)
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in the above, φ = φ+ or φ−. In our calculation of (3.58), we invoke the assumption

that F ≥ τ−1. Consequently, the desorption rate does not enter our estimates.

In summary, if the initial data of the atomistic system is near the steady state

in the sense of (2.35), then “maximum principle” (2.32) implies (3.49). Inequali-

ties (3.49) along with (3.50)–(3.58) yield estimates (3.46) and (3.47) for 0 < k < 1,

F ≥ τ−1, and sufficiently small ε. This statement concludes our heuristic proof of

Proposition 5. �

A few comments on the above proposition are in order. First, it should be

noted that estimates (3.46) and (3.47) can also be applied to the quasi-conservative

parameter regime. To see this, recall that partition function (2.21) factorizes into

α-dependent and m-dependent parts, and hence computation of sums (3.52)-(3.56)

in that parameter regime is the same as the conservative case, i.e. f±(t) and R̂̂(t)

are both O( k
1−k

k
a
).

Second, we must emphasize that the estimates in Proposition 5 are based

upon several assumptions and approximations, including: (i) application of the

“maximum principle” (Proposition 1, Chapter 2); (ii) truncation of marginalized

master equation for ε > 0; (iii) asymptotics for the Laplace transform and formal

power-series expansion for steady-steady distribution, pssα ; and (iv) L∞-bounds for

correction terms (3.12) and (3.31). Consequently, estimates (3.46) and (3.47) are

not expected to be optimal. In particular, the bounds involving ε can likely be

improved.

Finally, by Proposition 5, if we assume that k/a = O(1), φ ≤ O(1) [49, 71]

and ε < O(a2), we can assert that f±(t) can be neglected when compared to the
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linear-in-density part of the discrete flux J±(t). Furthermore, the corrections R̂̂(t)

are small compared to density c̂(t), and hence ρj(t)− %j(t)� ρj(t) as well. These

controlled approximations reveal a kinetic regime in which equations (3.11), (3.33),

and the discrete diffusion equation in (3.14) reduce to discrete versions of linear

kinetic relation (3.4), Fick’s law (3.3) and the continuum diffusion equation for

density. This observation motivates the next section.

3.4 Coarse graining

In this section, we derive the continuum step-flow equations of the discrete

mesoscale model in the limit where the lateral lattice spacing, a, approaches zero,

and the microscale kinetic parameters scale properly with a. Our formal argument

forms an extension of the work in [71], which studied the case of conservative dy-

namics, to the non-conservative case. Accordingly, as a → 0, we extract a set of

BCF-type equations for adatom diffusion, boundary conditions at the step, and the

step velocity law.

In view of Proposition 5, let us impose

k = O(a) , ε = O(a3) , and F ≥ τ−1 , (3.59)

which ensure that high-occupancy corrections R̂̂(t) and ρj(t)−%j(t) are small com-

pared to the corresponding densities. On the other hand, we assume ρj(t)→ ρ(x, t)

and c̂(t) → C(x̂, t) as the lattice parameter approaches zero, a → 0. The Taylor

expansion of ρ(x, t) about x = ja yields

ρj−1(t)− 2ρj(t) + ρj+1(t)

a2
=
∂2ρ

∂x2
(ja, t) +O(a2) .
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By the usual notion of macroscopic diffusion, it is natural to set D := Da2 = O(1),

the surface diffusivity; and F := F
(N−1)a

, the deposition flux per unit length [49,71].

Thus, (3.30), with (3.59), imply

∂ρ

∂t
= D∂

2ρ

∂x2
+ F − 1

τ
ρ−D∂

2R

∂x2
+

1

τ
R , (3.60)

as a → 0, where R(x, t) is the continuum limit of the high-occupancy corrections

in Eulerian coordinates. By (3.59), the terms F , D ∂2R/∂x2, and τ−1R are O(a),

and hence are negligible to leading order. Excepting corrections D ∂2R/∂x2 and

τ−1R, the resulting equation for ρ(x, t) is the anticipated diffusion equation in Eu-

lerian coordinates; cf. (3.2). By sharpening estimates for ε in Proposition 5, F may

subsequently appear as a leading-order term.

Furthermore, the observation that R̂̂(t) = O(a) enables us to obtain Fick’s

law of diffusion at the step edge, via (3.33). By Taylor expanding the Lagrangian

adatom density, C, about x̂ = ̂a with ̂ = 0 for the right (+) side of the step and

̂ = N − 1 for the left (−) side of the step as a→ 0, we obtain the formulas

J+(t) = −D ∂C
∂x̂

∣∣∣∣
x̂=0+

+O(a) , (3.61a)

J−(t) = −D ∂C
∂x̂

∣∣∣∣
x̂=L−

+O(a) , (3.61b)

where x̂ = ̂a and L = Na = O(1) by virtue of the screw-periodic boundary

conditions. In the above, we used the expansions c2(t) − c1(t) = a[(∂C/∂x̂)|x=0+ +

O(a)] and c−2(t)−c−1(t) = a[−(∂C/∂x̂)|x=L−+O(a)]. Notice that the advection term

appearing in (3.3) is absent from (3.61) due to discrete dynamics, as explained in

Remark 9. Nevertheless, (3.61) agrees with (3.3) to leading order since vC± = O(a).
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Equations (3.61) need to be complemented with kinetic boundary conditions

at the step edge. Hence, we now apply (3.11) with (3.12) and (3.46). First, we set

κ± := Dφ±a = O(1) [49, 71]. Second, by inspection of estimate (3.46), we assume

φ± ≤ O(1) along with (3.59). Consequently, we can assert that |f±(t)| = O(a).

Thus, by (3.11) we obtain

J+(t) = −κ+

[
C(0+, t)− ceq

]
+O(a) , (3.62a)

J−(t) = κ−
[
C(L−, t)− ceq

]
+O(a) , (3.62b)

as a→ 0; recall that ceq = k/a
1−k ≈ k/a if k = O(a) [71].

The last component of the BCF model that emerges from the discrete equations

is the step velocity law. This law is provided by (3.41); in this equation, the factor

multiplying the difference in the adatom flux across the step edge equals Ω/a′.

Thus, (3.41) is precisely (3.1) pertaining to the BCF model.

3.5 Characterizing discrete corrections with KMC simulations

In this section, we carry out KMC simulations to illustrate the behavior of

adatom fluxes at the step edge and adatom diffusion on the terrace when model

parameters allow the discrete corrections (3.12) and (3.31) to be large. We demon-

strate that in a regime of high detachment or deposition flux, the boundary condition

for the adatom fluxes at the step edge can deviate significantly from linear kinetic

relation (3.62); thus, in principle the corrective fluxes, f±(t), may not be negligi-

ble. Furthermore, high-occupancy corrections are also shown to be significant for

extreme values of k and ε.
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At this stage we attempt to outline plausible conditions by which the con-

ventional BCF model, particularly the linear kinetic relation for the flux, becomes

questionable. By estimates (3.46) and (3.47) of Proposition 5, the microscale sys-

tem may no longer be modeled in accord with the BCF theory if, for example:

k = O(1); or, k = O(a) and ε = O(a). These conditions indicate situations in which

high adatom densities may occur, because of large enough detachment rate at the

step edge or high enough deposition onto the surface from above. In the following

numerical study, we investigate the consequences of these parameter regimes for

both the linear kinetic relation and adatom diffusion.

3.5.1 Corrections to linear kinetic relation

Since we have been unable to express the corrective fluxes f±, found in (3.11),

in terms of mesoscale quantities such as the adatom density, KMC simulations are

our primary tool for characterizing their magnitude when compared to the linear-in-

density part of the flux at the step edge. What we find is that for moderate values

of k and ε, the linear kinetic relation (3.62), with neglect of the corrective fluxes, f±,

is found to provide a reasonably accurate approximation for the adatom flux at the

step edge. In contrast, for extreme parameter values such as k > 0.01 or ε > 0.01,

the flux at at the step edge deviates from the conventional linear behavior. These

deviations, which indicate that adatom flux may be a nonlinear function of density,

manifest themselves differently in parameter regimes with (a) large k but small ε,

compared to (b) small k, but large ε cases.
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Figure 3.2: Plots of KMC simulations (black circles) and linear kinetic re-
lation (red line) for adatom flux versus density on the right of step edge for
different values of detachment rate, with parameters N = 50, D = 1010,
φ± = 1, ε = 0, τ−1 = 0, and either (a) k = 0.0001 or (b) k = 0.1. In each
plot, the solid line represents linear kinetic relation (3.62), by neglect of f+.
The error bars are determined by use of the standard deviation of flux in 10
ensembles of (a) 107 simulations and (b) 105 simulations.

First, let us consider the high-detachment rate case with zero deposition, as

these are depicted in Figure 3.2. If the density is sufficiently close to its equilibrium

value, ceq, then the adatom flux at the step edge is approximately linear with density

but with a slope that can be different from the value Dφ+a predicted by kinetic

law (3.62). For large enough k, the dependence of adatom flux on density evidently

becomes nonlinear. This nonlinear behavior becomes more pronounced for larger k.

Next, consider a small detachment factor, k, but large ε; see Figure 3.3. We

observe that for small ε, Figure 3.3(a), the flux computed via KMC simulations

agrees reasonably well with linear kinetic law (3.62) for a wide range of values for

the density to the right of the step, c1. For a larger value of ε, Figure 3.3(b), the

flux remains linear in the density with a slope equal to the predicted value, Dφ+a,
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Figure 3.3: Plots of KMC simulations (black circles) and linear kinetic re-
lation (red line) for adatom flux versus density on the right of step edge for
different values of detachment rate, with parameters N = 50, D = 1010,
φ± = 1, k = 0.0001, τ−1 = 0, and either (a) ε = 0.01 or (b) ε = 0.04. In each
plot, the solid line represents linear kinetic relation (3.62), by neglect of f+.
The error bars are determined by use of the standard deviation of flux in 10
ensembles of 105 simulations in each case.

as the density approaches its equilibrium value. However, as the adatom density

increases, the nonlinear dependence of the flux is noticeable. The magnitude of

this nonlinearity varies in direct correspondence with ε. It is worth noting that an

increase in the deposition rate ε used in KMC simulations beyond the one used in

Figure 3.3(b), even by a factor of two, drastically alters the long-time behavior of

the system: Apparently, no steady state can be established for sufficiently large ε;

see also Appendix B.

As described above, the high-k and high-ε cases, Figures 3.2(b) and 3.3(b),

respectively, differ in the way that the corrective flux f+ is manifested in the observed

value of the flux. Let us make an effort to discuss the origin of this behavior in the

context of the atomistic model by inspection of formula (3.12a). The first line in
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these formulas contains the prefactor k along with a sum over states with one or more

adatoms in the lattice site corresponding to the edge atom. This set of configurations

does not allow for atom detachment; thus, according to this contribution to f+, the

change of the flux with density should be suppressed. This prediction should explain

the behavior of the slope of the flux versus density as shown in Figure 3.2 as c1

approaches ceq. The remaining terms in (3.12a) come from two- or higher-particle

states, which furnish significant contributions if k or ε is sufficiently large. These

remaining corrections account for configurations in which attachment is inhibited,

thus causing an overall increase of the flux out of the step. This prediction is

consistent with Figure 3.3.

We have been unable to explicitly express the corrective fluxes, f±(t), as a

function of adatom densities c±1(t) on the basis of the analytical model. In order

to quantify the nonlinear behavior of the flux near the step edge, we fit the fluxes

computed by KMC simulations to polynomials of c1 − ceq. Figure 3.4 shows the

fitted flux in two cases where deviations are significant: High k with small ε; and

high ε with small k. In each case, a quadratic polynomial appears to adequately

capture the behavior of the flux versus adatom density at the right of the step.

We conclude that a linear kinetic relation for the adatom flux at the step edge

in principle does not suffice to capture the full range of phenomena displayed by

the atomistic KRSOS model. Instead, it is more reasonable to propose a discrete

expansion of the form

∓ J± ≈
N∗∑
n=1

B
(n)
± [c±1(t)− ceq]n , (3.63)
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Figure 3.4: Plots of KMC simulation data (black circles) and a quadratic fit
(red curve) for adatom flux versus density on the right of step edge, for high
detachment rate or high deposition rate. Model parameters include N = 50,
D = 1010, φ± = 1, and τ−1 = 0, together with (a) k = 0.1 and ε = 0; or
(b) k = 0.0001 and ε = 0.04. In each plot, the red curve is determined by
fitting the data to the polynomial in (3.63) with N∗ = 2. The error bars are
determined by use of the standard deviation of flux in 10 ensembles of 105

simulations in each case.

where the number, N∗, would be speculated empirically. At the mesoscale, the

corresponding constitutive relation for the flux at the step edge is a nonlinear kinetic

relation. A systematic derivation of such a relation from the atomistic model is still

elusive.

Remark 10. Based on our KMC results, we expect the conventional linear kinetic

relation (3.4) of the BCF model to be valid if

A := k +
ε

φ+ + φ−
� 1 . (3.64)

This empirical criterion appears less restrictive on ε than estimates (3.46) and (3.47),

suggesting that the bounds in Proposition 5 may be improved. Accordingly, if A is

large enough, then (nonlinear) terms with n ≥ 2 should become significant.
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In our KMC simulations, we observe that the linear kinetic relation for the

adatom flux is reasonably accurate if the quantity A of (3.64) does not exceed 0.01.

3.5.2 Corrections to diffusion

Now we consider the effect of detachment rate and deposition rate on high-

occupancy corrections (3.31), which influence the diffusion of adatoms on the ter-

race. In contrast to the corrective fluxes entering (3.11), the corrections to discrete

diffusion can be expressed as differences in adatom density (3.7a) and dilute den-

sity (3.8a), which we measure in KMC simulations. Numerically, we find that the

corrections, R̂̂, vary in direct correspondence with detachment factor k and the

deposition rate, measured by ε. In addition, our simulation results provide evidence

that estimate (3.47) is conservative, at least in regard to dependence on ε.

First, we consider the behavior of R̂̂ with detachment rate. Figure 3.5 shows

snapshots of the density profile on the terrace at various times during KMC simu-

lations, as well as the high-occupancy corrections measured in equilibrium. These

plots indicate that the magnitude of corrections R̂̂ are about a factor of k smaller

than adatom densities, in agreement with the estimate in Proposition 5; see (3.56),

which predicts the value of R̂̂ in equilibrium (ε = 0).

Next, let us discuss the ε-dependence of high-occupancy corrections R̂̂. Fig-

ure 3.6 provides density plots in addition to the values of R̂̂ measured in steady-state

using KMC. For both plots in Figure 3.6, the magnitude of corrections are less than

ε/a: For Figure 3.6(a), max
̂
R̂̂ < 0.01ε/a, whereas Figure 3.6(b) shows max

̂
R̂̂ ≈
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Figure 3.5: Snapshots of density and associated corrections when k is varied.
Plots include: (a) and (b) adatom density, c̂(t), computed from KMC sim-
ulations at times t = 1.6 × 10−10 (red triangles), 2.5 × 10−9 (green squares),
4.0×10−8 (blue stars), 6.3×10−7 (cyan x-marks), and 1×10−5 (black circles);
(c) and (d) corrections, R̂̂, defined in (3.31), computed from KMC simula-
tions at time t = 1.0 × 10−5. Model parameters are chosen to be N = 50,
D = 1010, φ± = 1, ε = 0, and τ−1 = 0, together with (a) and (c) k = 0.0001;
or (b) and (d) k = 0.1. Averages were obtained using (a) and (c) 108 simula-
tions; or (b) and (d) 106 simulations. Notice that in (a) and (b) there is no
apparent difference between density profiles at t = 6.3× 10−7 (cyan x-marks)
and t = 1.0 × 10−5 (black circles), indicating that the adatom density ap-
proaches equilibrium on the timescale of the simulations. Predicted value of
equilibrium adatom density from (3.9) is (a) ceq = 0.0001 or (b) ceq = 0.1111.
Predicted value of R̂̂ in equilibrium is (c) kceq = 10−8 or (d) kceq = 0.01111,
in close agreement with the data.
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ε/a. In comparison, Proposition 5 predicts that corrections are bounded by Nε/a.

Our KMC simulations indicate that sharper bounds for ε > 0 contributions to dis-

crete corrections, in (3.47), are plausible. For example, R̂̂ = O
(

k2

(1−k)a

)
+ O

(
ε
a

)
would not be unreasonable given our data.

In summary, the findings of our numerical study of high-occupancy corrections

to adatom diffusion, R̂̂, are consistent with estimate (3.47) of Proposition 5. No-

tably, for the case of conservative dynamics (ε = 0), KMC simulations suggest that

the estimate R̂̂ = O(k ceq) is optimal. Conversely, our numerics provide reasonably

strong evidence that the ε-dependent estimates in Proposition 5 are not optimal.

In principle, a better bound for these corrections could be determined empirically

using KMC. However, we are unable to make such a prediction with our limited

simulation data.

3.6 Summary and discussion

In this chapter, we derived discrete counterparts of various components of the

BCF model, with corrections. First, the adatom fluxes J±(t), defined in terms of

probability currents measuring the net detachment of atoms from the step, enabled

us to derive the discrete analog of linear kinetic relation (3.4) in Proposition 2.

Second, by applying a time derivative to adatom density ρj(t) and invoking sym-

bolic master equation (2.12), the discrete equation of motion found in Proposition 3

made manifest a discrete diffusion equation for adatom density, plus boundary con-

ditions at the step edge. Third, Proposition 4 made further use of symbolic master
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Figure 3.6: Snapshots of density and associated corrections when ε is varied.
Plots include: (a) and (b) adatom density, c̂(t), computed from KMC sim-
ulations at times t = 1.6 × 10−10 (red triangles), 2.5 × 10−9 (green squares),
4.0 × 10−8 (blue stars), 6.3 × 10−7 (cyan x-marks), and 1.0 × 10−5 (black
circles); (c) and (d) corrections, R̂̂, defined in (3.31), computed from KMC
simulations at time t = 1.0 × 10−5. Model parameters are chosen to be
N = 50, D = 1010, φ± = 1, k = 0.0001, and τ−1 = 0, together with (a) and
(c) ε = 0.0001; or (b) and (d) ε = 0.04. Averages were obtained using (a) and
(c) 107 simulations; or (b) and (d) 106 simulations. Notice that in (a) and (b)
there is only a small change between density profiles at t = 6.3× 10−7 (cyan
x-marks) and t = 1× 10−5 (black circles), indicating that the adatom density
approaches steady state on the timescale of the simulations. Predicted bound
for R̂̂ in steady state is (c) Nε/a = 0.005 or (d) Nε/a = 2, which exceeds
numerically obtained values considerably.
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equation (2.12) to compute ς̇(t), resulting in step velocity law (3.41).

We also pay special attention to the correction terms that emerge from our

analysis, of which there are two types: Corrective fluxes f±(t) accompanying the

discrete linear kinetic relation, and high-occupancy corrections R̂̂ associated with

discrete diffusion. Each of these arise from aspects of the underlying KRSOS model.

As noted in Remark 7, the terms f±(t) are related to atomistic rules forbidding

attachment and detachment in certain configurations. These rules are required in a

1D SOS-type model including steps. A useful discussion of this fact can be found

in [71]. On the other hand, the high-occupancy corrections result from a modeling

choice made in the formulation of the KRSOS model: Only a single adatom may hop

away from multiply-occupied lattice sites. Compare this choice of discrete dynamics

with Fick’s law of diffusion, which postulates that flux (of adatoms in our case) is

proportional to a gradient in density. If we interpret “gradient in density” for the

atomistic system to be the difference of the number of adatoms at neighboring lattice

sites, it would appear that the KRSOS model does not obey Fick’s law of diffusion

on account of the kinetic interaction of adatoms; see Remark 8. It is compelling to

ask how a discrete model that does obey Fick’s law of diffusion might differ from the

KRSOS model introduced Chapter 2. This is addressed in the next chapter.

The final component of this chapter involves characterizing both types of cor-

rections via analytical estimates, summarized in Proposition 5, and numerical com-

putations, provided in Section 3.5. Our derivation of estimates in Section 3.3 relies

on the “maximum principle”, Proposition 1 (Chapter 2), as well as the formulas

for equilibrium and steady-state distributions provided in Chapter 2. The main
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application of our estimates is the coarse-graining of discrete BCF-like equations in

Section 3.4, which requires that corrections are O(a) in the limit of small lattice

spacing. One consequence of Proposition 5 in those formal calculations is that the

mesoscale deposition flux, F , should be O(a) in the continuum limit, and therefore

negligible to leading order. In contrast, KMC simulations presented in Section 3.5

indicate that corrections may be small even if F , the microscale deposition rate, is

larger that our analytical estimates require. As a result, we suspect that the bounds

obtained in Section 3.3 are non-optimal for terms involving ε = F/D; and there-

fore the mesoscale deposition flux entering (3.60) is actually a leading-order term

in the continuum limit, as a→ 0, of the discrete diffusion equation induced by the

atomistic dynamics of the KRSOS model.
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Chapter 4: Alternate atomistic model

In this chapter, we introduce an alternate KRSOS model that results from the

modification of a few transition rates of the KRSOS model defined in Chapter 2,

and subsequently investigate the consequences of these modifications. Motivated

by the conclusion in Chapter 3 concerning the apparent kinetic interaction between

adatoms included in the original KRSOS model, the alternate KRSOS model allows

adatoms to move in any configuration, without the restriction that only a single

adatom may hop away from multiply-occupied lattice sites. This prescription is

consistent with Fick’s law of diffusion, and also forms a reasonable atomistic model

of a single-step system in 1D.

