Answer all questions. Make sure that you explain all your steps and justify your answers. Each problem is worth 10 points (equally distributed among its parts). Total number of points: 80

Note: The use of Matlab, or any other software, is strictly NOT permitted.
17. Compute the Fourier coefficients, and expand in Fourier series the 1-periodic function $f(x)=x^{2}$, for $0<x<1$.
18. Compute the Fourier coefficients, and expand in Fourier series the 1-periodic function $f(x)=x^{3}$, for $0<x<1$.
19. (i) Compute the Fourier coefficients, and expand in Fourier series the 1-periodic function

$$
f(x)=\left\{\begin{array}{ccc}
x & \text { if } & 0<x<\frac{1}{2} \\
a & \text { if } & x=\frac{1}{2} \\
0 & \text { if } & \frac{1}{2}<x<1
\end{array}\right.
$$

(ii) What should the const. a be so that the Fourier series converges to $f(x)$ for every $0<x<1$?
20. (i) Compute the Fourier coefficients, and expand in Fourier series the 1- periodic function

$$
f(x)=\left\{\begin{array}{lr}
4 x, & 0<x \leq 1 / 4 \\
2-4 x, & 1 / 4<x \leq 1 / 2 \\
4 x-2, & 1 / 2<x \leq 3 / 4 \\
4-4 x, & 3 / 4<x<1
\end{array}\right.
$$

(ii) Is the Fourier series convergent for every $0<x<1$? Explain.

In Problems 21 and 22 the functions are extended by periodicity outside the interval of definition. Compute the Fourier coefficients, and expand in Fourier series the following 1-periodic functions.
21. $f(x)=\sin (\pi x)$, for $-1 / 2<x<1 / 2$.
22. $f(x)=\cos (\pi x)$, for $-1 / 2<x<1 / 2$.
23. Consider the 1-periodic function $f:[0,1) \rightarrow \mathbb{R}$ whose Fourier coefficients $F[n]$ decay to 0 as $|n| \rightarrow \infty$, and are bounded above by $|F[n]| \leq \frac{10}{|n|}$, for $|n| \geq 1$. Estimate the minimum degree N of the symmetric trigonometric polynomial $A_{N}(x)=\sum_{k=-N}^{N} F[k] e^{2 \pi i k x}$ that approximates $f(x)$ with a 5% mean square error.
24. Consider the 1-periodic function $f:[0,1) \rightarrow \mathbb{R}$ whose Fourier coefficients $F[n]$ decay to 0 as $|n| \rightarrow \infty$, and are bounded above by $|F[n]| \leq \frac{10}{n^{4}}$, for $|n| \geq 1$. Estimate the minimum degree N of the symmetric trigonometric polynomial $A_{N}(x)=\sum_{k=-N}^{N} F[k] e^{2 \pi i k x}$ that approximates $f(x)$ with a 1% mean square error.

Notes on Problems 23 and 24: You may use the inequality (for what a ?) $\sum_{n=N+1}^{\infty} \frac{1}{n^{a}} \leq \frac{1}{(a-1) N^{a-1}}$. Mean square error is defined as $\int_{0}^{1}\left|f(x)-A_{N}(x)\right|^{2} d x$. $1 \%=0.01,5 \%=0.05$.

