Exam 1

Handed out: Friday, 02/27/15

Answer all questions. Make sure that you explain all your steps and justify your answers.

1. (a)[4pts] Show that, for $n \ge 1$,

$$1 + z + z^{2} + \ldots + z^{n} = \frac{z^{n+1} - 1}{z - 1}, \qquad z \neq 1.$$

(b)[6pts] Compute the sum

$$1 + \cos\theta + \cos(2\theta) + \ldots + \cos(n\theta)$$

in terms of n and θ , where $n \ge 1$ and $0 < \theta < 2\pi$.

- 2. (a)[1pt] Give the definition of a harmonic function.
 - (b)[2pts] Show that if f(z) = u + iv is analytic in the domain \mathcal{D} , then each of u and v is harmonic in \mathcal{D} . Assume that u and v have continuous second partial derivatives in \mathcal{D} . Hint: You may use the fact that u and v satisfy the Cauchy-Riemann equations.
 - (c)[3pts] Show that the function $v(x,y) = 3x^2y y^3 + x^2 y^2$ is harmonic for all (x,y).
 - (d)[4pts] <u>Determine</u> the function u(x,y) such that f=u+iv is entire, where v is given in 2(c) above.
- 3. [10pts] Find all complex z that satisfy the equation $\sin z = -i\lambda \cos z$ where λ is real and $0 < \lambda < 1$. Hint: Express this equation in terms of $e^{iz} = w$ and first solve for w^2 .
- 4. [10pts] Find the partial fraction decomposition of the following rational functions:

(a)[5pts]
$$f(z) = \frac{2+i}{z(z+1)(z+3)}$$

(b)[5pts]
$$f(z) = \frac{2i}{(z^2+1)^2}$$