Broadly speaking, the properties of the alternate KRSOS model are not dif-

ferent from the original KRSOS model. Nevertheless, it is interesting to ask how

our simple modification of the original KRSOS model impacts the derivation of the

BCF model. It is reasonable to expect, for example, that the alternate KRSOS

model does not introduce the same high-occupancy corrections to discrete diffusion.

Accordingly, the goal of this chapter is to explore the principal differences between

our two atomistic models, and the consequences of using each model as a starting

point for the derivation of a mesoscale model.
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In this chapter, we provide the master equation for the alternate KRSOS

model and derive the equilibrium distribution satisfying it for long enough times.

It turns out that this equilibrium distribution differs considerably from the one

obtained in Chapter 2 for the original KRSOS model. By recourse to the canonical

ensemble of statistical mechanics, we attribute the difference in long-time behavior

to the fact that adatoms in multiply-occupied lattice sites are distinguishable in

the original KRSOS model, but indistinguishable in the alternate KRSOS model.

This fundamental difference implies that the alternate KRSOS model is described

by a different statistical distribution of particle states in equilibrium, which we also

provide.

Following a similar approach as the one from Chapter 3, we use an “alternate

master equation” in the derivation of a discrete, BCF-like description of evolution

for averages such as adatom density and flux at the step edge. As anticipated, the

discrete diffusion equation does not involve high-occupancy corrections, whereas

the discrete analog of the linear kinetic relation does retain certain corrective fluxes,

albeit in a much simplified form compared to (3.12) from the last chapter. In the

last part of this chapter, we give a quantitative comparison of corrections that result

from the original and alternate KRSOS models, computed via KMC simulations.

We find that corrections emerging from the alternate KRSOS model are universally

smaller than the corresponding corrections in the original KRSOS model.
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4.1 Model definition

We now introduce an alternate KRSOS model that shares many attributes

with the KRSOS model of [70, 71], which we used in Chapters 2 and 3. In fact,

from a model definition standpoint, the two atomistic models are ostensibly the

same. We will make use of the same notation to characterize the system, e.g.,

Definitions 1 and 2 (Chapter 2), as well as the PDF pα,m(t) to express the time-

dependent probability of finding the system in a given configuration. The evolution

of this probability density is described by a master equation with rules for discrete

transitions which differ from those in (2.2) in one essential way: In the alternate

KRSOS model, adatoms move completely independently of one-another. While

only three transition rates are affected, this philosophical change has widespread

consequences.

In the remainder of this section, we define an alternate master equation that

is devoid of adatom-adatom interactions, and explore the implications of this mod-

ification on the long-time behavior of the atomistic model. As was done for the

original KRSOS model in Chapter 2, we find the equilibrium distribution describing

the asymptotic behavior of the atomistic model when dynamics are conservative

or quasi-conservative. At the end of the section, we comment on the steady-state

solution for non-conservative dynamics.
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4.1.1 Alternate master equation

Let us now make an attempt to outline, by way of example, the atomistic

transitions that must be altered in the KRSOS model introduced in [71] in order to

remove the kinetic interaction between adatoms. The simplest scenario illustrating

the effect of kinetic interactions in the original model involves just two adatoms

the same lattice site, e.g. α = {ı̂, ı̂}. If ı̂ is away from the step, the transition to

{ı̂, ı̂ ± 1} occurs with constant hopping rate D; only one adatom is allowed to hop

away from site ı̂ even though two are present. Alternatively, if both adatoms are

allowed to hop away, the transition from {ı̂, ı̂} to {ı̂, ı̂± 1} occurs with rate 2D; see

Figure 4.1. Accordingly, if α describes a state where n adatoms are present at site

ı̂, i.e. νı̂(α) = n, then the transition from α to αı̂
ı̂±1 is assigned rate nD in the

alternate KRSOS model. Hence, adatoms move completely independently on the

terrace.

In addition to terrace hopping, there are two other types of transitions that

we alter: (i) Attachment to the step edge from the left, and (ii) desorption. Again,

we consider a scenario where νı̂(α) = n. For (i), if ı̂ = −1, so that there are n

adatoms to the left of the step, then an adatom may attach to the step from the left

with rate nDφ−. Note that the same kind of transition should not be possible from

the right of the step when n > 1, which would result in the step advancing by more

than one lattice site. Thus, attachment from the right is unchanged in the alternate

KRSOS model. Finally, for (ii), since all adatoms are mobile, an adatom evaporates

from site ı̂ with rate n/τ . Stated simply, adatoms leave multiply-occupied lattice
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D

Figure 4.1: Example of adatom hopping transitions away from the step for
(a) the original KRSOS model described in Chapter 2; and (b) the alternate
KRSOS model described in Chapter 4. Mobile adatoms are shown in dark
grey. In (a), only the top adatom in a stack may hop away from site j due
to the kinetic interaction between adatoms. In (b), all adatoms are mobile,
regardless of the presence of other adatoms.

sites with a rate proportional to the number of adatoms occupying that site.

With the above prototypical situations in mind, we now define the alternate

master equation and accompanying rules for transitions between atomistic config-

urations. The probability of finding the system in state (α,m) at time t evolves

according to

ṗα,m(t) =
∑
α′,m′

T(α,m),(α′,m′)pα′,m′(t) , (4.1)

with given initial data, pα,m(0). As with previous master equations, T(α,m),(α′,m′)

expresses the overall transition of the system from state (α′,m′) to state (α,m).
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These transition rates are determined by the following rules:

T(α,m),(α′,m′) = Dνı̂(α
′), if m = m′ and |α| = |α′| and α′ \α = {ı̂}

and
∣∣∣||α \α′|| − ||α′ \α||∣∣∣ = 1; (4.2a)

T(α,m),(α′,m′) = Dφ+, if m = m′ and |α| = |α′| − 1

and α′ \ α̃ = {1}; (4.2b)

T(α,m),(α′,m′) = Dφ−ν−1(α′), if m = m′ and |α| = |α′| − 1

and α′ \ α̃ = {−1}; (4.2c)

T(α,m),(α′,m′) = Dkφ±, if m = m′ and |α| = |α′|+ 1

and α \ α̃′ = {±1}; (4.2d)

T(α,m),(α′,m′) =
νı̂(α

′)

τ
, if m = m′ − 1 and |α| = |α′| − 1

and α′ \α = {ı̂}; (4.2e)

T(α,m),(α′,m′) =
F

N − 1
, if m = m′ + 1 and |α| = |α′|+ 1

and |α \α′| = 1; (4.2f)

and, so that probability is conserved,

T(α′,m′),(α′,m′) = −
∑
(α,m)

(α,m)6=(α′,m′)

T(α,m),(α′,m′) for all (α′,m′). (4.2g)

All other transitions are assigned the rate zero; some notable examples include

T(α,m),(α′,m′) = 0, if m = m′ and |α| < |α′| − 1 or |α| > |α′|+ 1; (4.2h)

T(α,m),(α′,m′) = 0, if m = m′ and |α| = |α′|+ 1

and − 1 ∈ α′; (4.2i)

T(α,m),(α′,m′) = 0, if m = m′ − 1 and |α| ≥ |α′|; (4.2j)

T(α,m),(α′,m′) = 0, if m = m′ + 1 and |α| ≤ |α′|. (4.2k)

In the above, the effect of allowing adatoms to move without kinetic interactions,

indicated by factors νı̂(α
′), is shown in rules (4.2a), (4.2c), and (4.2e), corresponding

to terrace hopping, attachment from the left, and desorption, respectively; cf. (2.2).

All other transition rates are identical to those introduced in Section 2.2.1.
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4.1.2 Long-time behavior

In this section, we find the equilibrium distribution satisfying (4.1) and outline

its important consequences. Particularly, we show that the number of adatoms

on the terrace in equilibrium follow a Poisson distribution and subsequently find

an expression for the equilibrium adatom density in the alternate KRSOS model.

Throughout our exposition, we make an effort to point out differences with the

original KRSOS model, many of which are negligible in certain asymptotic limits of

N and k.

We begin by stating the main result of this section:

Proposition 6. (Equilibrium distribution of alternate KRSOS model) The master

equation for the alternate KRSOS model, (4.1), with transition rates (4.2), satisfies

detailed balance conditions

T(α,m),(α′,m′)π(α′,m′) = T(α′,m′),(α,m)π(α,m) , (4.3)

where

π(α,m) =
k|α|∏̂

ı

νı̂(α)!

(
Fτ

(N − 1)k

)m
. (4.4)

Furthermore, if R = Fτ
(N−1)k

< 1 and m0 is a (finite) lower bound on mass, an

equilibrium distribution exists since

Z =
∑

(α,m)

π(α,m) = e(N−1)k Rm0

1−R
(4.5)

is finite. Normalization of (4.4) by (4.5) yields the following equilibrium distribution
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of alternate master equation (4.1):

peqα,m =
e−(N−1)kk|α|∏̂

ı

νı̂(α)!
(1−R)Rm−m0 . (4.6)

Proof. We prove the proposition in two parts: We (I) verify detailed balance condi-

tions (4.3) for transition rates (4.2), and (II) compute normalization constant (4.5).

By Theorem 2 in Appendix A, (I) and (II) imply the existence and uniqueness of

equilibrium distribution (4.6).

Part I: Detailed balance. To show that transition rates (4.2) satisfy con-

ditions (4.3), we must relate each transition to the corresponding reverse pro-

cess. Accordingly, we consider three sets of transitions: terrace hopping, attach-

ment/detachment, and deposition/desorption.

First, in the case of terrace hopping, we assume without loss of generality that

the transition from α′ to α involves an adatom hopping from site ı̂∗ to site ı̂∗ + 1.

Now, since |α| = |α′| and m = m′, we have that

T(α,m),(α′,m′)π(α′,m′) = Dνı̂∗(α
′)k|α

′|
(

Fτ

(N − 1)k

)m′∏
ı̂

1

νı̂(α′)!

= Dk|α
′|
(

Fτ

(N − 1)k

)m′
1

[νı̂∗(α′)− 1]!

1

νı̂∗+1(α′)!

∏
ı̂ 6=ı̂∗ ,̂ı∗+1

1

νı̂(α′)!

= Dνı̂∗+1(α)k|α|
(

Fτ

(N − 1)k

)m
1

νı̂∗(α)!

1

νı̂∗+1(α)!

∏
ı̂ 6=ı̂∗ ,̂ı∗+1

1

νı̂(α)!

= T(α′,m′),(α,m)π(α,m) . (4.7a)

Second, for attachment/detachment, consider the case where an atom detaches

to the upper terrace in the transition from α′ to α. The corresponding transitions

involving the lower terrace can be argued in the same way, but is simplified by the
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fact that only states with one adatom immediately to the right of the step allow

for attachment. For attachment/detachment on the left of the step, it is enough to

show (4.3) when ν−1(α) = n = |α| = |α′|+ 1 and m = m′. Then,

T(α,m),(α′,m′)π(α′,m′) = Dkφ−k
|α′|
(

Fτ

(N − 1)k

)m′
1

(n− 1)!

= Dφ−nk
|α′|+1

(
Fτ

(N − 1)k

)m′
1

n!

= Dφ−nk
|α|
(

Fτ

(N − 1)k

)m
1

n!

= T(α′,m′),(α,m)π(α,m) . (4.7b)

Third, in the case of deposition/desorption, lets assume the transition (α′,m′)

to (α,m) involves the deposition of a particle at site ı̂∗. Then it follows that,

|α| = |α′|+ 1, m = m′ + 1, and νı̂∗(α) = νı̂∗(α
′) + 1, which imply

T(α,m),(α′,m′)π(α′,m′) =
F

N − 1
k|α

′|
(

Fτ

(N − 1)k

)m′∏
ı̂

1

νı̂(α′)!

=
[νı̂∗(α

′) + 1]

τ
k|α

′|+1

(
Fτ

(N − 1)k

)m′+1
1

[νı̂∗(α′) + 1]!

∏
ı̂ 6=ı̂∗

1

νı̂(α′)!

=
νı̂∗(α)

τ
k|α|

(
Fτ

(N − 1)k

)m
1

νı̂∗(α)!

∏
ı̂6=ı̂∗

1

νı̂(α)!

= T(α′,m′),(α,m)π(α,m) . (4.7c)

Equations (4.7) prove the detailed balance conditions (4.3).

Part II: Normalization. All that remains is to compute the (finite) normaliza-
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tion constant, Z, given by (4.5). Since
∑̂
ı

νı̂(α) = |α|, we have that

Z =
∑
α,m

k|α|
(

Fτ

(N − 1)k

)m∏
ı̂

1

νı̂(α)!

=
∑
α

∏
ı̂

kνı̂(α)

νı̂(α)!

∞∑
m=m0

(
Fτ

(N − 1)k

)m
=
∞∑
n=0

∑
α

|α|=n

∏
ı̂

kνı̂(α)

νı̂(α)!

Rm0

1−R

=
∞∑
n=0

1

n!

∑
α

|α|=n

n!∏̂
ı

νı̂(α)!

∏
ı̂

kνı̂(α) Rm0

1−R

=
∞∑
n=0

1

n!
[(N − 1)k]n

Rm0

1−R

= e(N−1)k Rm0

1−R
. (4.8)

The penultimate line of (4.8) is found via the multinomial theorem. �

Equilibrium distribution (4.6) of the alternate KRSOS model corresponds to

peqα,m discussed in Chapter 2 for the quasi-conservative case; cf. (2.22) and (2.21).

Interestingly, the mass-dependent components of each distribution, including the

factor R
m0

1−R in their normalizing constants, are identical. The time-invariant dis-

tribution of the alternate KRSOS model for conservative dynamics, when mass is

fixed, is highlighted in the following remark.

Remark 11. When the dynamics of alternate KRSOS model are conservative, i.e.

F = 0 and τ−1 = 0, the equilibrium distribution satisfying master equation (4.1) with

transition rates (4.2) follows directly from Proposition 6: If pα,m(0) = δm,m0pα(0),

the (mass-independent) equilibrium is

peqα =
e−(N−1)kk|α|∏̂

ı

νı̂(α)!
. (4.9)
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Two important consequences of Proposition 6 and Remark 11 are the distri-

bution of particle states and the calculation of the equilibrium adatom density, ceq.

First, let us determine the probability of n-particle configurations. By (4.9) and the

multinomial theorem, we have that

P (|α| = n) = e−(N−1)k
∑
α

|α|=n

k|α|
∏
ı̂

1

νı̂(α)!

=
e−(N−1)k

n!

∑
α

|α|=n

n!∏
ı̂ νı̂(α)!

∏
ı̂

kνı̂(α) =
[(N − 1)k]n e−(N−1)k

n!
. (4.10)

Evidently, the equilibrium distribution of particle states in the alternate KRSOS

model is described by Poisson statistics. Recall that this is only true of the original

KRSOS model in an asymptotic sense; see Section 2.3.1.1. We conclude that the

mean and variance for the number of adatoms in equilibrium are

〈n〉 = (N − 1)k , (4.11)

and

〈n2〉 − 〈n〉2 = (N − 1)k . (4.12)

Equation (4.11) shows excellent agreement with the results of KMC simulations in

Figure 4.2.

Next, the equilibrium density is readily computed using (4.11), viz.,

ceq =
〈n〉

(N − 1)a
=
k

a
. (4.13)

In comparison to the equilibrium density of the original KRSOS model, (3.9), equa-

tion (4.13) differs by a factor of (1 − k). This difference is negligible in the dilute

limit, i.e., ceq ∼ ceq as k → 0.
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Figure 4.2: The average particle number, 〈n〉, versus time t computed from
KMC simulations of the alternate KRSOS model with conservative dynamics,
where F = 0 and τ−1 = 0. Simulation data (black circles) agrees with the
predicted value (red line) found from equation (4.11) when (a) k = 0.0001
and (b) k = 0.1. The long-time value in the large-k case, plot (b), is markedly
different than in the original KRSOS model; cf. Figure 2.3. In both (a) and
(b) N = 50, D = 1010 and φ± = 1. Averages were obtained using 108 and
106 simulations, respectively.

Before concluding this section, we are compelled to address two lingering ques-

tions: (i) What can be said about the long-time behavior of the alternate KRSOS

model with non-conservative dynamics? And, (ii) Does the “maximum principle”,

Proposition 1, of Chapter 2 have any utility in the analysis of the alternate KRSOS

model?

Question (i) is addressed in the next remark.

Remark 12. When the dynamics of alternate KRSOS model are non-conservative,

F > (N−1)k
τ

, an expression for the steady-state distribution of a truncated mas-

ter equation may be obtained following the approach in Chapter 2. The important

assumptions leading to equation (2.31) may be applied, without modification, to a

marginalized version of alternate master equation (4.1), provided |α| is bounded.
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In light of the observation in Remark 12, it would be easy to write down

the formula corresponding to (2.31) for the alternate KRSOS model. However,

since the goals of this chapter are slightly different from the previous two, such

a formula is unnecessary. Instead of analytic estimates of discrete corrections, for

which the analog of (2.31) would be useful, we address corrections numerically via

KMC simulations in Section 4.3. Accordingly, with regard to question (ii), we do

not utilize Proposition 1 in this chapter, even though it applies.

4.1.3 Canonical ensemble description of atomistic models

One peculiar feature of the alternate KRSOS model is the distinct form of

equilibrium distribution (4.9) when compared to the corresponding equilibrium dis-

tribution for the original KRSOS model, i.e. peqα = (1 − k)N−1k|α|. Recall that we

previously deduced the latter distribution by invoking the canonical ensemble of

statistical mechanics. Taken at face value, the argument set forth in Section 2.3.1.1,

which is based on the fact that the energy of configuration α is |α|EN , ostensibly

applies to the alternate KRSOS model as well. It is compelling, therefore, to ask

how the two results can be understood from the perspective of statistical mechanics.

In the remainder of this section, we use the formalism of the canonical ensemble to

show the essential difference between the two KRSOS models: In the original KR-

SOS model, adatoms located at a fixed lattice site are distinguishable, whereas in

the alternate KRSOS model, they are indistinguishable.

It suffices to re-derive, on the basis of statistical mechanics arguments, the
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partition functions (2.13) and (4.5) for the original and alternate KRSOS models,

respectively. Let us now regard the one-step system as a collection of N−1 identical,

non-interacting subsystems, distinguishable by the indices ı̂ labeling lattice sites.

The energy associated with a site ı̂ occupied by nı̂ adatoms is nı̂EN , hence the

partition function for this subsystem is

ζı̂ =
∞∑
nı̂=0

gı̂ exp(−nı̂EN/kBT ) =
∞∑
nı̂=0

gı̂k
nı̂ . (4.14)

First, we assume that the nı̂ adatoms in site ı̂ are distinguishable. In that case,

gı̂ = 1 and (4.14) reduces to a geometric series whose sum is 1
1−k . On the other

hand, if the adatoms occupying ı̂ were indistinguishable, gı̂ = 1
nı̂!

, implying ζı̂ = ek.

Now, since each lattice site, or subsystem, is identical, we conclude that the

partition function for the (N − 1)-site system is ζN−1
ı̂ . Therefore,

ζN−1
ı̂ =


1

(1−k)N−1 , distinguishable,

e(N−1)k , indistinguishable,

(4.15)

which, upon inspection of (2.13) and (4.5), we conclude that the original KRSOS

model assumes distinguishable adatoms while the alternate KRSOS model assumes

they are indistinguishable.

A discrepancy between KRSOS models due to distinguishable versus indistin-

guishable adatoms is not altogether unsurprising in light of transition rates (2.2)

and (4.2). The fact that the original KRSOS model allows only one adatom (i.e.

the top adatom) to hop away from a stack of n adatoms suggests that the order in

which adatoms reached that lattice site is important. On the contrary, in the alter-

nate KRSOS model, since all n adatoms may hop away from a multiply-occupied
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site, it is clear that the order in which adatoms reach that site, or are arranged in a

stack, is inconsequential. We summarize the main observation of this section in the

next remark.

Remark 13. The discrepancy between equilibrium distribution (2.14) of the original

KRSOS model and (4.9) of the alternate KRSOS model can be understood in terms of

adatom distinguishability (or lack thereof). In the original KRSOS model, adatoms

occupying a single site are distinguishable. In the alternate KRSOS model, adatoms

occupying a single site are indistinguishable.

4.2 Discrete BCF model revisited

In this section, we follow a similar program to the one presented in Chapter 3

in an attempt to derive discrete BCF-like equations of motion. The difference, of

course, is that we use alternate master equation (4.1) with transition rates (4.2)

in our calculations. The resulting equations of motion are quite similar to those

derived in Section 3.2. A noteworthy difference between the two formulations is the

absence of high-occupancy corrections to the discrete diffusion equation and discrete

version of Fick’s law when the underlying atomistic model is the alternate KRSOS

model introduced in Section 4.1. On the other hand, corrections to the discrete

linear kinetic relation are manifest in both formulations.

