SOLUTIONS

NAME:

MATH463, Sec. 0101: In–class Quiz # 1 Wednesday, February 18, 2015

Solve the following 2 problems. Justify your answers. Cross out what is not meant to be part of your final answer. Total number of points: 10.

I. (5 pts) Find all complex values of

$$(1-i\sqrt{3})^{2/5}$$
.

$$1-i\sqrt{3} = \sqrt{1+(\sqrt{3})^{2}} e^{i\theta_{0}+i2k\pi} = 2 e^{i\theta_{0}+i2k\pi}$$

$$where \quad \theta_{0} = ton^{-1}(-\sqrt{3}) = -\pi/3$$

$$Thus, \quad 1-i\sqrt{3} = 2 e^{-i\pi/3+i2k\pi} \qquad k=0,\pm1,\pm2,...$$

$$(1-i\sqrt{3})^{2/5} = 5\sqrt{2}, \quad e^{\frac{2}{5}(-i\frac{\pi}{3}+i2k\pi)}$$

$$= 5\sqrt{4} \qquad e^{-i\frac{2\pi}{15}+i\frac{4k\pi}{5}}, \quad k=0,1,2,3,4.$$

CONTINUED ON REVERSE

II.(5pts) Consider the function
$$f(z)=u(x,y)+iv(x,y)$$
 where
$$u(x,y)=x^2-y^2+2y+x\;,\qquad v(x,y)=2xy-2x-y$$

(a)[3 pts] Is f(z) an entire (i.e., analytic everywhere) function? Explain. (b)[2 pts] Write down explicitly f(z) in terms of z and possibly \bar{z} . **Note:** If f(z) is analytic, it should involve only z and not \bar{z} . If f(z) is not analytic, it should involve both z and \bar{z} .

(a) Check (auchy-Riemann eqns: One of them is:
$$\frac{\partial u}{\partial x} = 2x + 1 \neq \frac{\partial v}{\partial y} = 2x - 1$$

Not satisfied. Thus, f(z) is not entire. [You may also check: $\frac{\partial u}{\partial y} = -2y + 2 = -\frac{\partial u}{\partial x} = -2y + 2 : \text{satisfied!}$]

(b) Let
$$x = \frac{2+\overline{2}}{2}$$
, $y = \frac{2-\overline{2}}{2i}$.

$$f(z) = x^2 - y^2 + 2y + x + i(2xy - 2x - y)$$

$$= x^{3}-y^{2}+i2xy + 2y+x-i2x-iy$$

=
$$(x+iy)^2 - i2(x+iy) + x-iy$$