Department of Mathematics, UMCP

Fall 2010

Practice Exam 1

Posted: Saturday, 09/18/10

WORK ON ALL PROBLEMS. Justify your answers. Cross out what is not meant to be part of your final answer.

- 1. (a)[5 pts] Suppose **a** and **b** are nonzero vectors, and θ is the angle between these vectors. Show that $\mathbf{a} \cdot \mathbf{b} = \|\mathbf{a}\| \|\mathbf{b}\| \cos \theta$. Hint: Apply the law of cosines to the triangle formed by **a**, **b** and $\mathbf{a} \mathbf{b}$.
 - (b)[2 pts] Consider the vectors

$$\mathbf{a} = \mathbf{i} + \lambda \, \mathbf{j} + 3\mathbf{k}, \quad \mathbf{b} = \mathbf{i} - \mathbf{j},$$

where λ is a real number. Find λ so that **a** and **b** are perpendicular.

(c)[3 pts] For the vectors \mathbf{a} , \mathbf{b} of part 1(b) and the value of λ found in part 1(b), <u>resolve</u> $\mathbf{c} = \mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$, into vectors parallel to \mathbf{a} and \mathbf{b} .

2. Consider the following vectors:

$$\mathbf{a} = 3\mathbf{i} + \mathbf{j} - 5\mathbf{k}, \quad \mathbf{b} = \mathbf{i} - \mathbf{k}$$
.

(a)[6 pts] Find the equation of the plane that contains **a** and **b** and goes through the point P = (1, 0, -1).

(b)[4 pts] Find the point at which the plane found in part 2(a) intersects the line x = 3t, y = 1 + 2t, z = -1 + t.

3. (10 pts) Let C be the curve traced out by the vector function

$$\mathbf{r}(t) = \ln t \,\mathbf{i} + \frac{t^2}{2}\mathbf{j} + t\sqrt{2}\,\mathbf{k} , \quad 1 \le t \le 2 .$$

<u>Find</u> the arc length function s(t) for $1 \le t \le 2$. <u>What</u> is the total distance traveled by a particle on C for $1 \le t \le 2$?

4. (10 pts) A curve C is traced out by the vector function

$$\mathbf{r}(t) = (t + \sin t)\mathbf{i} + (1 + \cos t)\mathbf{j} + 4\cos(\frac{t}{2})\mathbf{k} .$$

<u>Find</u> the unit tangent and unit normal vectors \mathbf{T} and \mathbf{N} of the curve C (as functions of t).