In what follows, we re-derive discrete versions of various aspects of the BCF

model. First, in Section 4.2.1, we find formulas for discrete fluxes at the step edge

by recourse to transition rates (4.2). Second, we determine a formula for ρ̇j(t)
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using the alternate master equation, then extract a discrete diffusion equation and

boundary conditions in Section 4.2.2. Finally, Section 4.2.3 establishes the discrete

step velocity law resulting from the alternate KRSOS model. In each case, we focus

on the aspects of derivations which differ from those in Chapter 3. Frequently,

these aspects will somehow involve the atomistic processes of (i) terrace hopping,

(ii) attachment from left, and (iii) desorption, all of which differ in the alternate

KRSOS model from the original, as discussed in Section 4.1.1.

4.2.1 Flux at the step edge

Let us now establish formulas for the rightward adatom fluxes J±(t) at the

right (+) and left (−) of the step edge. These fluxes are given by formulas nearly

identical to the ones in Definition 10 (Chapter 3), except we use transition rates

T(α,m),(α′,m′) given by (4.2) instead of T(α,m),(α′,m′), i.e.,

J±(t) =±
∑
α,m

1(ν−1(α) = 0)
[
T(α±,m),(α,m)pα,m(t)− T(α,m),(α±,m)pα±,m(t)

]
. (4.16)

Proposition 7. (Discrete fluxes for alternate KRSOS model) The discrete fluxes at

the step edge in the alternate KRSOS model, J±(t), defined in (4.16), can be written

as

J±(t) = ∓Dφ±a [c±1(t)− ceq]∓Dφ±ag±(t) . (4.17)

The terms g±(t) are

g+(t) = k
∑
α

1(ν−1(α) > 0)pα(t)/a

−
∑
α

1(ν1(α) > 1)ν1(α)pα(t)/a (4.18a)
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and

g−(t) = k
∑
α

1(ν−1(α) > 0)pα(t)/a

−
∑
α

1(ν1(α) > 0)ν−1(α)pα(t)/a . (4.18b)

Proof. The flux J+(t), defined in (4.16), is identical to flux J+(t) from Chapter 3;

see (3.13a) and Proposition 2. Still, the formula for J+(t) in (4.17), which makes

manifest the discrete linear kinetic law, differs from J+(t) in (3.11) on account of the

discrepancy between the equilibrium adatom densities ceq (alternate KRSOS model)

and ceq (original KRSOS model). Omitting redundant parts of the calculation, we

may write (4.17) in the following way:

J+(t) =
∑
α,m

1(ν−1(α) = 0)
[
T(α+,m),(α,m)pα,m(t)− T(α,m),(α+,m)pα+,m(t)

]
=Dkφ+

[
1−

∑
α

1(ν−1(α) > 0)pα(t)

]

−Dφ+

∑
α

1(ν1(α) = 1)ν1(α)pα(t)

=Dφ+a

[
k/a− k

∑
α

1(ν−1(α) > 0)pα(t)/a

]

−Dφ+a

[
c1(t)−

∑
α

1(ν1(α) > 1)ν1(α)pα(t)/a

]

=−Dφ+a [c1(t)− ceq]−Dφ+ag+(t) , (4.19)

where g+(t) is given by (4.18a).
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On the other hand, J−(t) can be obtained by the following manipulations:

J−(t) =
∑
α,m

1(ν−1(α) = 0)
[
T(α,m),(α−,m)pα−,m(t)− T(α−,m),(α,m)pα,m(t)

]
=Dφ−

∑
α,m

1(ν1(α) = 0)ν−1(α−)pα,m(t)−Dkφ−
∑
α,m

1(ν−1(α) = 0)pα,m(t)

=Dφ−
∑
α

1(ν1(α) = 0)ν−1(α−)pα(t)−Dkφ−
∑
α

1(ν−1(α) = 0)pα(t)

=Dφ−a

[
c−1(t)−

∑
α

1(ν1(α) > 0)ν−1(α)pα(t)/a

]

−Dφ−a

[
k/a− k

∑
α

1(ν−1(α) > 0)pα(t)/a

]

=Dφ−a [c−1(t)− ceq] +Dφ−a g−(t) . (4.20)

The correction g−(t) is defined in (4.18b). Notably, the second equality in (4.20)

makes use of the transition rates for the alternate KRSOS model, (4.2), which

meaningfully alter the formula for J−(t), in contrast to the case of J+(t). This

calculation yields the stated result. �

The above proposition, in particular the appearance of corrective fluxes (4.18)

in (4.17), indicates that discrete fluxes J±(t) and J±(t), given in (3.11), are not qual-

itatively different from the viewpoint of a mesoscale BCF theory; there are discrete

corrections to the linear kinetic law using either KRSOS model as a starting point.

Be that as it may, the simplified form of correction terms (4.18) is more appealing

than f±(t), equations (3.12), from Chapter 3. In addition to only consisting of two

terms each, which imparts a computational advantage, g±(t) in (4.18) have symme-

try with respect to the step edge: The second term in each describe the average over

states that forbid attachment from the left (−) and right (+) due to the presence
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of two or more particles. See also Remark 7.

4.2.2 Evolution equation for ρj(t)

In this section, we derive an evolution equation for adatom density ρj(t) using

master equation (4.1) with transition rates (4.2) corresponding to the alternate

KRSOS model. From the resulting equation for ρ̇j(t), we identify a difference scheme

describing the diffusion of adatom density, as well as a discrete analog of Fick’s law

of diffusion near the step edge. Our main conclusion is that the dynamics of the

alternate KRSOS model lead to an adatom diffusion equation which is exact in

the limit of small lattice spacing. At the same time, Fick’s law describing adatom

flux toward the step is exact in the same scaling limit. In light of the results of

Chapter 3, where high-occupancy corrections play an important role, the lack of

discrete corrections suggests that the alternate KRSOS model is more proximate to

the mesoscale BCF theory than the original KRSOS model. This statement is made

more precise at the end of the section.

First, we state and prove how the (Eulerian) adatom density ρj(t) changes in

time. The main result of this section is given in the next proposition (cf. Proposi-

tion 3 in Chapter 3).

Proposition 8. (Evolution of discrete density for alternate KRSOS model) When

microscale evolution follows master equation (4.1) and rates (4.2), the time evolution
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of the discrete adatom density, ρj(t), defined in (3.7b), is described by

ρ̇j(t) = D [ρj−1(t)− 2ρj(t) + ρj+1(t)] +
F

(N − 1)a
− 1

τ
ρj(t)

−
∑
α,m

{
δj,s(α,m)

[
Dν−1(α) +Dν1(α) +

F

N − 1

]
− δj,s(α,m)−1

[
Dν−1(α) +Dkφ−1(ν−1(α) = 0)

−Dφ−1(ν1(α) = 0)ν−1(α)
]

− δj,s(α,m)+1

[
Dν1(α) +Dkφ+1(ν−1(α) = 0)

−Dφ+1(ν1(α) = 1)
]}
pα,m(t)/a . (4.21)

Equation (4.21) is a direct consequence of Definition 8 (Chapter 3); see also (3.14).

Proof. We derive equation (4.21) directly via master equation (4.1) with transition

rates (4.2). Most of the derivation is identical to the proof of Proposition 3. As

such, we will omit redundant calculations and instead focus on the three types of

transitions that differ in the alternate KRSOS model: (I) Diffusion, (II) desorption,

and (III) attachment from the left. Each calculation makes use of (a) application

of appropriate change-of-variable formulas to the functions νı̂(α) and indicators

thereof, and (b) re-indexing certain sums over states (α,m).

Case I: Diffusion terms. When hopping events on the terrace occur with

rates (4.2), the diffusion terms involved in ρ̇j(t) are
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∑
α,m

νj−s(α,m)(α)
{ ∑

ı̂
ı̂ 6=0,±1

1(νı̂(α) > 0)

×
[
νı̂−1(αı̂

ı̂−1)pαı̂
ı̂−1,m

(t)− 2νı̂(α)pα,m(t) + νı̂+1(αı̂
ı̂+1)pαı̂

ı̂+1,m
(t)
]}

+ 1(ν1(α) > 0)
[
ν2(α1

2)pα1
2,m

(t)− ν1(α)pα,m(t)
]

+ 1(ν−1(α) > 0)
[
ν−2(α−1

−2)pα−1
−2,m

(t)− ν−1(α)pα,m(t)
]
. (4.22)

When ı̂ 6= 0,±1, the averages involving pαı̂
ı̂±1,m

(t) in (4.22) can be expressed as

∑
α,m

νj−s(α)1(νı̂(α) > 0)νı̂±1(αı̂
ı̂±1)pαı̂

ı̂±1,m
(t)

=
∑
α,m

[
νj−s(α

ı̂
ı̂±1) + δı̂,j−s − δı̂±1,j−s

]
1(νı̂±1(αı̂

ı̂±1) > 0)νı̂±1(αı̂
ı̂±1)pαı̂

ı̂±1,m
(t)

=
∑
α,m

νj−s(α)1(νı̂±1(α) > 0)νı̂±1(α)pα,m(t)

+
∑
α,m

[δı̂,j−s − δı̂±1,j−s] νı̂±1(α)pα,m(t) , (4.23)

where s = s(α,m) = s(αı̂
ı̂±1,m). Here we have used the familiar change-of-variable

(first equality) and summation re-indexing (second equality) tricks. Note that the

indicator, 1(νı̂±1(αı̂
ı̂±1) > 0), appearing in the second equation is redundant, and

therefore does not appear in the final expression.

Due to the alternate hopping scheme, equation (4.23) differs from (3.17) only

by the inclusion of the additional factor of νı̂±1(α), accounting for the fact that

adatoms move independently in the alternate KRSOS model. This factor is the

key to obtaining densities ρj(t) in the difference scheme in the first line of (4.21) as

opposed to dilute densities %j(t) in (3.14).
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Now we can re-write (4.22) using (4.23). Just as in the proof of Proposition 3,

we complete the sum over ı̂ 6= 0,±1 by adding and subtracting the appropriate

terms, the details for which we omit. The final result is

∑
α,m

{
νj−s−1(α)− 2νj−s(α) + νj−s+1(α)

+ [δj,s−1 − δj,s] ν−1(α) + [δj,s+1 − δj,s] ν1(α)
}
pα,m(t) , (4.24)

where again we simplify the notation by using s = s(α,m). The final expression

involves a discrete difference scheme for densities, ρj(t), when j is sufficiently away

from the step, plus terms which account for the presence of the step via Kronecker

deltas.

Case II: Desorption terms. The derivation of terms pertaining to desorption

follow the same pattern as the desorption terms in the proof of Proposition 3. Using

the alternate transition rates (4.2), the desorption terms contributing to ρ̇j(t) are

∑
α,m

νj−s(α)
∑
ı̂>0

[νı̂(αı̂)pαı̂,m+1(t)− νı̂(α)pα,m(t)] . (4.25)

We can re-write the first term as an average involving pα,m(t), viz.,

∑
α,m

νj−s(α)
∑
ı̂>0

νı̂(αı̂)pαı̂,m+1(t)

=
∑
ı̂>0

∑
α,m

[νj−s(αı̂)− δı̂,j−s] νı̂(αı̂)pαı̂,m+1(t)

=
∑
ı̂>0

∑
α,m

[νj−s(α)− δı̂,j−s] νı̂(α)pα,m(t) . (4.26)

Since desorption events do not change the step position, s = s(α,m+ 1) = s(αı̂,m)

in the (4.26). Inserting the result of (4.26) into equation (4.25) gives the following
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desorption term:

−
∑
ı̂>0

∑
α,m

δı̂,j−sνı̂(α)pα,m(t)

= −
∑
ı̂

∑
α,m

δı̂,j−sνı̂(α)pα,m(t)

= −aρj(t) . (4.27)

Here we have used the fact that ν0(α) = 0. The final contribution of desorption,

therefore, is −τ−1ρj(t), as desired.

Case III: Attachment from the left. Finally, we derive the contribution to ρ̇j(t)

corresponding to attachment terms on the left of the step. Consider

∑
α,m

νj−s(α,m)(α)1(ν−1(α) = 0)ν−1(α−)pα−,m(t)

=
∑
α,m

[
νj−s(α−,m)(α

−)− δj,s(α−,m)−1

]
1(ν1(α−) = 0)ν−1(α−)pα−,m(t)

=
∑
α,m

νj−s(α,m)(α)1(ν1(α) = 0)ν−1(α)pα,m(t)

−
∑
α,m

δj,s(α,m)−11(ν1(α) = 0)ν−1(α)pα,m(t) . (4.28)

Thus, the attachment terms on the left of the step read

∑
α,m

νj−s(α,m)(α)
[
1(ν−1(α) = 0)ν−1(α−)pα−,m(t)

− 1(ν1(α) = 0)ν−1(α−)pα,m(t)
]

=
∑
α,m

[
νj−s(α−,m)(α

−)− δj,s(α−,m)−1

]
1(ν1(α−) = 0)ν−1(α−)pα−,m(t)

= −
∑
α,m

δj,s(α,m)−11(ν1(α) = 0)ν−1(α)pα,m(t) , (4.29)
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which, with recourse to (4.16), yields −J−(t) when j = s− 1, and is zero otherwise.

This completes the proof of the proposition. �

Utilizing Proposition 8, we readily deduce discrete equations describing adatom

diffusion. When j is away from the step, equation (4.21) reduces to

ρ̇j(t) = D∆jρj(t) +
F

(N − 1)a
− 1

τ
ρj(t) . (4.30)

In this equation, ∆jρj(t) is a second-order finite difference scheme for adatom den-

sity, F
(N−1)a

is the constant deposition rate per terrace length, and 1
τ
ρj(t) is the

desorption rate of adatom density. Note that (4.30) is a discrete diffusion equation

for the full density ρj(t), cf. equation (3.30).

On the other hand, when j = s(α,m)± 1, lines 3-6 of equation (4.21) appear

as the following boundary conditions:

J±(t) = ∓Da [c±2(t)− c±1(t)] , (4.31)

where J±(t) are given by (4.16). Equations (4.31) relate adatom fluxes on the left

(−) and right (+) of the step with corresponding discrete gradients in density, i.e.

Fick’s law of diffusion for densities on the lattice. As we have seen previously,

the effect of advection is conspicuously absent from (4.31) due to certain forbidden

transitions in the atomistic model; see Remark 9 (Chapter 3).

We regard equations (4.30) and (4.31) as exact discrete analogs of the corre-

sponding continuum BCF equations described in Section 3.1 in the sense that only

mild scaling assumptions are required for coarse graining. In contrast, the discrete

BCF equations found in Chapter 3 require elaborate estimates for discrete correc-

tion terms. Specifically, we make use of the estimates in Proposition 5 to determine
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sufficient conditions for which corrections induced by the original KRSOS model

are negligible. The scaling assumptions for coarse graining (4.30) and (4.31) are

summarized next.

We assume ρj(t) → ρ(x, t) and c̂(t) → C(x̂, t) as the lattice parameter ap-

proaches zero, a→ 0. Let us also assume D = Da2 = O(1) and F = F
(N−1)a

= O(1),

then the limiting equation corresponding to (4.30) as a→ 0 is

∂ρ

∂t
= D∂

2ρ

∂x2
+ F − 1

τ
ρ . (4.32)

Similarly, as a→ 0, (4.31) give

J±(t) = ∓D ∂C
∂x̂

∣∣∣∣
±
, (4.33)

where the partial derivative is evaluated at x̂ = 0+ and x̂ = L−, respectively.

Evidently, the limiting diffusion equation, (4.32), and Fick’s law at the step, (4.33),

do not depend on the scaling of the parameters (i) τ and (ii) k with lattice spacing.

(i) is not surprising and is consistent with the results in Chapter 3. (ii) however,

is strikingly different from previous results. Specifically, for the original KRSOS

model, Proposition 5 asserts that k should be O(a) in order to neglect corrections

to discrete diffusion equation and Fick’s law, which is not the case for the alternate

KRSOS model. The consequences of this last observation are outlined in the next

remark.

Remark 14. By Proposition 4.21, the evolution of ρj(t), computed as an average

over states whose evolution is governed by master equation (4.1) with rates (4.2),

follow a discrete diffusion equation, (4.30), without corrections. Consequently, the
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coarse-grained mesoscale evolution equation (4.32) is exact for all values of mi-

croscale parameters such that D = O(a2) and F = O(1). In particular, this is true

even for parameter regimes leading to high densities on the terrace.

4.2.3 Step velocity law

Before concluding our derivation of discrete BCF-like equations associated

with the alternate KRSOS model, for completeness, we must verify the relationship

between step velocity and adatom flux at the step edge. It turns out, unsurprisingly,

that the alternate KRSOS model upholds the familiar mass conservation statement

of the BCF model. The final proposition of this chapter, and its painstakingly

detailed proof, reveal the discrete underpinnings of step velocity law (3.1).

Proposition 9. (Discrete step velocity law for alternate KRSOS model) When

microscale evolution follows master equation (4.1) and rates (4.2), the time evolution

of the average step velocity, ς(t), defined in (3.6), is given by

ς̇(t) = a [J−(t)− J+(t)] . (4.34)

Hence, the BCF step velocity law (3.1) is a direct consequence of Definition 7 (Chap-

ter 3) and the microscale dynamics of the alternate KRSOS model.

Proof. The derivation of the step velocity law, when microscale dynamics are given

by the alternate KRSOS model, follows the proof of Proposition 4 with one minor

exception: The fluxes J±(t) differ from J±(t); see Proposition 7. Note that the

other modified processes, terrace diffusion and desorption, do not contribute to step

motion; see (3.42) and subsequent discussion thereof.

121



Let us now isolate the attachment and detachment terms in ς̇(t) for the alter-

nate KRSOS model. They are

ς̇(t) = a
∑
α,m

s(α,m)
{
Dφ−

[
1(ν−1(α) = 0)ν−1(α−)pα−,m(t)

− 1(ν1(α) = 0)1(ν−1(α) > 0)pα,m(t)
]

+Dkφ− [1(ν1(α) = 0)1(ν−1(α) > 0)pα−,m(t)− 1(ν−1(α) = 0)pα,m(t)]

+Dφ+

[
1(ν−1(α) = 0)pα+,m(t)− 1(ν1(α) = 1)pα,m(t)

]
+Dkφ+ [1(ν1(α) = 1)pα+,m(t)− 1(ν−1(α) = 0)pα,m(t)]

}
. (4.35)

Equation (4.35) can be simplified using appropriate change-of-variable formulas and

re-indexing the resulting sums. Omitting redundant calculations, cf. Proposition 4

(Chapter 3), we compute the attachment term on the left of the step as

∑
α,m

s(α,m)1(ν−1(α) = 0)ν−1(α−)pα−,m(t)

=
∑
α,m

[s(α−,m) + 1] 1(ν1(α−) = 0)ν−1(α−)pα−,m(t)

=
∑
α,m

[s(α,m) + 1] 1(ν1(α) = 0)ν−1(α)pα,m(t) , (4.36)

Thus, by substitution of equations (3.44b)-(3.44d) and (4.36) into (4.35), we find

that

ς̇(t) = a
∑
α,m

[
Dφ−1(ν1(α) = 0)1(ν−1(α) > 0)−Dkφ−1(ν−1(α) = 0)

+Dφ+1(ν1(α) = 1)−Dkφ+1(ν−1(α) = 0)
]
pα,m(t)

= a [J−(t)− J+(t)] , (4.37)

where J±(t) are defined by (4.16). This completes the proof. �
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It should be noted that Proposition 9 corresponds exactly to Proposition 4

from the Chapter 3, which corroborates step velocity law (3.1) using the original

KRSOS model. Notably, this is the only point of intersection between the two

discrete BCF-like models examined in this thesis, definitions of adatom fluxes in

each case notwithstanding.

4.3 Discrete corrections: Numerical comparisons

As we have previously stated, our goal for this chapter is to complement the

results of Chapters 2 and 3 by focusing on differences between the original and

alternate KRSOS models, as well as the discrete BCF equations they respectively

imply. Continuing in this approach, we now make an attempt to compare corrections

to the discrete BCF equations from Chapter 3 to the ones obtained in Section 4.2.

To do so, we simulate the original and alternate KRSOS models using KMC and

compare: (i) a residual of the discrete diffusion equation, to be defined below, and

(ii) the scaled adatom flux at the right of the step as a function of c̂. Generally

speaking, we find that corrections to a discrete version of the BCF model are smaller

for the alternate KRSOS model, especially for large detachment and deposition

parameters, e.g. k > 0.01 and F > 108. In contrast, for dilute systems, when k and

F are sufficiently small, the original and alternate KRSOS models produce nearly

identical results.

