1. Compute the following integrals:

$$
\int_{0}^{1} \log (x) d x
$$

where $\log (x)$ denotes the natural logarithm of x also known as $\ln (x)$; and

$$
\int_{1}^{\infty} \frac{1}{x^{a}} d x
$$

for a fixed parameter $a>1$. What happens for $a=1$?
2. Consider the following function:

$$
f: R \rightarrow R, f(x)=\left\{\begin{array}{cl}
x \log \left(x^{2}\right) & x \neq 0 \\
0 & x=0
\end{array}\right.
$$

a. Is this function continuous on R (that is of class C^{0})?
b. Is this function differentiable on R ?
c. Is this function of class C^{l} (that is continuous, differentiable, and has continuous first derivative)?
d. What is the largest integer k so that f is of class C^{k} ?

Note: A function is said of class C^{k} if it is k times differentiable, and the $k^{\text {th }}$ derivative is continuous. Thus a function is of class C^{0} if it is continuous; a function is of class C^{l} if it is continuous, differentiable, and has continuous first derivative; a function is of class C^{2} if it is continuous, differentiable, its first derivative is continuous, differentiable, and its second derivative is also continuous. In general a function f is of class C^{k} if its derivative f^{\prime} is of class C^{k-1}.
3. Recall Euler's formula $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ and the geometric series sum formula

$$
1+z+z^{2}+\cdots+z^{n}=\frac{1-z^{n+1}}{1-z}
$$

Solve the following equations where the unknown is θ :
a. $1+e^{i \theta}=0,-\infty<\theta<\infty$
b. $1+e^{i \theta}+e^{2 i \theta}=0,-\infty<\theta<\infty$
c. $1+e^{i \theta}+e^{2 i \theta}+e^{3 i \theta}=0,-\infty<\theta<\infty$
d. $1+e^{i \theta}+e^{2 i \theta}+\cdots+e^{n i \theta}=0$ where n is a fixed positive integer and $-\infty<\theta<\infty$
4. Compute the following integrals:
a. $\int_{-\pi}^{\pi} e^{-3 i t} d t$
b. $\int_{0}^{1} e^{2 \pi i x} d x$
c. $\int_{0}^{1} e^{-2 \pi i \omega} e^{4 \pi i \omega} d \omega$
d. $\int_{0}^{1} e^{-2 \pi i n t} d t$, where n is an integer.
5. Which of the following sets is an orthonormal basis in \boldsymbol{R}^{3} ? Which set is a basis? Why?
a. $e_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), e_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), e_{3}=\left(\begin{array}{l}0 \\ 0 \\ 1\end{array}\right)$
b. $f_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), f_{2}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ 1 \\ -1\end{array}\right), f_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{c}1 \\ -1 \\ 1\end{array}\right)$
c. $g_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ -1 \\ 0\end{array}\right), g_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ 1 \\ 0\end{array}\right), g_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}0 \\ 1 \\ -1\end{array}\right), g_{4}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}0 \\ 1 \\ 1\end{array}\right)$
d. $h_{1}=\frac{1}{\sqrt{3}}\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right), h_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}1 \\ 0 \\ -1\end{array}\right), h_{3}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right)$
6. Consider the following orthonormal basis (ONB) in \boldsymbol{C}^{4} (verify it is indeed an ONB):

$$
e_{1}=\frac{1}{\sqrt{2}}\left(\begin{array}{c}
1 \\
-1 \\
0 \\
0
\end{array}\right), e_{2}=\frac{1}{\sqrt{2}}\left(\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right), e_{3}=\frac{1}{\sqrt{5}}\left(\begin{array}{l}
0 \\
0 \\
2 \\
1
\end{array}\right), e_{4}=\frac{1}{\sqrt{5}}\left(\begin{array}{c}
0 \\
0 \\
-1 \\
2
\end{array}\right)
$$

a. Decompose the following vector with respect to this basis (that is, find coefficients $c_{1}, c_{2}, c_{3}, c_{4}$ so that $\left.x=c_{1} e_{1}+c_{2} e_{2}+c_{3} e_{3}+c_{4} e_{4}\right)$:

$$
x=\left(\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right)
$$

b. Find the projection of x onto the linear span of e_{1} and e_{2}.
c. Find the vector y that lays in the span of e_{3} and e_{4} and is closest in Euclidian norm to vector x (that is, y that minimizes $\|\mathrm{x}-\mathrm{z}\|$ for all z in the linear span of e_{3} and e_{4})
7. Which of the following sequences are in $\boldsymbol{l}^{2}(\boldsymbol{Z})$?
a. $x=\left(x_{n}\right)_{n \in Z}, x_{n}=\frac{1}{1+n^{2}}$
b. $y=\left(y_{n}\right)_{n \in Z}, y_{n}=e^{n}$
c. $z=\left(z_{n}\right)_{n \in Z}, z_{n}=\left\{\begin{array}{c}e^{n}, \text { if }|n|<100 \\ 0, \text { otherwise }\end{array}\right.$.

Note: $l^{2}(\boldsymbol{Z})$ is defined as the set of square-summable sequences indexed by \boldsymbol{Z}. These are sequences $\left\{\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right\}$ so that $\sum_{n=-\infty}^{\infty}\left|x_{n}\right|^{2}<\infty$.
8. Solve the following initial-value problem:

$$
\frac{d f}{d x}=-2 x f(x), \quad f(0)=3
$$

