MATH464, Sec. 0101: Transform Methods
Department of Mathematics, UMCP
Fall 2022
Homework 6
Posted: Thursday, 10/13/22
Due: Thursday, 10/20/22 IN CLASS
Answer all questions. Make sure that you explain all your steps and justify your answers. Each problem is worth 10 points (equally distributed among its parts). Total number of points: $\mathbf{8 0}$

Note: The use of Matlab, or any other software, is strictly NOT permitted.
In Problems 38-40, use your knowledge of Fourier analysis to find a function f that satisfies the indicated integral equation.
38.

$$
\int_{0}^{\infty} f(u) \cos (2 \pi u x) d u=e^{-x}, \quad 0<x<\infty .
$$

39.

$$
\int_{0}^{\infty} f(u) \sin (2 \pi u x) d u=\left\{\begin{array}{lr}
1, & \text { if } \quad 0<x<1 \\
0, & \text { if } \quad 1<x<\infty
\end{array}\right.
$$

40.

$$
\int_{-\infty}^{\infty} f(u) e^{i u x} d u=e^{-\pi x^{2}}, \quad 0<x<\infty
$$

41. Consider the following differential equation:

$$
-f^{\prime \prime}(x)+f(x)=e^{-2|x|}, \quad-\infty<x<\infty .
$$

(i) [5pts] Find the Fourier transform $F(s)$ of the solution $f(x)$ which is absolutely integrable (i.e., $\left.\int_{-\infty}^{\infty}|f(x)| d x<\infty\right)$.
(ii) [5pts] Obtain the function f.
42. Find the Fourier transform of the function $f: \mathbb{R} \rightarrow \mathbb{R}$ where

$$
f(x)=\int_{-1 / 2}^{1 / 2} e^{-2 \pi(x-u)^{2}} d u
$$

43. Let $f_{0}, f_{1}: \mathbb{R} \rightarrow \mathbb{R}$ be the functions defined by

$$
f_{0}(x)=e^{-x^{2}}, \quad f_{1}(x)=x e^{-x^{2}}
$$

Compute the following convolutions:
(i) $[5 \mathrm{pts}] f_{0} * f_{0}$.
(ii) [5pts] $f_{0} * f_{1}$.
44. Find a nonzero function f on \mathbb{R} that satisfies

$$
\int_{-\infty}^{\infty} f(u) f(x-u) d u=f(x), \quad-\infty<x<\infty .
$$

45. Find a continuous function $f: \mathbb{R} \rightarrow \mathbb{R}$ that satisfies

$$
-f^{\prime}(x)+f(x)=\left\{\begin{array}{lll}
e^{-x}, & \text { if } & x>0, \\
0, & \text { if } & x<0
\end{array}\right.
$$