In order to make meaningful comparisons between our two formulations, we

must take into account that (i) the original KRSOS model induces corrections to
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discrete diffusion, whereas the alternate model does not, and (ii) the equilibrium

density appearing in the discrete linear kinetic relation is different in each case. To

address issue (i), instead of plotting R̂̂ as we did in Section 3.5.2, we compare the

following residual:

L̂ =
c̂(t+ ∆t)− c̂(t)

∆t
−D∆̂c̂(t)− v∂̂c̂(t) +

1

τ
c̂(t)−

F

(N − 1)a
, (4.38)

where ∆t is a small time step between successive measurements of density in KMC

simulations, v is the step velocity, ∂̂c̂ := c̂ − c̂−1 is the backward difference oper-

ator, and 1 < ̂ < N − 1. Residual L̂ measures deviations of the discrete adatom

density from the discrete diffusion equation. Next, to address (ii), we must scale

adatom fluxes as well as c̂ by the appropriate equilibrium density. Specifically, in

Figures 4.3 and 4.4, plots of the linear kinetic relation resulting from the original

KRSOS model show J+/ [Dφ+c
eq] versus c1/c

eq; and for the alternate KRSOS model,

plots of the linear kinetic relation show J+/ [Dφ+c
eq] versus c1/c

eq.

Now that we have established measures of fidelity to a discrete BCF model,

allowing the original and alternate KRSOS models to be compared on equal footing,

we examine KMC simulation data for different values of k and F . First, consider the

dependence of residual (4.38) and corrections to the discrete linear kinetic relation

as a function of k. Figure 4.3 shows plots of (unscaled) density c̂(t), residual L̂,

and the scaled flux at the right of the step when (a) k = 0.001 and (b) k = 0.1, and

F = 0. What we see are values of the residual which are at least three orders of

magnitude smaller than the respective densities for both the original and alternate

KRSOS models.Moreover, when k is small, the adatom flux at the step edge is
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reasonably well approximated by the linear kinetic relation. Yet when k is large,

the deviations from the predicted linear relation for adatom flux are noticeably

greater for the original KRSOS model.

Next, we attempt to understand the effect of deposition flux on residual L̂ and

the scaled flux at the right of the step. In Figure 4.4, which compares cases where

(a) F = 108 and (b) F = 4× 108, we see a slightly different behavior in the residual

plot than in the previous case: While values of the residual are consistently at least

three orders of magnitude smaller than the respective densities, the residual for the

alternate KRSOS model is considerably smaller in magnitude than the residual for

the original KRSOS model. This effect is more pronounced for the larger value of

F . Additionally, the discrete corrections to the linear relation for adatom flux are

greater for the original KRSOS model than the alternate KRSOS model.

Using just a few cases for our numerical case study regarding corrections to

discrete BCF-like equations, we draw two main conclusions about the original and

alternate KRSOS models as starting points for the derivation of the BCF model.

First, by inspecting the residual plots in Figures 4.3 and 4.4, we notice that the origi-

nal KRSOS model induces larger corrections than the alternate KRSOS model when

large gradients in adatom density are present. This is consistent with the existence

of high-occupancy corrections resulting from kinetic adatom-adatom interactions in

the original KRSOS model. Since these are not present in the alternate KRSOS

model, residuals are small for all cases considered. Second, corrections to the linear

kinetic relation exist for both KRSOS models, however, the corrections are smaller

when formulating BCF-like equations using the alternate KRSOS model, at least in
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Figure 4.3: Comparison of KRSOS corrections when k is varied. Plots in-
clude: (a) and (b) adatom density, c̂(t), computed from KMC simulations of
original KRSOS model (symbols) and alternate KRSOS model (solid lines) at
times 2.5× 10−9 (red), 4.0× 10−8 (blue), and 1.0× 10−5 (black); (c) and (d)
residuals, L̂, for original KRSOS model (blue squares) and alternate KRSOS
model (black circles) at time t = 10−5; and (e) and (f) adatom flux (predic-
tion in red) at the right of the step for orginal KRSOS model (blue squares)
and alternate KRSOS model (black circles), where, in each case, both coor-
dinates are scaled by the appropriate equilibrium density. Model parameters
are chosen to be N = 50, D = 1010, φ± = 1, F = 0, and τ−1 = 0, together
with (a), (c) and (e) k = 0.001; or (b), (d) and (f) k = 0.1. Means and
standard deviations were obtained using 10 ensembles of (a), (c) and (e) 106

simulations; or (b), (d) and (f) 105 simulations.
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Figure 4.4: Comparison of KRSOS corrections when F is varied. Plots
include: (a) and (b) adatom density, c̂(t), computed from KMC simulations
of original KRSOS model (symbols) and alternate KRSOS model (solid lines)
at times 2.5×10−9 (red), 4.0×10−8 (blue), and 1.0×10−5 (black); (c) and (d)
residuals, L̂, for original KRSOS model (blue squares) and alternate KRSOS
model (black circles) at time t = 10−5; and (e) and (f) adatom flux (prediction
in red) at the right of the step for orginal KRSOS model (blue squares) and
alternate KRSOS model (black circles) , where, in each case, both coordinates
are scaled by the appropriate equilibrium density. Model parameters are
chosen to be N = 50, D = 1010, φ± = 1, k = 0.0001, and τ−1 = 0, together
with (a), (c) and (e) F = 108; or (b), (d) and (f) F = 4 × 108. Means and
standard deviations were obtained using 10 ensembles of 105 simulations in
each case.
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our limited data set. One plausible explanation of this conclusion is the fact that

adatom densities are smaller in magnitude overall for the alternate KRSOS model,

and therefore higher order terms in an expansion for flux such as (3.63) are less

pronounced. This explanation is purely speculative at this point, however.

4.4 Summary and discussion

In this chapter, we investigated the consequences of altering one aspect of the

KRSOS models introduced in Chapter 2, as well as the effect of that change on the

discrete BCF-like equations emerging from this alternate KRSOS model. We found

that the long-time behavior of the alternate KRSOS model differs appreciably from

the original KRSOS model. In Section 4.1.3, we use an argument based on statistical

mechanics to conclude that the discrepancy results from the indistinguishable nature

of adatoms in the alternate KRSOS model. Another way in which the alternate

KRSOS model diverges from the original is in the distribution of particle states

in equilibrium: For the alternate KRSOS model, the number of adatoms on the

terrace in equilibrium follow a Poisson distribution, whereas this was only true of

the original KRSOS model in the limit of large N .

Equally interesting results were found concerning corrections to BCF-like equa-

tions satisfied by discrete averages over atomistic configurations of the alternate KR-

SOS model. In particular, the discrete diffusion equation for adatom density, (4.32),

does not include correction terms, in contrast to the corresponding equation derived

from the original KRSOS model. We conclude that the kinetic interaction between
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adatoms is a crucial aspect of the original KRSOS model. At the same time, correc-

tive fluxes appearing alongside discrete versions of the linear kinetic relation emerge

from both the original and alternate KRSOS models. Intimately connected to the

rules for attachment and detachment at the step edge [71], discrete corrections of this

type appear to be unavoidable, though their effect may be more or less pronounced

depending on other attributes of the underlying microscale model. For example,

in Section 4.3, KMC simulations demonstrate that the corrections induced by the

alternate KRSOS model are smaller than those resulting from the original KRSOS

model.

In view of our conclusions regarding each KRSOS model studied in Part I of

this thesis, it is compelling to ask which atomistic model is better suited to study the

atomistic origins of the BCF model in 1 + 1 dimensions. Unfortunately, there is no

easy answer to a question as deep as this, but we attempt to outline some benefits of

each. On one hand, the original KRSOS model is closer in spirit to traditional SOS

models, where height columns typically only change by at most one atomic unit

per hopping event with constant transition rate, making it an appealing starting

model. On the other hand, the alternate KRSOS model includes adatom hopping

that is consistent with Fick’s law of diffusion, and consequently involves smaller

corrections to discrete BCF-like equations. However, smaller corrections achieved

by the alternate KRSOS model come at a cost: Kinetic interactions between adatoms

are removed. In principle, there are always interactions between adatoms, so the

inclusion of kinetic interactions, if not others, may be a desirable feature of an

atomistic model. That said, neglecting kinetic interactions might make sense if we
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wish to make comparisons between our 1D system and a similar, dilute 2D system,

e.g. by projecting averages of the 2D system into 1D. We have not yet attempted

to verify this conjecture. We summarize the key features of each KRSOS model in

the table below.

Original KRSOS Alternate KRSOS

Constant hopping rate D α-dependent hopping rate Dν̂(α)

Non-Fickian hopping Fickian hopping

Kinetic interactions Non-interacting adatoms

Distinguishable adatoms Indistinguishable adatoms

Corrections to diffusion equation No corrections to diffusion equation

Corrections to LKR for adatom flux (Smaller) corrections to LKR
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PART II

Evolution of crystalline mounds: Atomistic scale, mesoscale, and

macroscale
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Chapter 5: Towards a mesoscale description of mound evolution

In this chapter, we investigate in 2 + 1 dimensions the evolution of epitaxially

grown mounds using atomistic and mesoscale models of crytal growth that include an

Ehrlich-Schwoebel (ES) barrier [24, 88]. This potential energy barrier, experienced

by atoms on stepped crystal surfaces, inhibits mass transport between atomic layers,

leading to the formation of 3D structures on an otherwise vicinal surface in the

presence of external material deposition. Our atomistic model, introduced in [94],

is a solid-on-solid (SOS) model of a crystal surface that makes use of a deposition

processes intended to mimic the effect of transient mobility (TM), i.e. a mechanism

by which freshly deposited atoms have excess kinetic energy for a short time. At

the mesoscale, we describe the surface using a BCF-like island dynamics model,

presented in [68, 77], to which we add (i) the effect of TM in a manner consistent

with microscale model, and (ii) a related mass transport process know as downward

funneling (DF) [26].

In contrast to the ES barrier, DF and TM tend to delay the onset of mounding

during growth. To capture the complex interplay between these mechanisms, we lean

heavily on KMC simulations of the atomistic model. Simulations of the mesoscale

island dynamics model are carried out using the level set method [65,66,90], which
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is a promising computational framework that has successfully described epitaxial

growth for at least fifteen years [13,19,68,69,73,77]. Employing the level set method

for epitaxial growth, we demonstrate, in this chapter, how our incorporation of TM

and DF into the island dynamics model results in a numerical description of mound

evolution in qualitative agreement with KMC simulations.

5.0.1 Background

Before discussing specifics about our atomistic and mesoscale models or their

numerical implementation, we provide a general review of mound growth. The

basic processes involved in epitaxial growth include the deposition of atoms via

molecular beam onto a substrate, the diffusion of adsorbed atoms (adatoms), the

nucleation of adatoms resulting in the formation of small clusters or islands, the

growth of islands, and finally the coalescence of islands until a full layer of material is

formed and growth of subsequent layers continues following a simlar pattern. These

processes have been described by a variety of models of crystal surfaces, including

rate equations [3, 4, 79, 80], atomistic models [22], step-continuum models [36, 59],

and by use of the level set method [68, 77]. In most of these cases, when external

deposition is included and the interlayer transport of adatoms is inhibited by an ES

barrier [24,88] at step edges (see Figure 5.1), islands may nucleate on top of islands,

leading to the formation of 3D mounds and the overall roughening of the surface (for

a general review of mound growth, see [28,57]). In many systems, “slope selection”

is observed for long enough times, suggesting the existence of kinetic processes that
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E+

EN

Figure 5.1: Side-view illustration of the effect of the Ehrlich-Schwoebel step
edge barrier. An adatom diffusing toward a descending step edge must over-
come an additional energy barrier E+ in order to attach to the step. Larger
barriers increase the probability that an adatom is reflected toward the center
of the terrace.

favor downward transport of adatoms, in opposition to the effective uphill current

induced by the ES barrier [26, 27,94].

Two candidate processes that could explain the observed slope stabilization

in experiments are DF [2, 16, 26, 27] and TM [21, 22, 27, 94, 95]. In both DF and

TM, freshly deposited atoms quickly relax to energetically favorable positions near

deposition sites, albeit in slightly different ways, overcoming possible ES barriers

and contributing to a smoother growth front. So far, DF has received considerable

attention in the epitaxial growth literature: It has been studied using molecular

dynamics simulations of the deposition process [92,112], incorporated into atomistic

kinetic Monte Carlo (KMC) simulations [2, 16, 26, 27], and included in phenomeno-

logical step-continuum models [46, 47]. By comparison, relatively few studies focus

on TM. There have been a few attempts to incorporate TM in atomistic models,
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e.g. [21, 22, 94, 95], and only recently has TM been studied using a rate equation

formalism [25,60].

The goals of this chapter are twofold. First, we use it as an opportunity

to extend the results in [94] by performing a systematic study of TM using KMC.

Second, we translate simple models for DF and TM into a mesoscale island dynamics

model of epitaxial growth. The prescriptions for DF and TM we employ are inspired

by (i) the mesoscale description of DF used in the step-continuum models in [46,47],

and (ii) an atomistic description of TM that allows a deposited atom to relax to a

nearby site with maximum coordination, i.e. where the atom will have the maximum

number of nearest neighbors [94,95]. The corresponding mesoscale, island dynamics

description of these processes involves the modification of the deposition process at

descending step edges and at both ascending and descending step edges, respectively,

as well as step velocities. Starting from an island dynamics model that includes ES

barriers at step edges [68], we incorporate DF and TM with the intention of making

qualitative comparisons with the results of our KMC study. This is achieved, in

part, using appropriately defined neighborhoods near steps for which DF and TM

are active.

The remainder of this chapter is organized as follows. First, we review the

SOS (atomistic) and island dynamics (mesoscale) models of 2 + 1-dimensional crys-

tal growth in Section 5.1. Next, Section 5.2 gives details for the modeling and nu-

merical implementation of downward transport mechanisms in the level set method.

Section 5.3 contains the results of both atomistic and mesoscale simulations. And

finally, we provide some discussion of multiscale modeling of mound evolution in
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Section 5.4.

5.1 Review of models

We begin by outlining the atomistic lattice-gas model and the island dynamics

model we use to study mound evolution. A common feature of these models is the

inclusion of an ES barrier at step edges, which, in the presence of a nonzero depo-

sition rate leads to mound growth [105]. This is achieved by directly modifying the

potential energy surface experienced by adatoms in the atomistic model, whereas,

in the island dynamics model, step-edge barriers modify the boundary conditions of

a PDE [68]. On the other hand, downward transport mechanisms leading to slope

stabilization have been studied in several atomistic models, but are absent in the

island dynamics model. We address this deficiency later in Section 5.2.

5.1.1 Atomistic models with downward transport

A well-known stochastic model for describing epitaxial growth is the SOS

model [107]. In it, atoms may arrange themselves in a simple cubic (SC) crys-

tal lattice, forming bonds with neighboring atoms. The solid-on-solid restriction

forbids overhangs and bulk vacancies, and therefore the crystal surface may be rep-

resented by an array of height columns. During evolution, typically only one or two

height columns change by a single atomic unit per transition. While the SOS model

has several features in common with the KRSOS models introduced in Part I of

this thesis, the SOS model does not include a kinetic restriction preventing terrace
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atoms from becoming adatoms; atomic vacancies may form. Additionally, bonding

between nearest-neighbor adatoms and the nucleation of small islands on terraces

is an important feature of the SOS model in 2 + 1 dimensions, in contrast to the

1 + 1-dimensional KRSOS models, in which bonding between adatoms is forbidden.

In the KMC formulation of SOS, most transitions between nearby states in

configuration space follow Arrhenius rates of the form ν exp(−E/kBT ), where ν is an

attempt frequency, E is the energy barrier separating two states, kB is Boltzmann’s

constant and T is the substrate temperature. External material deposition from

above occurs at a rate of F atoms per site per second. We neglect desorption for

our current purpose, but it may also be included in KMC. A common choice for

the energy barrier between states in SOS models is E = ES + nEN where ES is

the barrier for surface diffusion, n = 0, 1, . . . , 4 is the number of in-plane nearest

neighbors prior to the transition, and EN is a bonding energy. This energy barrier

can be modified to account for changes in the potential energy surface an adatom

experiences near step edges, i.e. the ES barrier, for which E+ (we assume E− = 0

in this section) is added to E. In our notation E+ is the barrier at descending step

edges, influencing interlayer transport between the step and the upper terrace and

vice versa; see Figure 5.1.

In this chapter, we adopt the SOS model presented in [94], which is one of only

a few KMC prescriptions for TM, although similar models of a TM-like deposition

process were described earlier [21,22,111]. The deposition process in [94], pictured in

Figure 5.3(b), has two stages: First, a lattice site is selected at random for deposition,

then a local search within the square of side length 2R + 1 about the initially
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Figure 5.2: Top-view illustrations of the atomistic transitions allowed in our
SOS model. Light grey squares represent lattice sites with height h0 and dark
grey squares represent lattice sites with height h0 +a. (a) Diffusive transitions
include: Adatom hopping (rateD), edge diffusion to a vacant nearest-neighbor
site (rateDek

n for n in-plane nearest neighbors), and edge diffusion to a vacant
next-nearest-neighbor site (rate Dek

nφ0 for n in-plane nearest neighbors); (b)
Attachment and detachment transitions include: Detachment to lower terrace
(rate Dkn for n in-plane nearest neighbors), attachment from lower terrace
(rate D), detachment to upper terrace (rate Dknφ+ for n in-plane nearest
neighbors), attachment from upper terrace (rate Dφ+), and finally dimer
dissociation (rate Dk) which is a special case of detachment to the lower
terrace.
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Figure 5.3: (a) Side-view illustration of the basic (geometric) downward fun-
neling mechanism, where freshly deposited atoms (rate F ) relax to an adsorp-
tion site with full support in a lower layer [26]. (b) Top-view illustration of
the KMC prescription of transient mobility, where freshly deposited atoms
relax to a nearby site with highest coordination. The site outlined in green
is the lattice site initially chosen for deposition, the blue square indicates
the sites explored during transient mobility, R is the search radius, and the
site outlined in red is the final destination of the deposited atom after it has
thermalized.

chosen site is performed for the site that would give the deposited atom highest

coordination. If the search results in a unique maximum coordination number among

the affected collection of sites, the deposited atom is placed in that site. In the event

of a tie, the site closest to the initial site is selected. In this deposition process, R is

a “search radius” that is supposed to reflect the transient kinetic energy imparted

to the atom by deposition and adsorption.

In [94], using the search procedure described above, the authors show that TM

can effectively oppose the ES barrier and lead to slope stabilization during growth.

The extent of their simulation data, however, is quite limited: Only two parameter
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sets were used. Later, in Section 5.3, we extend that study by methodically exam-

ining the effects of (i) the search radius R, (ii) ES barrier strength, measured by

Arrhenius factor φ+ = exp(−E+/kBT ), and (iii) nearest-neighbor bond strength,

measured by the factor k = exp(−EN/kBT ); see Figure 5.2 for examples of transi-

tions allowed in our SOS model.

5.1.2 Island dynamics model of epitaxial growth

The island dynamics model we use in this chapter is a BCF-like mesoscale

description of a vicinal crystal surface designed to be implemented using the level

set method [66]. In it, monatomic layers are represented by the level sets of the

function ϕ, i.e.

Γn(t) =
{
x ∈ R2 : ϕ(x, t) = n

}
, (5.1)

where Γn(t) is the set of islands in the nth layer at time t [13, 77].

Islands, in this formulation, grow in a direction normal to step edges with

velocity v = v · n, where n is the unit normal vector. The normal step velocity is

given by [68,77]

v =
(
D∇ρ− −D∇ρ+

)
· n + ve . (5.2)

The first term in the (5.2) expresses the net flux of adatoms to the step, and ve is a

contribution to normal velocity accounting for local changes via edge diffusion. In

BCF treatments of step motion in 2D, one expects that ve ∝ ∂s[De∂s(γ̃(s)κ(s))],

where γ̃(s) is step stiffness, De is the edge-adatom diffusivity and the partial deriva-

tive, ∂s, is with respect to arc length [36,59]. However, for technical reasons, imple-
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mentations of the island dynamics model using level sets choose ve = De [κ(s)− κave] [13].

It is argued in [13] that this choice captures the essential physics of edge diffusion.

While the nonphysical version of ve leaves something to be desired from a modeling

standpoint, we nevertheless use that formula in the island dynamics simulations

presented in this chapter.

The adatom density ρ = ρ(x, t) evolves according to [68]

∂ρ

∂t
= ∇ · (D∇ρ) + F − 2

dN
dt

. (5.3)

In (5.3), D is the (tensor) terrace diffusivity and dN
dt

is the nucleation rate of islands.

We will assume isotropic diffusivity, and hence model adatom density by [68,73,77]

∂ρ

∂t
= D∆ρ+ F − 2

dN
dt

, (5.4)

where the loss term accounts for collisions between two adatoms that result in

nucleation of small islands. It follows that [61,62]

dN
dt

= Dσ1

∫
ρ2(x, t)dx , (5.5)

i.e. the change in island number density is proportional to the average value of

adatom density squared. Here, σ1 denotes the capture number of an adatom, fre-

quently encountered in the rate equation descriptions of submonolayer growth (see

e.g. [3, 4, 79, 80]). In the above description, a dimer nucleates when N (t) increases

past an integer value [19], and may subsequently dissociate through the stochastic

approach described in [73]. The location of nucleation is chosen randomly among

available lattice sites with probability proportional to ρ2. Justification for the de-

terministic choice for the time of nucleation, as well as the stochastic choice for the
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location of nucleation is given in [78].

