Handed out: Monday, 04/13/15

Department of Mathematics, UMCP Exam 2

Answer all questions. Make sure that you explain all your steps and justify your answers.

1. Consider the function

$$f(z) = \frac{z^2 + z - 1}{z(z - 1)^2} \ .$$

- (a)[2pts] Find and classify all singular points of f(z).
- (b)[8pts] Compute the integral

$$I = \int_{\Gamma} f(z) \, \mathrm{d}z \; ,$$

where the closed contour Γ is traversed once positively, in the following cases:

- b.i) Γ is the circle with center at z=2 and radius 3/2;
- b.ii) Γ is circle with center at z=2 and radius 100.

2. Consider the integral

$$H(z) = \frac{1}{2\pi i} \int_C \frac{e^{\zeta} + \zeta^{-1}}{\zeta - z} \,\mathrm{d}\zeta \;,$$

where C is the circle with center at z=0 and radius 1, traversed once counterclockwise. Compute the following values:

(a)[4pts] H(0); (b)[6pts] $\lim_{z\to i} H(z)$ if z lies <u>outside</u> C.

3. Consider the function

$$f(z) = \frac{z-1}{3-z} \ .$$

- (a)[8pts] Find the Taylor series for f(z) at $z_0 = 0$. What is the radius of convergence of this Taylor series? Explain carefully.
- (b)[2pts] Consider the function $g(z) = e^{f(z)}$. What kind of isolated singularity of g(z) is the point $z_0 = 3$? Explain carefully.

4. [10pts] Consider the function

$$f(z) = \frac{1}{z(z-i)} .$$

Find the Laurent series for f(z) at $z_0 = 0$ in the annulus $1 < |z| < \infty$.