Exam 1

Fall 2018

Handed out: Tuesday, 10/16/18

Answer <u>all</u> questions. Make sure that you <u>explain</u> all your steps and <u>justify</u> your answers. Cross out what is not meant to be part of your answer.

- 1. [30pts] Consider the PDE $au_x + bu_y = 0$ obeyed by the unknown function u(x, y); a and b are nonzero real constants.
 - (a)[15pts] Find the general solution u(x,y) for the above PDE. Note: You may apply any reasonable method. Explain what you do clearly.
 - (b) Suppose that the function u(x, y) satisfies the above PDE and, in addition, it also obeys a certain condition. Consider separately the following cases for this condition.
 - (b.i)[8pts] $u(x,0) = \phi(x)$, where ϕ is a given function. Find u(x,y). Is it unique?
 - (b.ii)[7pts] Now suppose that u satisfies the condition u = 1 along the whole line described by bx = ay in the (x, y)-plane. Is the resulting solution u(x, y) unique in this case? Explain.
- 2. [35pts] Suppose that u(x,t) satisfies the following (Cauchy) problem for the wave equation:

$$u_{tt} = c^2 u_{xx}$$
, $-\infty < x < \infty$, $t > 0$; $u(x, 0) = g(x)$, $u_t(x, 0) = h(x)$,

where g(x) and h(x) are given functions.

- (a)[15pts] <u>Derive</u> an expression for u(x,t) in terms of the functions g and h. **Note:** In this part, you are asked to determine from scratch the d'Alembert solution for the wave equation.
- (b)[10pts] In particular, consider the case with g(x) = x and h(x) = x + 1. By using your result from part 2(a), determine u(x,t). Simplify your final result as much as possible. **Note:** In this part, you are asked to write down an explicit formula for u(x,t) via the d'Alembert formula.
- (c)[10pts] Now consider the Cauchy problem displayed in the beginning of Problem 2.
- For what g(x) and h(x) entering the initial conditions would it be possible to have an exact solution given by the formula u(x,t) = g(x) + t h(x) for all x and all t > 0? **Hint:** Assume that the last formula for u holds, and enforce the wave equation. What do you obtain for g and h?
- 3. [35pts] In this problem, you are asked to solve an inhomogeneous-Dirichlet diffusion problem for w(x,t) on the half-line:

$$w_t - kw_{xx} = f(x,t)$$
, for $x > 0$, $t > 0$ $(k > 0)$, $w(0,t) = h(t)$ for $t > 0$, $w(x,0) = \phi(x)$ for $x > 0$; $f(x,t)$, $\phi(x)$, $h(t)$ are given functions.

- (a)[10pts] <u>Define</u> a suitable function V(x,t) in terms of w(x,t) so that V(0,t) = 0. <u>What</u> PDE and initial condition are satisfied by this V(x,t) for x > 0? Explain. **Note:** For full credit, choose the simplest possible definition for V.
- (b)[15pts] By the reflection method, construct a diffusion problem for V(x,t) extended to the whole real \overline{axis} , $-\infty < x < \infty$. Note: For full credit, explain how the reflection method works!
- (c)[10pts] Derive a formula for V(x,t) and then for w(x,t), x > 0, by use of 3(b). You may use, without proof, the formula solving the diffusion equation with a source on the whole real axis.