What remains to fully specify the island dynamics model are boundary con-

ditions for adatom density at step edges. Complementing PDE (5.4) we have [68]

ρ− = ρeq , and (5.6a)

n · ∇ρ+ +
D′

D −D′
(ρ+ − ρeq) = 0 . (5.6b)

That is, on lower terraces (−) or ascending step edges, the adatom density satisfies

Dirichlet boundary condition (5.6a), where ρeq denotes the equilibrium density at

the step edge. On the other hand, on upper terraces (+) or descending step edges, we

have a Robin boundary condition, where the normal flux, n ·∇ρ+, is proportional to

the local deviation of adatom density from its equilibrium value. This is just the 2D

version of the linear kinetic relation common to BCF models [36,59]. Note that since

D is terrace diffusivity and D′ is diffusivity across a step, the dimensionless factor

D′
D−D′ expresses the strength of the ES barrier [74]. For example, as D′ → D, the case

of a small barrier, condition (5.6b) becomes a Dirichlet condition not unlike (5.6a).

Also, it is the case that φ+ = D′
D , connecting the notation in (5.6) with that of

Section 5.1.1.

In summary, PDE (5.4) supplemented by (5.5) and boundary conditions (5.6)

determine the evolution of adatom density for fixed island boundary. Subsequently,

the motion of island boundaries follow the local normal velocity (5.2), where choice

of ve is described above. For details on numerical implementation, see [19,68,73].
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5.2 Mound evolution in a level set framework

DF and TM are atomistic processes whose inclusion in atomistic lattice-gas

models is somewhat natural and well established in the literature on epitaxial

growth [2,16,26–28,94]. In contrast, mesoscale and continuum models including DF

or TM are less common. There is at least one case [46], however, where researchers

include DF in a mesoscale step-dynamics model, and subsequently derive continuum

equations for the evolution of mounds [47]. This inclusion of DF for step-dynamics

relies on defining a narrow region within a fixed distance of a descending step edge

for which all deposited material is incorporated into the step directly. Including DF

in this way, slope stabilization can be studied via step-dynamics. We will take a

similar approach to include both DF and TM in the level set-based island dynamics

model. Specifically, we define a new parameter in the island dynamics model, d, as

the distance over which either DF or TM affects deposition near step edges, and

accordingly adjust the local step velocity field. The remainder of this section is

devoted to describing the modeling and implementation considerations necessary to

include DF and TM in the island dynamics model, to be simulated using the level

set method.

5.2.1 Mesoscale modeling of downward transport mechanisms

In our mesoscale island dynamics model, both DF and TM have the same type

of prescription: For all points in some neighborhood of a step, mass that would be

deposited on the terrace is instead incorporated into the step directly. As a first

143



step to introducing these transport mechanisms into the island dynamics model,

we must specify the neighborhood near steps impacted by DF and TM. Consider

a monatomic island composed of points x ∈ Ω+. We define the signed distance

function of Ω+ as

ψ(x; Ω+) =


dist(x, ∂Ω+) x ∈ Ω+ ,

−dist(x, ∂Ω+) x /∈ Ω+ ,

(5.7)

where dist(x, ∂Ω+) = min
y∈∂Ω+

|x−y|. Now, let S±(Ω+) denote the set of points within

the distance d of ∂Ω+, inside the island (+) and outside the island (−), respectively.

Hence, we write

S±(Ω+) = {x | 0 ≤ ±ψ(x; Ω+) ≤ d} . (5.8)

Finally, (5.8) allows us to define the regions affected by DF and TM.

Definition 11. (Downward transport neighborhoods.) In the island dynamics

model, for each island Ω+, the neighborhood where downward funneling is active is

S+(Ω+), and the neighborhood where transient mobility is active is S+(Ω+)∪S−(Ω+),

where S±(Ω+) are defined in (5.8). Restated in words, downward funneling impacts

upper terraces only, within distance d, while transient mobility impacts both upper

and lower terraces, within distance d on each side of the step; see Figure 5.4(a).

Given Definition 11, all that remains is to specify how the normal velocity of

the interface, v, should be modified to account for additional mass from DF or TM. A

choice inspired by the atomistic mechanisms, i.e. DF as described in [2,16,26,27] and

TM as described Section 5.1.1, involves local step geometry. Specifically, we calculate
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(a) (b)

Figure 5.4: Top-view illustrations of regions affected by downward transport
mechanisms in the level set framework. (a) An island, Ω+ (dark grey), sepa-
rated from the substrate, Ω− (light grey), by the solid curve. Dashed curves
are within distance d, representing the mesoscopic length scale of downward
funneling or transient mobility, of the island boundary. (b) Anumerical grid
superimposed over an island, Ω+ (dark grey), separated from the substrate,
Ω− (light grey), by a solid curve, a set S (blue) indicating a region near an is-
land boundary affceted by DF or TM, and a numerical cell Ci,j that intersects
S. Again, d is the length scale of downward funneling or transient mobility.
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the additional normal velocity imparted to steps by each transport mechanism using

the local curvature κ, and the constants d, F and a.

Next, insisting that mass is conserved, we compute: (i) The differential area,

dAv, swept out by a step with velocity vadd, (ii) the area dAdf added to the step via

DF in time ∆t, and (iii) the area dAtm added to the step due to TM in time ∆t.

In doing so, we take the convention that a circular island has positive curvature.

Furthermore, let us assume vadd∆t < |κ|−1 and d < |κ|−1. At the end of the section

we will discuss remedies for geometries that violate this last assumption. When that

assumption is satisfied, (i)-(iii) are calculated as the differential areas of sectors of

circles, with angles dθ, via formula dA = dθ/(2κ2).

First, consider the additional terrace area added in time ∆t to an island whose

boundary advances with velocity vadd. In differential form, we have

dAv = |κ|−1

[
vadd∆t+

1

2
κ(vadd∆t)2

]
dθ

≈ vadd∆t

|κ|
dθ , (5.9)

where the approximation in (5.9) is made by neglect of the quadratic term in ∆t. Sec-

ond, the mass added to the growing front from DF or TM, instead of strips S± near

island boundaries, contributes differential terrace area dA± = a2F∆t
|κ|

(
d∓ 1

2
κd2
)
dθ.

For DF, only dA+ is considered, whereas TM uses the sum dA− + dA+.

The resulting contributions are

dAdf =
a2F∆t

|κ|

(
d− 1

2
κd2

)
dθ , (5.10a)
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and

dAtm = 2d
a2F∆t

|κ|
dθ . (5.10b)

The factor a2F∆t appearing in (5.10) converts deposited mass into terrace area.

Finally, by equating (5.9) with (5.10a) in the case of DF, and (5.9) with (5.10b)

in the case of TM, the formula for the additional normal velocity, vadd, imparted to

the step from each transport process is

vadd =


a2F (d− 1

2
κd2) for DF,

2a2Fd for TM.

(5.11)

Notice that the above expression for DF, which involves asymmetry with respect to

the step edge per Definition 11, involves the local step curvature, κ, but this term

is eliminated in the expression for TM by symmetry. It is also worth noting that

vadd > 0 whenever F and d are positive, and the local geometry is non-degenerate.

Before we conclude this section, it is important to mentioning how (5.11)

should be modified when the assumptions vadd∆t < |κ|−1 or d < |κ|−1 are violated,

examples of which include: Small islands, small holes or vacancies, and narrow

terraces. In all of these potentially problematic cases, we forgo formulas (5.10) in

favor of direct calculation of the areas Adf =
∫
S+
dx and Atm =

∫
S+∪S−

dx. Accordingly,

vadd is computed by distributing the requisite mass from DF or TM along appropriate

step edges.

5.2.2 Implementation of downward transport mechanisms

We now outline the numerical methods used to simulate the island dynamics

model within the level set framework, and modifications that allow for the inclusion
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of DF and TM. For an overview of level set methods in a more general context,

see [65,90]. The key idea of level set methods is the implicit representation of moving

interfaces, which are typically the zero-level set of an auxiliary function ϕ. All

physical information is encoded in an externally defined velocity field, v. The level

set function, ϕ, evolves according to a Hamilton-Jacobi equation: ∂ϕ
∂t

+ v · ∇ϕ = 0.

Since the outward normal to the level set function is defined as n = ∇ϕ
|∇ϕ| , the level

set equation may be written in terms of the normal velocity, vn = v·, viz.,

∂ϕ

∂t
+ vn |∇ϕ| = 0 . (5.12)

In the case of the island dynamics model described in Section 5.1.2, without the

mass transport mechanisms, vn is the normal velocity in (5.2), which involves the

difference in adatom fluxes at step edges, plus a curvature term intended to capture

the effect of edge diffusion [77]. With inclusion of DF and TM, we take vn = v+vadd,

i.e. the original velocity (5.2) plus additional velocity (5.11).

At this stage, we should point out that curvature is calculated via κ = ∇· ∇ϕ|∇ϕ| ,

i.e. a second-order term, in the level set framework. As a result, (5.12) is no longer

a Hamilton-Jacobi equation. However, for the purposes of numerical simulation, it

should still be treated as a first-order hyperbolic PDE, as described in the seminal

paper by Osher and Sethian [66]: Convective spatial derivatives are discretized using

upwind methods, while second-order terms are discretized via centered differences.

When including downward transport, we apply the same prescription to vadd. With

or without this modification, the level set method employed for our island dynamics

model solves (5.12) using a third-order essentially non-oscillatory (upwind) scheme
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in space, whereas time integration is performed using a third-order total variation

diminishing Runge-Kutta scheme [19]; see also [67, 93].

Next, let us discuss the numerical solution of the adatom concentration field.

By Definition 11, the inclusion of DF or TM dictates that the deposition flux in

certain neighborhoods of step edges may need to be adjusted. Suppose S is a region

affected by DF or TM, to be defined in the level set framework later, and consider

a uniform numerical grid with step-size h. For each cell, Ci,j, that intersects S, we

compute

Ai,j =

∫
Ci,j∩S

dx , (5.13)

i.e. the area of intersection, pictured in Figure 5.4(b). This can be done, for example,

by the geometric integration method in [58]. Accordingly, the deposition flux Fi,j is

adjusted by the factor 1− Ai,j/h2. After this adjustment is made for all numerical

cells, we solve (5.4) subject to boundary conditions (5.6) using the finite-volume

approach described in [68,69].

It remains to specify S in the level set framework. To do so, we must find

contours which are a distance d away from the level sets Γn(t) = {x|ϕ(x, t) = n},

Γn(t) = ∂Ω for some set Ω. This can be done using the “reinitialization” technique

originally suggested by Sussman, Smereka, and Osher [100]. Employing the second

order upwind scheme in [82], we calculate the signed distance function, ψ(x, τ ; Ω),

as the steady-state of the PDE
ψτ + sign(ψ(n))(|∇ψ| − 1) = 0 , (x, τ) ∈ Ω× [0, d] ,

ψ(x, 0) = ψ(n) x ,∈ Ω ,

(5.14)
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where ψ(n)(x) = ϕ(x, t) − n, n is the level of interest, and τ is non-physical time.

The result is a function ψ whose zero level set is Γn(t) and is the signed distance

function of Ω up to distance d. Note that ψ = ±d corresponds to an interface

that lies in the region where ψ(n) is positive or negative, respectively. Consequently,

strips of width d surrounding Γn(t) in Ω± are the sets S± defined by (5.8). Recall

that for the case of DF, only one of these sets is required, whereas for TM both are

necessary.

For completeness, we outline the steps for the numerical simulation of the

island dynamics model in the level set framework [19]:

1. Initialize adatom density, ρ, level set function, ϕ, and number of islands, N .

2. Update N by (5.5) and seed an island if N is greater than the next integer

value.

3. For each island, calculate the signed distance function ψ by solving (5.14);

adjust deposition flux Fi,j according to Definition 11.

4. Solve (5.4) subject to (5.6).

5. Compute vn = v + vadd using (5.2) and (5.11).

6. Update ϕ by solving (5.12).

5.3 Simulation results

We now describe our data collection methods as well as our numerical results

for mound growth. First, we introduce statistical quantities that may be used to

150



capture important features of mound evolution; in particular, surface roughness,

feature size, and mean surface slope. These quantities, measured in KMC and level

set simulations of mound growth, allow us to capture the effects of adjusting impor-

tant model parameters. Through our KMC simulations, we show that increasing the

search radius R leads to a smoother surface with larger features and smaller slopes.

Furthermore, increasing the strength of the ES barrier increases surface roughness

and surface slopes, in addition to promoting smaller features. While level set data

showing the response of the growing surface to changes in ES barrier are not avail-

able, we find the same qualitative behavior in our mesoscale description of mound

growth by adjusting d as we do by adjusting R in KMC simulations.

5.3.1 Statistical characterization of surface morphology

Statistics for surface profiles obtained in KMC and level set simulations are

most conveniently expressed using the height-height correlation function, G(r, θ).

If r is the 2D position vector parallel to the high-symmetry plane of the crystal,

and h(r, θ) is the surface height as a function of position and coverage, then the

height-height correlation function at coverage θ may be defined as

G(r, θ) = 〈h̃(r, θ)h̃(0, θ)〉 , (5.15)

where h̃(r, θ) = h(r, θ) − 〈h(r, θ)〉 and the averages 〈·〉 are computed over choice

of origin 0, radius r = |r|, and ensembles. In an effort to streamline the results of

atomistic and mesoscale simulations, we measure the position r = |r| only at discrete

points (integer multiples of lattice spacing, a) along the x− and y− axes, which run
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parallel to the direction of nearest-neighbor bonding in SC geometry. This should

minimize differences due to the crystalline anisotropy inherent in the SOS model,

but neglected in our mesoscale treatment; see, for example, Figure 5.5.

When G(r, θ) is defined by (5.15), the surface roughness, w(θ), is computed

via

w(θ) =
√
G(0, θ) . (5.16)

In addition, the average feature size or “critical radius”, rc(θ), corresponds to the

first zero of G(·, t). Accordingly, the average surface slope is the ratio w/rc. Using

w(θ), rc(θ), and w/rc, the respective scaling exponents for roughness, coarsening

of features, and slope evolution can be computed for large enough values of θ. We

will refer to β as the roughening exponent and γ as the coarsening exponent, i.e.

w ∼ θβ and rc ∼ θγ for θ � 1. Note that the exponent for slope evolution is just

the difference β − γ.

In the remainder of this section, we summarize data obtained from KMC

and level set simulations for the height-height correlation function (5.15), related

statistics, and scaling exponents.

5.3.2 KMC simulations

We now provide the results of KMC simulations of the SOS model described in

Section 5.1.1. Primary quantities of interest include mean surface roughness, w(θ),

feature size rc(θ), and slope w(θ)/rc(θ), which are obtained from the height-height

correlation function (5.15) as described in Section 5.3.1. The values, and particularly
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(a) (b)

Figure 5.5: Comparison of surface morphologies after 20 monolayers of depo-
sition (a) on a 500× 500 lattice in KMC with transient mobility. Parameters
include D/F = 106, k = 10−2, φ+ = 10−2, and R = 3; (b) on a 181× 181 lat-
tice (256× 256 numerical grind) in the level set-based island dynamics model
including transient mobility. Parameters used are comparible to those in (a),
except d = 0.5.

the scaling of these quantities, are expected to depend on model parameters, of which

the search radius, R, associated with transient mobility and the ES barrier strength,

measured by Arrhenius factor φ+ = exp(−E+/kBT ), are central in our numerical

study. What we find is that roughness (feature size) tends to decrease (increase)

as R increases, for fixed θ, θ � 1. Moreover, roughness (feature size) decreases

(increases) as φ+ decreases, for fixed θ, θ � 1. A secondary observation is the

apparent stabilization of surface slope for certain parameter values [94].

First, we summarize our numerical results for different values of the search ra-

dius, R. Figure 5.6 shows the dependence with R of the (a) height-height correlation

function, (b) surface roughness, (c) feature size, and (d) surface slope. Although

there are trends in each plot, Figures 5.6(b)-(d) express the effect of transient mobil-

ity most clearly: Increasing the search radius tends to produce a “smoother” surface
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with larger features. Indeed, the exponents for roughening (β) and coarsening (γ)

tell a similar story: As R increases from 1 to 5, β decreases from 0.22 to 0.16, and,

at the same time, γ increases from about 0.08 to 0.20. The conclusion is that slope

stabilization can be achieved for an appropriately chosen value of the search radius;

see Figure 5.6(d).

Next, we describe the results of KMC simulations obtained as the factor φ+

varies from 10−2 (weak ES barrier) to 10−5 (strong ES barrier). Figure 5.7 summa-

rizes our results in two cases: (a) Small and (b) large detachment rate, measured by

k = exp(−EN/kBT ). In each case, after 100 monolayers of deposition, the largest

value of φ+ (smallest ES barrier) corresponds to the largest value of roughness.

Upon examining the scaling exponent (Table 5.1), β, we see the largest values are

obtained for φ+ = 10−2, whereas smaller, approximately constant, exponents are

found for φ+ ≤ 10−3. This behavior for roughness is somewhat unexpected.

φ+ = 10−2 φ+ = 10−3 φ+ = 10−4 φ+ = 10−5

β
k = 10−5 0.20 0.18 0.18 0.18
k = 10−2 0.31 0.26 0.25 0.25

γ
k = 10−5 0.14 0.17 0.19 0.20
k = 10−2 0.15 0.18 0.18 0.19

Table 5.1: Scaling exponents β and γ obtained from the asymptotic slopes (θ � 1) of the
curves formed by log-log plots of w(θ) versus θ and rc(θ) versus θ, respectively.

On the other hand, plots of feature size in Figure 5.7 seem to indicate that rc

increases with φ+, i.e. smaller features result from larger ES barriers. Nevertheless,

the measured values of the coarsening exponent, γ, shown in Table 5.1, demonstrate

that rc is growing faster for smaller φ+ as θ approaches 100 monolayers. Evidently,
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Figure 5.6: Height-height correlation, surface roughness, feature size, and
slope in KMC simulations performed on a 500×500 lattice for three values of
search parameter: R = 1 (solid line), R = 3 (dashed line), and R = 5 (dotted
line). Plots include (a) height-height correlation versus radial distance r at
θ = 100; (b) surface roughness versus θ; (c) feature size versus θ; and (d)
surface slope versus θ. The common set of parameters used are F/D = 10−6,
k = 10−5, and φ+ = 10−5. Curves represent the average of 10 independent
simulations.
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for smaller features, the effect of a fixed search radius R is more pronounced: For

fixed R > 0, the amount of mass added to island boundaries by the search procedure

is greater for small islands, relative to their size.

Before concluding our discussion of Figure 5.7, we should comment on the

behavior of slope versus θ. For large detachment parameter, the slope is clearly

still increasing after 100 monolayers of deposition, which is not the case when the

detachment rate is small. Indeed, by inspection of Table 5.1, the difference β − γ is

positive in the former case, and close to zero in the later for all but one case. Hence,

slope stabilization occurs in at least some of our simulated cases.

5.3.3 Level set simulations

We now summarize the results of level set simulations including DF and TM, as

described in Sections 5.2.1 and 5.2.2. We should warn the reader that the results in

this section are extremely limited due to the computational limitations of the legacy

level set code1 used to obtain them. In particular, only three simulations worth of

data is available and only small coverages are reached (θ ≤ 25 monolayers) for each

parameter set. Hence, reliable values of the scaling exponents β and γ have not yet

been obtained. Nevertheless, we find it instructive to look at the effect of adjusting

the parameter d, the mesoscale distance over which DF or TM is effective. Our data

1Christian Ratsch at UCLA provided us with a level set code that implements the island dynam-

ics model described in this chapter. Its main components are outlined in [19], but improvements to

the code have been made and additional physics has been added since that paper was published;

see Section 5.1.2.
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Figure 5.7: Surface roughness, feature size, and slope in KMC simulations
performed on a 500 × 500 lattice for three values of step-edge barrier: φ+ =
10−2 (solid line), φ+ = 10−3 (dashed line), and φ+ = 10−5 (dotted line).
Top row: Surface roughness versus θ; Middle row: Feature size versus θ; and
bottom row: Surface slope versus θ. The parameters used include R = 3,
F/D = 10−6, and (a) k = 10−5 and (b) k = 10−2. Curves represent the
average of 10 independent simulations.
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exhibit the same basic trends as those observed in the KMC simulations from the

previous section. In some cases, there are even indications of slope stabilization.

Consider the response of surface evolution to changes in the parameter d.

Figure 5.8 illustrates the effect of changing the distance over which DF and TM are

active. When increasing d from 1
2
a to a, the surface roughness decreases for both

transport mechanisms. At the same time, increasing d leads to larger features. Thus,

larger d yields smaller slopes. The dependence on d of roughness, feature size, and

slope in our level set implementation of the island dynamics model is consistent with

the R-dependence observed in KMC simulations including TM, shown in Figure 5.6.

Additionally, the plots of slope in Figure 5.8 seem to indicate that slope has stabilized

in a few cases. Overall, we conclude that there is qualitative agreement between

the KMC and level set data when mound evolution is viewed as a function of the

effective distance downward transport mechanisms are active.

Lastly, we also find it interesting to compare the two transport mechanisms:

(a) DF, which affect deposition on upper terraces near steps, and (b) TM, which

affects both upper and lower terraces. Generally speaking, surface roughness is

smaller and feature sizes are larger for TM than DF for fixed d since more mass

is transported to the step. In turn, surface slopes are smaller for TM, which is

expected.
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Figure 5.8: Surface roughness, feature size, and slope in LS simulations per-
formed on a 181× 181 lattice (256× 256 numerical grid) for two values of d:
d = 0.5a (solid line), and d = a (dotted line). Plots include (a) and (b) surface
roughness versus θ; (c) and (d) feature size versus θ; and (e) and (f) surface
slope versus θ. The parameters used include F/D = 10−6, Ddet/D = 10−5,
and D′/D = φ+ = 10−2 in the case of (a), (c) and (e) downward funneling (up-
per terraces affected); or (b), (d) and (f) transient mobility (upper and lower
terraces affected). Curves are computed from averages of three independent
simulations.
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5.4 Summary and discussion

In this chapter, we studied the effects of mass transport mechanisms DF and

TM in two models that include the ES step-edge barrier. The extent to which these

mechanisms alter the external deposition of atoms near step edges, measured by

effective distances R (atomistic parameter) and d (mesoscale parameter), was shown

to have an inverse relationship with surface roughness, w, and a direct relationship

with feature size, rc, in both atomistic and mesoscale simulations of mound growth.

In several cases, the competition between downward transport mechanisms and the

ES barrier lead to the stabilization of the average mound slope observed in KMC

and level set simulations. This is consistent with previous results of atomistic [94]

and mesoscale [46] studies of mound evolution that report “selected” slopes for high

enough coverages. Additionally, we were able to describe the effect of increasing

the ES barrier (decreasing φ+) in atomistic simulations including TM with fixed R.

At this stage, we are unaware of any comparable studies – theoretical, numerical

or experimental – describing the change in surface features during mound growth

as φ+ varies. It will be interesting, then, if we are able to extend our numerical

simulations of the island dynamics model to show similar trends.

Taking a different perspective than the approach of this chapter, which relies

heavily on numerical experiments, it would be nice to place this work on firmer

theoretical grounds. In particular, it is interesting that TM has not received more

attention in the physics or applied mathematics literature. Our primary reference

for its inclusion, [94], is one of very few atomistic models that attempt to capture,
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even effectively, the initial transient behavior of atoms upon their adsorption to the

surface. Moreover, there is quite a bit that can be done to develop SOS-type models

of TM. The attractive feature of the model described in Section 5.1.1 is its simple

incorporation into existing KMC codes. Still, the “search radius” prescription we

have used leaves much to be desired as a model of the effect of TM.

One puzzling aspect is the geometry of the search neighborhood: For a simple

cubic lattice, an adatom placed in the center of a square of side length 2R + 1 as

in Figure 5.3(b) can reach the boundary of the search region in R hopping events,

yet requires a minimum of 2R hopping events to reach a corner of the square. It

might be more realistic, for example, to define the search neighborhood based on

the expected number of hopping events a freshly deposited atom undergoes prior to

thermalization. This prescription is no more complex than the original. Going one

step further, it is not at all unreasonable to track “hot” adatoms in a KMC simu-

lation and assign them special hopping rates, which may even be time-dependent.

Be that as it may, it is likely that other models or numerical methods, e.g. molec-

ular dynamics (MD), would be better suited to describe TM. It is already common

practice to study the deposition process via MD [112,113], so it is a good candidate

for future investigations of TM.
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Chapter 6: Decay of a faceted crystal structure

In this chapter, we propose a method of incorporating the motion of facets into

a continuum thermodynamics framework that is consistent with a mesoscale BCF

description of the surface. At the mesoscale, crystal surface evolution is driven by

the motion of many atomically thick steps. At the macroscale, a PDE for the surface

height outside the facet offers a plausible description, whereas physically relevant

solutions to this PDE have singular behavior near the facet edge. We reconcile these

two scales by imposing a step-driven discontinuity of the surface chemical poten-

tial across the facet edge, modifying the previously applied notion of a continuous

chemical potential. We focus on an idealized model: a semi-infinite axisymmetric

structure with a single facet in the absence of external material deposition or desorp-

tion. We study long-time surface relaxation, when the surface slope profile exhibits

self-similarity.

At the macroscale, a PDE for the surface height profile the crystal structure

we consider can be formulated using continuum thermodynamic principles away

from the facet, which is a singularity of the surface free energy. To form a well-

posed model, the facet may be treated as a free boundary [96]. “Natural” boundary

conditions at the facet edge result from a variational interpretation of evolution;
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the large-scale surface height, slope, step chemical potential and adatom flux are

continuous across the facet edge [50,64,91,96]. This view is not consistent with the

motion of steps [51]. Inspired by work on an evaporation model [63], we consider

a modified set of boundary conditions at the facet involving jump-discontinuities in

the continuum-scale step chemical potential and the flux generating it [86]. In [63],

the evolution PDE away from the facet is of second order; and the jump is introduced

only for the generating flux of chemical potential. Here, the evolution PDE is of

fourth order [50,96,110].

In this work, we empirically determine jump factors to be included in boundary

conditions at the facet. These “jump” boundary conditions are shown to produce

good agreement between the continuum PDE and results of many-step simulations

when the factors are determined from the geometry of top steps of step simulations.

Based on this observation, we develop a hybrid computational scheme that couples

the continuous height profile to the motion of a few steps through our jump boundary

conditions at the facet [86]. The coupled discrete-continuum computational scheme

developed here offers an advantage over previous, related approaches, e.g. [34, 35,

50,51,96]. For example, in [50,96] only natural boundary conditions are considered;

and in [34, 35, 51] the entire many-step system is simulated. It is also worth noting

that this approach bears resemblence with other multiscale methods, e.g. [10, 102,

108, 109], but is tailored to our specific problem and not expected to be widely

applicable.

Our approach can be summarized as follows: (a) We empirically construct a

global, macroscopic surface chemical potential, µ, that expresses (i) changes of the
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continuum-scale free energy of many steps away from the facet and (ii) the annihila-

tion of individual atomic steps on the facet. These distinct physical characterizations

of µ must suitably be connected across the facet edge. To this end, we propose a

jump condition that accounts for details inside a narrow region of a few steps, herein

called the discrete boundary layer, near the facet. (b) We formulate a continuum

theory outside the facet that implicitly accounts for the discrete boundary layer. The

resulting free boundary problem for the facet consists of (i) a continuum equation

for the self-similar surface slope away from the facet and (ii) boundary conditions by

which the large-scale surface chemical potential and a flux generating it are forced

to have jump discontinuities at the facet edge. For validation, we formulate and

implement a computational scheme, henceforth referred to as the “hybrid scheme”,

to approximately solve our free boundary problem without resolving the full step

system. As the time, t, advances, our scheme successively improves the slope profile

through the solution of discrete equations for a few steps inside the boundary layer.

We show by numerics that our scheme apparently converges to the surface slope

profile computed via independent many-step simulations.

From a physical perspective, our approach exemplifies the key role of the

surface chemical potential, µ, in reconciling two seemingly disparate notions: (i) the

facet, a macroscopic object, and (ii) the (discrete) step. Our work indicates that

the facet and the bulk of steps away from it can be treated as two distinct “phases”

connected through an unusual jump condition for µ. The magnitude of this jump

depends on the continuum surface profile and the curvatures of individual steps in

the discrete boundary layer; this layer represents the microstructure of the interface
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between the two phases.

6.1 Review of the BCF model for 2D steps

If we neglect step edge diffusion and evaporation, and assume that no material

is deposited on the surface from above, the concentration C(r, t) of adatoms on

terraces obeys

∂C/∂t = ∇ · (Ds∇C) , (6.1)

where Ds is the (constant for our purposes) terrace diffusivity. It is common in

BCF formulations to assume adatom diffusion equilibrates quickly relative to step

motion, so that ∂C/∂t ≈ 0; in this case equation (6.1) is said to be quasistatic.

At the step, we impose the linear kinetic relations [36]

J±,⊥ = κ±(C± − Ceq) . (6.2)

Here, J±,⊥ is the normal component of the adatom flux J± = −Ds∇C on the upper

(+) or lower (−) terrace, directed toward the step; κ± is the respective rate of

attachment-detachment due to the Ehrlich-Schwoebel barrier [24,88]; C± is the value

of the adatom concentration at the step on the corresponding terrace; and Ceq is the

equilibrium concentration at the step. For the diffusion-limited kinetics considered

here, the diffusion length Ds/(κ±) should be small compared to a typical terrace

width.

Equations (6.1) and (6.2) are linked to step energetics via the thermodynamics-
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based formula [36]

Ceq = cs exp

(
µst

kBT

)
≈ cs

(
1 +

µst

kBT

)
, (6.3)

where µst is the step chemical potential, cs is a constant concentration, and kBT is

the Boltzmann energy; |µst| � kBT . If Ust is the step free energy per unit length,

including step-step interactions, µst is given by [52]

µst =
Ω

a
∇ · (Ust eη) , η = ηst , (6.4)

and thus may depend on the step configuration via Ust. Here, Ω is atomic volume,

a is step height, and step edge is described by η = ηst in a curvilinear coordinate

system, say (η, ς), with unit normal vector eη; Ust = U(η, ς). Note that if U = β, a

constant step line tension, Eq. (6.4) yields µst = (Ω/a)β κst where κst denotes the

local step edge curvature [36,74].

By mass conservation, the normal step velocity is [36]

v =
Ω

a
(J+,⊥ + J−,⊥) . (6.5)

Equations (6.1)–(6.5) describe the motion of step positions for prescribed initial

data; the energy Ust is considered as known.

6.2 Continuum description of evolution

Next, for a monotone step train and diffusion-limited kinetics, we outline ele-

ments of the continuum theory away from the facet, in correspondence to the step

flow description of Sec. 6.1. In the continuum limit, a/L approaches zero while the

step density is kept fixed, where L is a typical macroscopic length.
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First, the step velocity, v, approaches |∇h|−1 ∂h
∂t

[52]. Accordingly, step motion

law (6.5) becomes a mass conservation statement, viz.,

∂h

∂t
+ Ω∇ · j = 0 , (6.6)

where j(r, t) is the continuum-scale adatom mass flux.

Second, Eqs. (6.1)–(6.3) give rise to a constitutive relation between the flux,

j(r, t), and the macroscale step chemical potential, µ(r, t) [52]:

j(r, t) = −csDs

kBT
M · ∇µ , (6.7)

where M is an orientation-dependent (dimensionless) tensor “mobility”. For diffusion-

limited kinetics, M = 1, the unit tensor [45].

Third, by Eq. (6.4) the chemical potential µ is the variational derivative of the

surface free energy, E[h], the continuum limit of aUst [52]:

µ = Ω
δE

δh
, (6.8)

provided the variational derivative is well defined. Equation (6.8) expresses a ther-

modynamic principle. For entropic and force-dipole step-step interactions, the E[h]

of a vicinal surface reads [31,52]

E[h] =

∫∫ (
g0 + g1|∇h|+

1

3
g3|∇h|3

)
dS, (6.9)

where g0 is the energy per area of the (x, y)-reference plane, g1a = β, g3 accounts

for repulsive step-step interactions, g3 > 0, and dS = dx dy. Note that, for this free

energy, δE[h]/δh is ill defined at surface regions where ∇h = 0, which correspond

to facets in this formulation (see Sec. 6.2.1). The variable µ is computed as

µ = Ωg1∇ · ξ , (6.10)
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where

ξ = −
(
1 + g|∇h|2

) ∇h
|∇h|

, r : outside the facet , (6.11)

and g = g3/g1 expresses the relative strength of step-step interactions and line

tension; see also [63].

The combination of Eqs. (6.6), (6.7) and (6.10) with M = 1, for diffusion-

limited kinetics, yields a fourth-order PDE for the height profile, h(r, t), away from

facets:

1

B

∂h

∂t
= −∇2 (∇ · ξ) . (6.12)

Here, ξ is defined by Eq. (6.11) and B = csDsΩ
2g1/(kBT ) is a material parame-

ter [45].

6.2.1 Facet as a free boundary

We now discuss some aspects of the free-boundary point of view for a faceted

structure. As is indicated in Sec. 6.3.3, the facet, where ∇h = 0, is a singularity

of PDE (6.12) with (6.11)). This difficulty can be systematically overcome us-

ing the subgradient formulation [30, 37, 42, 64], which is consistent with Spohn’s

approach [96] and the application of Fourier series expansions [91]. Accordingly,

PDE (6.12) is extended everywhere to the whole domain; then, ξ must be appropri-

ately defined on the facet. A mathematically plausible extension follows from the

variational property that relaxation occurs as the steepest descent of the free energy,

E[h]. This approach implies a prescription for a free boundary problem [96]: Apply

PDE (6.12) away from the facet and ensuing, natural boundary conditions at the
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facet edge that include: (i) continuity of surface height; (ii) continuity of positive

slope, |∇h|; (iii) continuity of adatom flux; and (iv) continuity of step chemical po-

tential. Consequently, the component of ξ normal to the facet edge is continuous.

In addition, “far-field” conditions on a semi-infinite structure require that the height

and positive slope approach their initial data far from the facet.

It has been demonstrated by simulations of a faceted axisymmetric crystal

structure under diffusion-limited kinetics that the continuum solution determined

through natural boundary conditions is not consistent with step motion [51]. For

an analogous result in evaporation kinetics, see [63]. Therefore, the facet should

be viewed as a special region where discrete effects, especially collapses of ex-

tremal steps, are significant, dramatically influencing the large-scale surface mor-

phology [35].

To reconcile the discrepancy between predictions of the continuum model using

natural boundary conditions and step simulations, in [51] the continuity of the

continuum-scale step chemical potential, µ, is replaced by the step-drop condition,

inspired by [35]. This latter condition requires that the facet height, hf(t), decrease

in increments of a single atomic height for each step collapse:

hf(tn+1)− hf(tn) = −a , (6.13)

where tn is the nth-step collapse time. Equation (6.13) can be viewed as a discrete

derivative of hf(t), t ≈ tn, and is approximately reduced to

ḣf ≈ −
a

δt(t)
, δt(t) = tn+1 − tn , (6.14)

which imposes a vertical facet speed, given δt(t) [51].
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Condition (6.14) reveals a nonlocal coupling of facet motion with the surface

profile through step flow; the value of δt(t) in principle depends on the dynamics of

the many-step system. This relation leads to predictions consistent with steps [51];

however, it is deemed as impractical for computation of large-scale surface morpholo-

gies. First, obtaining δ(t) requires simulations of a large number of steps. Second,

Eq. (6.14) leads to a boundary condition sensitive to any errors in δt(t).

An alternative to the step-drop condition was introduced in [63] for an evap-

oration model in a radial geometry. In that setting, crystal height evolves accord

to second order PDE ∂h/∂t = −νΩg1∇ · ξ; ν is a material parameter. Then, the

natural boundary conditions consist of continuity of height, slope, and flux variable

ξ if g3 > 0 [cf. Eqs. (6.10) and (6.11)]. The resulting free-boundary problem in

principle yields predictions not consistent with step flow [63]. Instead of the use of

the step-drop condition, the radial ξ in [63] is allowed to have a jump discontinuity

at the facet edge [63]. The continuity of height and slope are left intact. Specifically,

in axisymmetry, if ξf(r, t) is a quantity corresponding to the radial component of ξ

on the facet and rf(t) is the facet radius, the jump condition reads

ξf(r, t)
∣∣
r−f (t)

= Q(t) ξ(r, t)
∣∣
r+f (t)

, (6.15)

where r±f indicates a limit from outside (+) or inside (−) the facet, and Q(t) rep-

resents a piecewise-constant multiplicative jump depending on the radii of two ex-

tremal steps at collapse times. If ri(t) is the ith step radius, Q(t) = [rn+1(tn−1) +

rn(tn−1)]/[2rn+1(tn−1)] for tn−1 ≤ t < tn is the geometric factor applied in boundary

condition (6.15) that resulted in a continuum formulation consistent with step flow
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simulations [63].

It may be argued that this formulation is not essentially different from ap-

plying the step-drop condition, since both approaches inject information about the

nature of step collapses into the continuum setting. However, we believe that intro-

ducing jumps in thermodynamic quantities such as the step chemical potential offers

at least two important advantages. First, from a physical viewpoint, this approach

retains the thermodynamic structure of the boundary conditions at the facet edge.

Second, the jump condition appears less sensitive to errors in the step collapse times;

thus, it may be a viable candidate for a tractable computational scheme.

A common difficulty in the implementation of either Eq. (6.15) or the step

drop condition (6.13) is the need for simulating a large number of particles via step

flow. The hybrid discrete-continuum scheme presented in section 6.3 leverages the

advantages of a thermodynamics-based formulation like the one in [63], while at the

same time substantially reducing the number of steps which must be simulated.

6.3 Formulation

We now specialize our geometry to axisymmetric crystal shapes. Further-

more, we consider a regime where surface diffusion is the dominant mass transport

mechanism, neglect any external flux of adatoms, and assume everywhere isotropic

surface diffusivity. In this section, we first describe the geometry of the micro- and

macroscale, provide respective equations of motion, and discuss potential boundary

conditions for the continuum model in two cases: (i) a reference case employing
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natural boundary conditions, and (ii) jump boundary conditions motivated by the

use of (6.15) in [63]. Specifically, we give the empirically derived jump boundary

conditions in both xi(r, t) and µ(r, t) that are essential to the formulation of a hybrid

scheme for computing the slope profile of the crystal. Finally, we outline the hybrid

approach we employ in section 6.4.3.

6.3.1 Geometry

At the macroscale, the continuous crystal surface is represented by its height

h(r, t) as a function of radial position r and time. The facet, which has a fixed

orientation of zero slope, is described by height hf(t) and radius rf(t), which tend

to decrease and increase, respectively, in time.

At the mesoscale, the crystal consists of N � 1 layers of concentric circular

steps of atomic height a and radii {ri(t)}Ni=1. We define the ith terrace as ri < r <

ri+1. Through step flow, the top step of the structure, beginning with r1, tends

to decrease its radius monotonically to zero and collapse under the effects of line

tension. We denote by tn the nth collapse time: the smallest time t for which

r1(t) = r2(t) = · · · = rn(t) = 0 and rn+1(t) > 0. With steps acting as repulsive

force-dipoles, preventing crossings, the discrete slope

mi(t) =
a

ri+1(t)− ri(t)
(6.16)

is positive for all n ≤ i ≤ N − 1 and t < tn.
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Figure 6.1: Geometry of axisymmetric crystal at macroscale (left) and
mesoscale (right). The macroscale crystal height is h(r, t) for polar coor-
dinate r. The facet height and radius are hf(t) and rf(t), respectively. a is
the mesoscale step height.

6.3.2 Mesoscale equations of motion

If the concentration of adatoms on the ith terrace is Ci(r, t) then (6.1) can be

written as

∂Ci
∂t

= Ds
1

r

∂

∂r

(
r
∂Ci
∂r

)
, ri < r < ri+1. (6.17)

Using the quasistatic approximation, Ci(r, t) satisfies the Laplace equation on the

ith terrace, which in radial geometry has solution

Ci(r, t) = Ai(t)ln(r) +Bi(t), ri < r < ri+1. (6.18)

If we denote Ji as the outward adatom flux on the ith terrace, using Fick’s law

Ji = −Ds
∂Ci

∂r

∣∣
r=ri

the boundary conditions (6.2) are

Ds
∂Ci
∂r

= Ji = κ+ [Ci − Ceq
i ] , r = ri (6.19a)

−Ds
∂Ci
∂r

= Ji = κ−
[
Ci − Ceq

i+1

]
, r = ri+1, (6.19b)
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where κ+(κ−) is the kinetic rate of attachment-detachment at the up-step(down-

step) edge and Ceq
i is the equilibrium concentration at the ith step, which is related

to the step chemical potential through (6.3). Applying (6.19) to (6.18) and substi-

tuting (6.3), the resulting flux on the ith terrace is

Ji(r, t) = −Dscs
kBT

1

r

µi+1 − µi
ln ri+1

ri

, (6.20)

assuming diffusion-limited kinetics, when Ds/[κ±(ri+1 − ri)]� 1.

The step chemical potential µi(r, t) is defined as the change in free energy

associated with adding or removing an adatom to or from the ith step edge [36].

The total free energy is [50]

EN = a
∑
i

2πri(t) [g1 + g3V (ri, ri+1)] , (6.21)

where g1a is step line tension, g3a is the strength of elastic dipole nearest-neighbor

step interactions, and step-step interactions are determined by

V (ri, ri+1) =
1

3

2ri+1

ri+1 + ri

(
a

ri+1 − ri

)2

. (6.22)

From (6.21) we calculate the step chemical potential by

µi(r, t) =
Ω

a

1

2πri

∂EN
∂ri

=
Ωg1

ri
{1 + gΦi−1,i,i+1} , (6.23)

where the (dimensionless) interaction term Φi−1,i,i+1 is

Φi−1,i,i+1 =
∂ [riV (ri, ri+1) + ri−1V (ri−1, ri)]

∂ri
. (6.24)

Using (6.23) and (6.24), the discrete flux (6.20) can be expressed in terms of

step radii {ri(t)}.
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It remains to express the ith step velocity, vi = ṙi = dr/dt, in terms of step

radii, {ri(t)}, for tn ≤ t ≤ tn+1. Equation (6.5) and flux (6.20) result in a system of

ODEs

ṙi =
Ω

a
[Ji−1(ri, t)− Ji(ri, t)] (6.25)

=
csDsΩ

kBT

1

ari

[
µi+1 − µi

ln ri+1

ri

− µi − µi−1

ln ri
ri−1

]
, (6.26)

for i ≥ n + 3. The above equation must be modified when i = n + 1, n + 2 since

these steps have fewer neighbors; in particular the second term in equation (6.25) is

identically zero if i = n + 1. In Section 6.4 we solve ODEs (6.25) subject to linear

initial data ri(0) = i/N, 1 ≤ i ≤ N .

6.3.3 Macroscopic equations of motion

We now describe the macroscopic free boundary problem and natural boundary

coditions. Later, in section 6.4.2, we numerically demonstrate that this formulation

is not consistent with step flow [51]. In axisymmetric geometry, the PDE (6.12)

becomes

1

B

∂h

∂t
=

1

r3
+ g

1

r

∂

∂r
r
∂

∂r

1

r

∂

∂r

(
rm2

)
, r > rf(t), (6.27)

where m(r, t) = |∂h(r, t)/∂r| is positive surface slope. Differentiating both sides

with respect to r, equation (6.27) may be expressed as a PDE for m:

1

B

∂m

∂t
=

3

r4
− g ∂

∂r

1

r

∂

∂r
r
∂

∂r

1

r

∂

∂r

(
rm2

)
, (6.28)

which is valid away from the facet.
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The boundary conditions for (6.28) include two conditions at infinity in addi-

tion to five conditions at the facet edge: continuity of (i) slope, (ii) height, (iii) flux,

(iv) chemical potential, and (v) the variable

ξ = ξer, ξ = 1 + gm2. (6.29)

Note that (v) is needed to account for a time-dependent constant of integration, b(t)

which is ultimately eliminated in the final implementation. The seven boundary

conditions are

m→ 1, and ∂rm→ 0 as r →∞; (6.30)

m(rf , t) = 0; (6.31)

r3
f ḣf

B
= 1 + grf

[
−∂rm2 + 2rf∂

2
rm

2 + r2
f ∂

3
rm

2
]∣∣
r=rf

; (6.32)

r3
f ḣf

2B
= 1 + grf

[
∂rm

2 + rf∂
2
rm

2
]∣∣
r=rf

; (6.33)

1

4B

(
r3

f ḣf + rfb(t)
)

= 1 + grf ∂rm
2
∣∣
r=rf

; (6.34)

1

16B

(
r3

f ḣf + 2rfb(t)
)

= 1. (6.35)

The details of the formulation of these conditions can be found in [50, 86]. In

particular, (6.34) and (6.35) are found by extending µ and ξ continuously onto the

facet by matching µ(r+
f , t) and ξ(r+

f , t) (outside the facet) with

µf =
Ωg1

4B

(
r2ḣf + b(t)

)
, r < rf(t), (6.36)

ξf =
1

16B

(
r3ḣf + 2rb(t)

)
, r < rf(t). (6.37)

The PDE (6.28) along with boundary conditions (6.30)–(6.35) constitute our

continuum model with natural boundary conditions.
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6.3.3.1 Jump boundary conditions

Next, we relax the assumption of continuity in the chemical potential and the

function ξ at the facet edge to accommodate a chemical potential on the facet which

is distinct from the step chemical potential [86]. By introducing multiplicative jumps

Qµ(t) and Qξ(t) into equations (6.34) and (6.35), respectively, we consider the more

general boundary conditions

1

4B

(
r3

f ḣf + rfb(t)
)

= Qµ(t)
(

1 + grf ∂rm
2
∣∣
r=rf

)
, (6.38)

1

16B

(
r3

f ḣf + 2rfb(t)
)

= Qξ(t). (6.39)

The jump factors included here allow for higher (lower) values of µ or ξ coming

from outside the facet when Qα > 1 (Qα < 1), α = µ, ξ. Note that Qµ = 1 = Qξ

corresponds to continuity of µ and ξ. Our continuum model with jump boundary

conditions consists of PDE (6.28) and conditions (6.30)–(6.33),(6.38),(6.39).

Later, in section 6.4, we compare the numerical solution of the continuum

model with natural boundary conditions to the results of step simulations, which

are known to disagree when the parameter g is small [51]. Using the modified

boundary conditions (6.38) and (6.39), on the other hand, we show good agreement

with step simulations when Qµ(t) and Qξ(t) are computed from a discrete factor

involving the top steps in the discrete model. Consider the quantity

Qi(t; g) =
1

2

(
ri+1 + ri

2ri+1

+
ri + ri−1

2ri

)
, (6.40)

which depends on the geometry of the (i − 1)th, ith, and (i + 1)th steps. The

values of jump Qµ(t) and Qξ(t) that result in agreement between macroscopic and
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Figure 6.2: Step simulation data for values of piecewise constant jump factor
Qξ(t) = Qξ(t; g) in intervals tn ≤ t ≤ tn+1 as a function of collapse number, n.
Circles represent data for weak step interaction, g = 0.01; squares represent
g = 0.1; and triangles g = 1.

microscopic models are

Qµ := Q−1
n+1(tn; g), and (6.41a)

Qξ := Qn+1(tn; g), (6.41b)

calculated at collapse times tn, n � 1 [86]. Figure 6.2 shows the behavior of the

jump factor corresponding to Qξ, from which we conclude that the jumps (6.41)

approach constant values when n� 1.

It is important to note that the choice of jumps boundary conditions (6.38)

and (6.39) as well as the jump factors in equations (6.40) and (6.41) are entirely

empirical. While the jump described in the evaporation-condensation model of [63]

could be attributed to a discrete factor appearing explicitly in the step ODEs in

that case, there is no such discrete factor appearing in the step ODEs in the case

of surface diffusion, i.e. (6.25). Therefore we insert an empirically chosen jump
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factor in one boundary condition, and “compensate” with its reciprocal in another

boundary condition, resulting in the jump formulation we describe above.

6.3.4 Hybrid two-scale approach

In principle, the application of jumps (6.41) in boundary conditions (6.38)-

(6.39) requires the simulation of a large number of steps, which a good continuum

theory hopes to avoid. To practically apply the jump formulation outlined in sec-

tion 6.3.3.1, then, it would be convenient if we could estimate the g-dependent jumps

without having to simulate a full system of steps. In this section we describe a hy-

brid discrete-continuum numerical scheme that allows us to estimate jumps from a

reduced step system and solutions to the continuum model with natural boundary

conditions.

Two important features of the jump boundary conditions described in the

previous section are (i) that the jumps (6.41) seem to approach a g-dependent

constant after many steps collapses (see Figure 6.2), and (ii) that they depend

only on a small number of steps in the mesoscale model. These features are critical

to our hybrid approach. In particular, if (ii) were not true and our jump factors

had a global dependence on step positions, we would be forced to solve the full step

system.

Another aspect of our continuum model that is key to formulating our hybrid

scheme is the “far-field” boundary condition (6.30), i.e. conditions on the continuum

slope profile at infinity. Far from the facet we expect the slope profile to resemble
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initial data in both the mesoscale and macroscale settings. Leveraging this fact, we

seek to simulate only a small number of steps near the facet, but utilize a continuum

slope profile away from the facet. In this way, a hybrid discrete-continuum approach

could enable us to estimate the jumps Qµ and Qξ, by simulating M � N steps.

Later in section 6.4 we provide examples for various values of g using M = 3 steps

in the reduced system and N = 1000 steps in the full step system.

Keeping the above elements in mind, an outline of our hybrid scheme is as

follows: Starting from linear initial data, ri(0) = i/N , i = 1, ...,M , we solve the

step odes (6.25) for the first M steps only. In a full step flow simulation these steps

are coupled to the motion of ri(t), i ≥ M + 1, not captured by the hybrid scheme.

Instead, we supply the positions of rM+1 and rM+2 through a relation based on the

formula for discrete slope, equation (6.16):

ri+1(t) ≈ ri(t) +
a

m (ri(t), t)
. (6.42)

In this relation, m is the continuum solution of the PDE (6.28) and t is the “con-

tinuous” time in the step solver.

By coupling the solution of (6.28) with the motion of a few ”virtual” steps,

iterations of our hybrid scheme can then be described by:

1. Compute m(r, t) using the formulation outlined in section 6.3.3; using natural

boundary conditions.

2. Simulate M � N step ODEs (6.25) in the discrete boundary layer until one or

more steps collapse; after each collapse, the first virtual step is added to step
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simulations. The M step ODEs are always coupled to the continuum slope

profile using virtual steps and equation (6.42).

3. Re-compute m(r, t) using jump boundary conditions (6.38) and (6.39), where

Qµ and Qξ are estimated from the reduced step system.

4. Repeat steps 2 and 3 for several iterations.

Note that, in practice, we allow 4 steps to collapse in step 2 for the first iteration of

this scheme before moving on to step 3, and each subsequent iteration only requires

1 step collapse.

So far, it has not been possible to predict a priori the number of iterations

for our hybrid scheme to “converge”. Issues of error estimation and convergence

are known to be somewhat dubious in multiscale modeling and analysis (see, for

example, [108, 109] for discussions of error estimation in multiscale schemes), and

these issues are not pursued in this thesis. Later, in section 6.4.3, we show that

the above outlined hybrid scheme produces a continuum solution in good agreement

with simulations of the large step systems, and provide the a posteriori error found

in a few cases.

6.4 Simulation results

In this section we give the details of our numerical simulations of the relax-

ation of an initial crystal cone at both the discrete and continuum scales. Specif-

ically, we solve the step ODEs (6.25) and the PDE (6.28) subject to (i) natural
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boundary conditions (6.30)–(6.35), and (ii) modified boundary conditions (6.30)–

(6.33),(6.38),(6.39). After comparing the solutions of both continuum models to

step simulations, we go on to present the results of our hybrid discrete-continuum

approach.

6.4.1 Self-similarity

Starting from linear (conical) initial data ri(0) = i/N , i = 1, 2, . . . , N , inte-

grate numerically the step ODEs (6.25). If g > 0, i.e. steps interact repulsively,

and are not expected to cross. Therefore, step motion may be simulated for all time

t > 0, and the discrete slopes mi = a/(ri+1 − ri), i = n + 1, ...N − 1, calculated

at collapse times t = tn, remain bounded (that is, we do not observe finite time

blow up). In Figure 6.3, we compare plots of discrete slopes versus ri (inset) and

ri/t
1/4 at t = tn, 1 � n � N , for various n. This shows a collapse of data points

onto a single curve in this scaling, indicating self-similarity. The same self-similar

behavior is observed in step collapse times, which follow the scaling law tn ∼ t∗n4

for n� 1 [35,51]; see Figure 6.4.

Motivated by discrete self-similarity, we assume there exist self-similar solu-

tions of the slope PDE (6.28). We are unaware, however, of any rigorous results

concerning the existence of such continuum self-similar solutions. Following [51],

we assume that m(r, t) ≈ m̂(η) the variable η = r/(Bt)1/4 and sufficiently large t;

then PDE (6.28) is converted to a similarity ODE [51]. For ease of notation, we will

remove the circumflex above the m in the above similarity slope variable and use
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prime to denote differentiation with respect to η. Thus, we may write

− η

4

dm

dη
=

3

η4
− g d

dη

1

η

d

dη
η
d

dη

1

η

d

dη

(
ηm2

)
, (6.43)

for η > ηf = rf/(Bt)
1/4 , i.e. outside the facet.

The boundary conditions (6.30)–(6.33),(6.38),(6.39) are transformed similarly.

They are

m→ 1, and
dm

dη
→ 0 as η →∞; (6.44)

m(ηf) = 0; (6.45)

− κη3
f = 1 + gηf

[
−(m2)′ + 2ηf(m

2)′′ + η2
f (m2)′′′

]∣∣
η=ηf

; (6.46)

1

2
κη3

f = 1− gηf

[
(m2)′ + ηf(m

2)′′
]∣∣
η=ηf

; (6.47)

1

8
κη3

f = 2Qξ −Qµ

(
1 + gηf (m2)′

∣∣
η=ηf

)
, (6.48)

where the values of Qµ and Qξ are understood to be their respective asymptotic

values after many step collapses, and κ = −ḣf(Bt)
3/4/B. Equation (6.48) accounts

for both conditions on µ and ξ, equations (6.38) and (6.39), after the constant of

integration b(t) is eliminated. If we take Qµ = 1 = Qξ in the (6.48), removing the

jump factors, we recover the natural boundary conditions; see also [51].

Self-similarity will play an important role in the results that follow. In partic-

ular, we use similarity solution m(η) at all stages of our application of the hybrid

scheme, even at small times t when slope profiles may not be self-similar. Therefore

we expect significant error at early stages of simulation in the hybrid scheme. In

practice, we observe that discrepancies between surface slopes computed using the

hybrid scheme and those computed from many-step flow decrease significantly as
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Figure 6.5: Comparison of discrete slope (circles) versus continuum slope
(solid curve) using natural boundary conditions (inset) and continuum slope
using jump boundary conditions (main plot) when (a) g = 0.01 and (b) g =
0.1.

the self-similarity assumption improves.

6.4.2 Comparing “natural” and jump boundary conditions

Applying the MATLAB boundary value problem solver bvp4c to the similarity

ODE (6.43) and natural boundary conditions, (6.44)–(6.48) with Qµ = 1 = Qξ, we

are able to calculate similarity solutions numerically for different values of step

interaction parameter g. The inset plots in Figure 6.5 compares the solution of

step ODEs with the solution of (6.43) subject to natural boundary conditions. For

small values of the parameter g, the continuum model deviates significantly from

step simulations. In contrast, the main plots of Figure 6.5, where we include jumps

in µ and ξ computed from many-step flow using (6.40) and (6.41), the continuum

solution is in good agreement with the solution of step ODEs (6.25).
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Figure 6.6: Comparison of discrete slope (circles) versus similarity solutions
(curves) when (a) g = 0.01 and (b) g = 0.1. In (a), the dash-dot curve is the
continuum slope computed using natural boundary conditions, the dashed
curve results from 6 iterations of the hybrid scheme, and the solid curve
results from 66 iterations of the hybrid scheme. In (b), the dash-dot curve is
the continuum slope computed using natural boundary conditions, the dashed
curve results from 1 iteration of the hybrid scheme, and the solid curve results
from 16 iterations of the hybrid scheme.

6.4.3 Results of hybrid scheme

We now implement the hybrid scheme presented in section 6.3 for different

values of step interaction parameter g. Note that the continuum solution used in

applying the condition (6.42) is the similarity solution of (6.43) subject to boundary

conditions (6.44)–(6.48). What we find is that the continuum similarity solution

produced after several iterations of the hybrid scheme using only M = 3 virtual steps

approaches the (self-similar) slope profile of computed from many-step simulations.

This apparent “convergence” is illustrated in Figure 6.6 for g = 0.01, 0.1 and in

Figure 6.7 for g = 1.

Evidently, the number of iterations of the hybrid scheme needed to produce
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Figure 6.7: Comparison of discrete slope (circles) versus two similarity solu-
tions when g = 1. The dash-dot curve is the continuum slope computed using
natural boundary conditions and the solid curve results from 1 iteration of
the hybrid scheme.

good agreement with the results of many-step simulations decreases with the step

interaction parameter g in Figs. 6.6 and 6.7. This behavior is expected since larger

step-step interactions tend to result in more uniformly spaced steps, leading to less

variation in the slope profile near the facet. In some sense, large g regularizes the

slope in a way that is more accurately described by a continuum theory using natural

boundary conditions, allowing the hybrid scheme to converge quickly. For example,

Figure 6.7 demonstrates that only a single iteration of the hybrid is necessary for

the resulting continuum slope profile to give good agreement with many-step simu-

lations. In contrast, for weak step interactions, steps tend to bunch near the facet,

introducing a large variations in the slope profile. In that scenario, more iterations

of the hybrid scheme are necessary to compensate for the fact that the initial pro-

file (coming from a continuum theory with natural boundary conditions) is a worse

approximation of step dynamics near the facet.
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6.4.3.1 Error between discrete and continuum solutions

At this point it is necessary comment on our use of the term “convergence”.

Loosely speaking, we use this term to suggest qualitative agreement between certain

discrete and continuum slope profiles. In a more rigorous context, convergence has a

precise mathematical definition. Particularly, in numerical analysis, convergence is

a property of iterative schemes whose numerical approximations approach the exact

solution as a parameter, typically for a time step or mesh size, goes to zero. Our

use of the term convergence is not intended to describe this property. Instead, we

use this term to refer to the apparent tendency for continuum solutions computed

using the hybrid scheme to approach slope profiles computed through many-step

simulations. In fact, convergence in the sense that we use it here is certainly not

equivalent to numerical convergence since we do not compare iterations to an exact

solution, but rather to the discrete slope profile of an entirely separate model.

While visually appealing, Figure 6.6 need not be the only measure of conver-

gence of the hybrid scheme, even when using our loose definition of the term. An

additional measure or the discrepancy between a given continuum similarity solu-

tion and the slope profile resulting from step simulations could be invented using

the Euclidean norm (`2-norm), for example.

If mi = a/(ri+1(tn)− ri(tn)) is the discrete slope at the nth collapse time and

m(η) is a continuum similarity solution, we can compute a relative error between

our continuum solution and the results of step simulations by
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ε(n; g) =

√√√√√∑
i≥n+1

∣∣∣∣∣∣
mi −m

(
ri(tn)

t
1/4
n

)
mi

∣∣∣∣∣∣
2

(6.49)

Using this definition, we present the following table of relative errors between a

reference discrete slope profile and the continuum similarity solution predicted by

our hybrid scheme after several iterations. As previously noted, convergence is

slowest for weak step interactions, therefore we only report such errors in the worst

case we consider, g = 0.01.

Collapses Relative Error

n M = 3 M = 5 M = 7 M = 10

0 4.2335 4.2335 4.2335 4.2335

10 0.1043 0.2417 0.2268 0.1531

20 0.0945 0.1065 0.0512 0.1340

30 0.0689 0.0811 0.0824 0.0874

40 0.0579 0.0617 0.0646 0.0660

50 0.0500 0.0524 0.0538 0.0536

60 0.0471 0.0281 0.0471 0.0282

70 0.0276 0.0276 0.0275 0.0274

In the above table, the value of error corresponding to 0 step collapses cor-

responds to the discrepancy between the discrete slope profile and the continuum

slope resulting from the natural boundary conditions. The drop in error after just

10 step collapses is quite good. By 70 collapses the error for each value of M is

less than 1% of the initial error, and the scheme has produced a continuum solution
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that is in very good agreement with step simulations. Note that the relative errors

are reported here in terms of step collapses; the corresponding number of iterations

of the hybrid scheme are given by n− 4, n > 0, since we allow 4 steps to collapse in

the first iteration of the hybrid scheme.

6.5 Discussion

In this section, we discuss plausible modifications of our formulation. In par-

ticular, we address a free boundary problem where a single jump is introduced. We

also comment on the use of an alternate hybrid scheme in which the step ODEs are

linked to the continuum theory via the step-drop condition [51]. Finally, we discuss

open challenges in two spacial dimensions.

6.5.1 Boundary conditions with single jump

It is compelling to ask whether the jump factors of equations (6.40)-(6.41)

can be chosen uniquely. We claim that, in the context of our empirical approach,

the answer to this question is negative if the jump factors are evaluated at times

different from the step collapse times, tn. For example, let us consider the scenario

where continuum equation (6.43) is solved numerically by imposition of only one

jump condition. Specifically, suppose we choose to apply either the jump (Qµ)

in the chemical potential or the jump (Qξ) in the flux generating the chemical

potential. Then, by our numerical computations the ensuing continuum theory

predicts surface slopes not consistent with step motion if the jump is evaluated at
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the step collapse times, tn. This observation indicates that the sequence of times

at which a single jump should be evaluated may not be a priori characterized;

the sequence consists of adjustable parameters whose linkage to ri(t) appears as

unknown and needs to be determined. This hypothetical formulation is deemed

as impractical for viable computations of facet evolution. In contrast, the step

collapse times tn are characterized by rn(tn) = 0, which can be incorporated into a

hybrid scheme. Following this scenario of a single jump, our numerics also yield the

sequence of times, t̂n, required to achieve agreement of continuum predictions with

step simulations; tn < t̂n < tn+1. Each t̂n is close to tn for sufficiently large values

of g.

6.5.2 Alternate hybrid scheme

It is of some interest to examine whether a viable hybrid scheme can be devised

on the basis of step-drop condition (6.13) [51]. Although we have not yet reached

a definitive conclusion in this direction, numerical results suggest that our “jump

formulation” of boundary conditions (section 6.3.3.1), relying on discontinuities of

two thermodynamic variables, forms a more viable approach.

First, we comment on a comparison of the two formulations. Evidently, the

jump formulation maintains the thermodynamic structure of continuum theory, since

it retains variables such as the chemical potential which is the variational deriva-

tive of the surface free energy outside the facet. On the other hand, the step-drop

condition makes direct use of the vertical facet speed which is remotely connected

191



to the thermodynamic structure. In view of these features, we believe that the

jump formulation bears certain advantages over the step-drop condition. For exam-

ple, computations of the surface slope based on the former are more robust. We

made an attempt to construct a hybrid scheme that iteratively utilizes the step-

drop condition. Numerical results of this scheme indicate poor convergence after

a large number of iterations, in contrast to the outcomes of the hybrid scheme in

section 6.3.4. This behavior is possibly due to significant numerical error in the

continuum solution because of error in the step collapse time differences, tn+1 − tn,

explicitly used in the step-drop condition.

6.5.3 Issues with facets in 2D

The extension of our formulation to full 2D, e.g., for periodic surface corruga-

tions, calls for improvements of our approach. An emerging issue is to numerically

solve the full PDE for the surface height, abandoning the assumption of self similar-

ity for the positive surface slope. A plausible numerical treatment is offered by the

finite element method, which has been a valuable tool in studies of surface morpho-

logical evolution, e.g., in [8]. However, commonly known versions of this method

correspond to the reference case. The incorporation of jump conditions across the

facet boundary into this method is an open problem. A related issue is the nature

of the jumps at the edges of 2D, noncircular facets. In the radial setting, the jump

factors, Qµ and Qξ, depend on the radii of top steps. In a more general 2D setting,

a plausible scenario is to use equation (6.40) by replacing ri by the Lagrangian co-
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ordinate of step motion invoked in [52]. In this context, it is of course necessary to

formulate the respective equations of motion for steps by use of these Lagrangian

coordinates.
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Chapter 7: Conclusion and outlook

In this thesis, we have explored several multiscale aspects of crystal surface

morphological evolution. A common theme among Chapters 2-6 is the BCF model

of crystal growth, and derivatives thereof. Specifically, mesoscale steps are a critical

component of our foray into the multiscale modeling, analysis, and simulation of

epitaxial growth.

In Part I, we focused on simple, 1D descriptions of a single step with the goal

of connecting atomistic KRSOS models to the mesoscale BCF model of step-flow.

To that end, we made use of various modeling, analytical, and numerical tools.

In particular, we (a) determined equilibrium and steady-state distributions for the

KRSOS models we consider, (b) derived discrete counterparts of the BCF model

from two atomistic models, and (c) characterized corrections appearing in our discete

BCF equations analytically and numerically. The sources of the discrete corrections

that emerged from our analysis are especially fascinating: On one hand, corrections

to adatom diffusion result from a kinetic interaction between adatoms. On the other

hand, the atomistic rules for attachment and detachment bring about corrections to

the discrete version of the linear kinetic relation for adatom flux. Stated another way:

The second type of correction results from the kinetic interaction between adatoms
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and the step. Accordingly, we regard this type of interaction as a fundemental

feature of 1D SOS-like models of vicinal crystals, as opposed to kinetic interactions

among adatoms, which may or may not be present either due to a modeling choice,

or by ensuring the system is sufficiently dilue [70,71].

With the above observations in mind, let us now discuss consequences for the

BCF model. First we note that the BCF model is a good approximation of the al-

ternate KRSOS model over a wider range of atomistic parameters than the original

KRSOS model because it avoids kinetic interactions between adatoms; for exam-

ple, the diffusion equation is “exact” for all model parameters. Furthermore, the

mesoscale boundary conditions at the step edge will include corrections whenever

kinetic adatom-step interactions exist. If they could be removed, which is not pos-

sible in SOS models, the linear kinetic relation could also be made “exact”. In this

sense, the BCF model of a single step assumes that adatoms are completely non-

interacting particles; they do not even interact with their environment. This idea

extends to 2D models of crystal surfaces as well, where more general interactions

between adatoms, and well as between adatoms and their environment, may be in-

cluded. In this regard, we conjecture that a nonlinear kinetic relation for adatom

flux at the step, like the one proposed in Chapter 3, could be derived in 2D. This

will be interesting to pursue in future work.

In contrast to Part I, Part II of this thesis has a considerable focus on mul-

tiscale simulation. In it, we investigate features of 2D crystal growth and decay

spanning three scales: Atomistic, mesoscale, and macroscale. Chapter 5 attempts

to connect atomistic and mesoscale models of mound growth. These include the
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Ehrlich-Schwoebel barrier at step edges, which induces an uphill mass current [105],

and the effect of mass transport mechanisms that are known to lead to slope sta-

bilization in unstable mound growth. Chapter 6 describes the decay of a faceted

crystalline mound using a hybrid numerical scheme which couples the motion of

a few mesoscale steps near the facet to the macroscale slope profile, governed by

a fourth-order nonlinear PDE. Even though many of the results in these last two

chapters are empirical, the numerical methods they influence can impart significant

physical understanding. For example, the hybrid scheme we use in the facet problem

highlights one of the pitfalls of deriving continuum models from discrete theories:

Continuum models can overgeneralize aspects of the discrete theory, especially at

singularities.

The work in this thesis points us toward many open questions. From Part I,

there are at least three interesting issues regarding the KRSOS models that might be

worth exploring: First, can we find a necessary condition guaranteeing the existence

of a steady-state distribution satisfying the (non-truncated) marginalized master

equation? For example, is there a deposition rate, Fcritical, such that a steady-state

exists provided F ≤ Fcritical? A promising direction for proving such a result is

suggested by Foster’s Theorem [23, 56], which generalizes the notion of Lyapunov

stability in the theory of ordinary differential equations to Markov chains. Second,

can the estimates involving ε = F/D in Proposition 5 be improved such that exter-

nal deposition flux F becomes a leading order term in the continuum limit of our

discrete BCF-like equations? While this would be nice to show without restricting

the number of adatoms allowed on the terrace, there are advantages to truncation,
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as demonstrated in Chapter 3. And third, going beyond the one-step setting, can

we define a 1D KRSOS model of multiple steps that enables us to derive elastic or

entropic step-step interactions? We leave this as a problem for near-future work.

In 2D, there are a myriad of open questions worth considering. One natural

question to ask is if the approach carried out in Part I of this thesis can be applied

in a 2D setting, even for a single step. In some respects, the answer is certainly

yes. It is very reasonable, for example, to follow our approach in the derivation of

a diffusion equation for adatoms, even with the nucleation of small islands. Along

this line, there are already examples of this sort of derivation [61, 62]. However, a

derivation for boundary conditions in 2D would be quite difficult due to complex

step geometries. We speculate that the boundary conditions in 2D will also involve

discrete corrections since adatoms still interact with steps. It would be a great

achievement, for example, if our master equation approach could be used to derive

the Gibbs-Thompson formula directly, and account for discrete corrections [43, 54,

55]. Another set of issues that might be worth exploring in 2D by our approach are

predictions for step fluctuations [6, 89, 101], and the calculation of step free energy

or stiffness in equilibrium [97,98,114].

The derivation of a complete mesoscale theory for small islands would be es-

pecially useful in the island dynamics model introduced in Chapter 5; it would be

nice, for example, to include the effect of cluster diffusion [7,40,41,48]. In this vein,

we should recognize the island dynamics model and the level set framework as ripe

with opportunities for modeling, analysis, and simulation. The level set method is

a highly adaptable numerical method, capable of describing island dynamics which
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include essentially any physics of steps we desire. Near future work, in this direc-

tion, should bring about the inclusion of elastic step-step interactions in the island

dynamics model, as well as an improved incorporation of second-layer nucleation in

the presence of Ehrlich-Schwoebel barriers [17,44,75,76].
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Appendix A: Selected results from theory of stochastic processes

In this appendix, we review some well known results from the theory of stochas-

tic processes that are invoked in Chapters 2 and 4. The definitions and theorems in

this section can be found in many texts on Markov processes, but the main results

included here are borrowed from [39,104].

We will focus on (continuous time) Markov processes which are time-homogeneous,

irreducible, and have a discrete state space, S, that is countably infinite. A stochas-

tic process has the Markov property if, at any given time, the current state of the

process contains all information to determine future behavior. Furthermore, it is

time homogeneous if evolution is independent of time. The last assumption, irre-

ducibility, implies that every state in S can be reached from every other state [39].

Let pi(t) be the probability that a process is in state i ∈ S at time t. For

given initial data, the time evolution of pi(t) can be described by a master equation

ṗi(t) =
∑
j∈S
j 6=i

[Tijpj(t)− Tjipi(t)] (A.1)

=
∑
j∈S

Tijpj(t), (A.2)

where Tij is the transition rate from state j to state i1. Here, Tii = −
∑

j∈S
j 6=i

Tji.

Strictly speaking, only one of (A.1) or (A.2) is necessary, but we find advantages

1Note that this notation, especially the order of the indices i and j, deviates from the convension
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in both. In the former, we see a difference in probability flux into and out of state

i, respectively. Equation (A.2), has the form of a matrix-vector product, which is

used in Section 2.1.

Next, we turn our attention to the long time behavior of the distribution pi(t),

which is governed by the stationary equations

∑
j∈S

Tijpj(t) =
∑
j∈S

Tjipi(t). (A.3)

This leads to our first definition:

Definition 12. (Steady-state distribution) A steady-state or stationary distribution

is a collection of positive numbers, {πssi }∞i=1,
∑

i π
ss
i = 1, that satisfy equation (A.3).

Regarding the preceeding definition, we now characterize the existence of

steady-state distributions in the following theorem [39].

Theorem 1. If a steady-state distribution exists, it is unique, and is the limiting

distribution of master equation (A.1). Furthermore, if we can find a collection of

positive numbers that satisfy (A.3), but sum to infinity, no steady-state distribution

exists.

At this stage, two comments about Definition 12 are in order. First, in cases

where the state space S is actually finite, (unique) solutions to (A.3) always ex-

ist. This can shown in a variety of ways, including, e.g. (i) the construction of a

suitable Lyapunov function, of which the statistical entropy is a notable example,

(ii) Kirchhoff’s network theory, or (iii) by the Perron-Frobenius theorem of linear

used in [39], but is more in line with [104].
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algebra [39, 85, 104]. An example where no solution exists in the case of countably

infinite S is described in Section B.

Second, in regards to terminology, we use the term steady-state in the sense

of statistical mechanics: it describes any stationary solution to the master equation

(A.1), pssi , in particular those for which the net probability fluxes Kij ≡ Tijp
ss
j −

Tjip
ss
i 6= 0. In some mathematical contexts not connected to statistical mechanics, a

stationary solution with nonvanishing probability currents Kij may be referred to as

the “equilibrium distribution”; see [38, 85, 118, 119] for examples where equilibrium

is viewed as a special stationary solution of master equations. The ensuing condition

indicates a Markov process in equilibrium.

Definition 13. (Equilibrium distribution) An equilibrium distribution is a steady-

state distribution of (A.1) that also satisfies the detailed balance conditions

Tijp
eq
j = Tjip

eq
i , for all i, j. (A.4)

The importance of detailed balance is paramount in equilibrium statistical me-

chanics, and extremely useful in determining the stationary solutions to the master

equation (A.1). The next theorem illustrates this point.

Theorem 2. If {p̃i}∞i=0 is a collection of positive numbers whose sum is finite, and

Tij p̃j = Tjip̃i for all i and j, then {p̃i}∞i=0 may be normalized to give the unique

equilibrium distribution of master equation (A.1).

Theorem 2 is invoked in Chapters 2 and 4 in order to obtain the equilibrium

distributions of different versions of the KRSOS model.
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The property of detailed balance ensures that the probability flux into and

out of each state are balanced for equilibrium processes. In this regard, conditions

(A.4) are intimately connected to the idea of reversibility. That is, a reversible

Markov process has the property that, if time is reversed, the resulting process is

indistinguishable from the original. For our purposes, we will regard the existance of

{peqi }∞i=1 satisfying (A.4) as the defining feature of reversible processes. An equivalent

characterization of reversibility is given by Kolmogorov’s criteria on the transition

rates of the master equation (A.1) [39]:

Theorem 3. (Kolmogorov’s criteria) A stationary Markov process is reversible if

and only if its transition rates satisfy

Ti0,i1Ti1,i2 · · ·Tin−1,inTin,i0 = Ti0,inTin,in−1 · · ·Ti2,i1Ti1,i0 (A.5)

for any finite sequence of states i1, i2, . . . , in ∈ S.

The most appealing feature of Kolmogorov’s criteria is that the existence of a

unique equilibrium distribution satisfying the master equation (A.1) can be deduced

from the transition rates alone, whereas Theorem 2 essentially requires us to guess

the equilibrium distribution outright.

The class of reversible Markov processes are attractive from a modeling per-

spective since they describe a broad range of phenomena. Reversibility is also a

desirable property analytically since it affords us a great deal of flexiblity in as-

signing (or perturbing) transition rates Tij. The final theorem presented in this

appendix illustrates one useful consequence of reversibility [39].
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Theorem 4. (Truncation theorem) If a reversible Markov process with state space

S and equilibrium distribution peqi , i ∈ S, is truncated to the set A ⊂ S then the

resulting Markov process is reversible and has equilibrium distribution

peqi∑
j p

eq
j

, i ∈ A. (A.6)

Theorem 4 justifies the truncation of the Markov process describing the KR-

SOS models in certain parameter regimes.
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Appendix B: On birth-death processes

In this appendix, we use a toy model for the birth-death Markov process (see,

for example, [39]) to indicate that no steady state of the master equation (2.5) exists

for large enough external deposition flux, F .

A birth-death process is a Markov process with infinitely many states, labeled

by n = 0, 1, . . . , for which transitions are only allowed between the n-th and (n+1)-

th states. Our discrete KRSOS model has this structure if we classify configurations

α by the number of adatoms on the terrace, i.e., by the cardinality |α| = n for

n = 0, 1, . . . . For our purposes, the detachment and deposition-from-above events

correspond to births while attachment and desorption events correspond to deaths.

Let γn denote the rate for the transition from the n-particle state to the (n+1)-

particle state (the process of “birth”) and θn denote the rate for the transition from

the n-particle state to the (n − 1)-particle state (“death”); see Figure B.1. If pssn

is the steady-state probability of the n-particle configuration, we have the following

balance equations.

γnp
ss
n = θn+1p

ss
n+1 ,

γ0p
ss
0 = θ1p

ss
1 . (B.1)
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0–p 1–p n–p (n+1)–p... ...
γ0

θ1

γ1 γn-1 γn γn+1

θ2 θn θn+1 θn+2

Figure B.1: Schematic of a birth-death Markov process showing the hierarchy of

particle states and respective transitions. The arrows connecting successive states

depict the underlying Markovian character of transitions. The symbol “n-p” stands

for the n-particle state; γn denotes the transition from the n-particle to the (n+ 1)-

particle state; and θn is the rate for the transition from the n-particle state to the

(n− 1)-particle state.

Solving (B.1) for pssn , we find the formula

pssn =
γnγn−1 · · · γ0

θn+1θn · · · θ1

pss0 , (B.2)

which of course must satisfy the normalization constraint
∞∑
n=0

pssn = 1. This con-

straint can be written as

pss0

∞∑
n=0

γnγn−1 · · · γ0

θn+1θn · · · θ1

<∞ . (B.3)

In other words, if condition (B.3) does not hold, the probabilities in (B.2) are not

normalizable and, thus, no steady state exists.

In our setting of epitaxial growth in 1D, the rates γn and θn are determined by

the transition rates for attachment, detachment, deposition and desorption. These
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rates satisfy the following equations.

γn =
1

pssn

∑
α

|α|=n

{
F +Dk(φ+ + φ−)1(ν−1(α) = 0)

}
pssα

= F +Dk(φ+ + φ−)an , (B.4)

θn =
1

pssn

∑
α

|α|=n

{
Dφ+1 (ν1(α) = 1) +Dφ−1 (ν1(α) = 0)

× 1 (ν1(α) > 0) +
1

τ

∑
i>0

1 (νi(α) > 0)
}
pssα

= Dφ+bn +Dφ−dn +
1

τ
en , (B.5)

where an, bn and dn are the probabilities of n-particle configurations that forbid

detachment, attachment from the right, and attachment from the left, respectively,

and en is the average number of adatoms that may desorb from n-particle states.

By (B.4) and (B.5), the ratio of birth and death rates is bounded below, i.e., we

have the inequality

γn
θn+1

≥ F

D(φ+ + φ−) + (N − 1)/τ
(n = 0, 1, . . .) . (B.6)

We deduce that the condition F > D(φ+ + φ−) + N−1
τ

implies that no steady state

may exist because normalization condition (B.3) is violated. In the context of the

1D epitaxial system, having F > D(φ+ + φ−) + N−1
τ

means that the rate particles

are added to the system via deposition is faster than the rate particles leave by

attachment and desorption. In this case, the number of particles on the terrace

constantly grows with time and, hence, no steady state can be established.
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Appendix C: Asymptotics of inverse Laplace transform

In this appendix, we derive formula (2.31) for the steady-state probability

density. Our derivation relies on the following ideas. (i) We assume that ε =

F/D is sufficiently small so that [I − εVD(s)V −1B]−1 exists and we can write this

matrix as
∑∞

n=0[εVD(s)V −1B]n; and (ii) the quantity pss, which is the limit of

p(t) as t→∞, comes from contributions to the inverse Laplace transform of (2.30)

corresponding to the pole at s = λ1 = 0 in the Laplace complex (s-) domain. Recall

that D(s) := diag{(s − Dλj)−1}Ω(M)
j=1 , where λj are the eigenvalues of matrix A of

the deposition-free problem. For a review of basic techniques in computing inverse

Laplace transforms, which we do not elaborate on here, see [84].

Let us now elaborate on these ideas. From (i) we may write p(t) as

p(t) =
1

2πi

∫ γ+i∞

γ−i∞

∞∑
n=0

(
εVD(s)V −1B

)n
VD(s)V −1p(0)estds

=
1

2πi

∞∑
n=0

εnV In(t)V −1p(0) , (C.1)

where γ is a positive constant and the integrals In(t) are defined by

In(t) =

∫ γ+i∞

γ−i∞

(
D(s)B̃

)n
D(s) estds ; B̃ := V −1BV . (C.2)

The integrand in (C.2) is a matrix resulting from the product (DB̃)nD, whose
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entries have the form

[
(DB̃)nD

]
ij

=
b̃ik1 b̃k1k2 · · · b̃kn−2kn−1 b̃kn−1j

(s− λi)(s− λk1) · · · (s− λkn−1)(s− λj)
; (C.3)

b̃kl are appropriate coefficients independent of the Laplace variable, s.

By (ii) above, since we seek the steady-state solution pss, the main contribution

to the integral (C.2) comes from the pole at s = λ1 = 0. The only terms which

include (s − λ1)−1 are those with j = 1 in (C.3). This conclusion can be reached

after simplification in the algebra, which can be described as follows. The rows of

the matrix V −1 contain the left-eigenvectors of matrix A. Because of conservation

of probability, by which the column sums of A and B are zero, we must have

(V −1)1i = (V −1)1j for all i, j. The matrix V −1B, which forms the left matrix

product in the B̃ defined in (C.2), must obey

∑
i

(
V −1

)
1i

(B)ij = 0 for all j. (C.4)

Hence, the right-hand side of (C.3) vanishes whenever any of the indices i, k1, k2, . . . kn−1

is equal to unity. Consequently, the steady-state contributions to integral (C.2) come

only from simple poles at s = λ1, specifically the terms in (C.3) for which j = 1.

If n = 0, integral (C.2) equals eDtΛ, the inverse transform of D(s). If n > 0

an asymptotic expansion for In(t) as t → ∞ may be computed using the residue
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theorem, viz.,

[In(t)]ij =

∫ γ+i∞

γ−i∞

[
(DB̃)nD

]
ij
estds

=

∫ γ+i∞

γ−i∞

b̃ik1 b̃k1k2 · · · b̃kn−2kn−1 b̃kn−1j

(s− λi)(s− λk1) · · · (s− λkn−1)(s− λj)
estds

∼ 2πi
∑

i, k1, k2, ..., kn−1 6=1

b̃ik1 b̃k1k2 · · · b̃kn−2kn−1 b̃kn−11

(−λi)(−λk1) · · · (−λkn−1)

=


2πi
[(
−Λ†B̃

)n]
i1
, j = 1 ,

0 , j > 1 ,

(C.5)

as t→∞. In the above calculation, the symbol ∼ implies that the respective result

of contour integration leaves out contributions from poles other than s = λ1 in the

limit t → ∞. For the same reason, all entries in the matrix In(t) other than the

first column are asymptotically small and are neglected.

Finally, by substitution of asymptotic formula (C.5) into (C.1), we compute

the steady-state probability distribution as

pss,ε =
∞∑
n=0

εnV
(
−Λ†B̃

)n
[e1,0,0, . . . ,0]V −1p(0)

=
∞∑
n=0

(
−εA†B

)n
p0 , (C.6)

which leads to (2.31). In the above, we used the definition B̃ = V −1BV along with

A† = V Λ†V −1. Equation (C.6) is written in terms of the equilibrium distribution,

p0, which satisfies (2.9) when ε = 0. This distribution can be derived in the same way

as (2.14), or computed as p0 = limt→∞ exp(DAt)p(0) = V [e1,0,0, . . . ,0]V −1p(0),

where e1 is the Ω(M)-dimensional vector e1 = (1, 0, 0, . . . , 0)T .
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