Answer all questions. Explain all your steps and justify your answers. Each problem is worth 10 points, except Problem 50 which is worth 40 points. Total number of points: $\mathbf{8 0}$

Note: The use of Matlab, or any other software, is strictly NOT permitted.
46. [10pts] Let $f: \mathbb{R} \rightarrow \mathbb{C}$ be a square-integrable function whose Fourier transform is supported in the frequency band $[2 \mathrm{kHz}, 12 \mathrm{kHz}]$. This means that the Fourier transform $F(s)$ of $f(x)$ vanishes for any frequency $s=\omega$ outside the interval [2000, 12000]. Assume that we know the samples $\{f(n T) ; n \in \mathbb{Z}\}$ for $T=100 \mu s=10^{-4}$ sec. Show how to synthesize $f(x)$ from the above set of samples. Note: $1 \mathrm{kHz}=1,000 \mathrm{~Hz}=1,000 \mathrm{sec}^{-1}$.
47. [10pts] What is the maximum sampling period of a 50 kHz bandlimited signal, so that we can perfectly compute the signal at any time t by using Shannon's formula? Explain in detail.
48. [10pts] A 10 kHz bandlimited signal is sampled at its Nyquist rate (that is, at the maximal rate where Shannon's formula holds true). The only nonzero samples are:

$$
x(t)= \begin{cases}-2, & \text { if } t=-1.2 \mathrm{~ms} \\ 1, & \text { if } t=0.2 \mathrm{~ms}\end{cases}
$$

Compute $x(t)$ for $t=0 \mathrm{~ms}$ and $t=1 \mu \mathrm{~s}$. Note: $1 \mathrm{~ms}=10^{-3} \mathrm{~s}$ and $1 \mu \mathrm{a}=10^{-6} \mathrm{~s}$.
49. [10pts] An unknown signal $f: \mathbb{R} \rightarrow \mathbb{R}$ is sampled at the sampling frequency 1 kHz . We do not know whether f is bandlimited; however, we know that its Fourier transform F has an upper bound according to

$$
|F(s)| \leq e^{-|s|}, \text { for all } s \in \mathbb{R}
$$

Estimate what is the maximal reconstruction error when using Shannon's formula with all samples $\{f(n / 1000) ; n \in \mathbb{Z}\}$.
50. [40pts] Suppose that $f: \mathbb{R} \rightarrow \mathbb{C}$ is an Ω-bandlimited function, with $f \in B_{\Omega}^{2} \cap C^{k}(\mathbb{R})$ for some k $(k=0,1, \ldots)$. Let $2 \Omega=T^{-1}$. Show that

$$
\left|f^{(k)}(x)-\sum_{n=M}^{N} \frac{f(n T)}{T^{k}} \operatorname{sinc}^{(k)}\left(\frac{x-n T}{T}\right)\right|^{2} \leq \frac{1}{2 k+1}\left(\frac{\pi}{T}\right)^{2 k}\left\{\sum_{n<M}|f(n T)|^{2}+\sum_{n>N}|f(n T)|^{2}\right\}
$$

for any integers M, N with $M<N$. Hint: You may use the Cauchy-Schwarz inequality, viz.,

$$
\left|\int_{a}^{b} \alpha(s) \beta(s) d s\right|^{2} \leq \int_{a}^{b}|\alpha(s)|^{2} d s \cdot \int_{a}^{b}|\beta(s)|^{2} d s
$$

Note: Aspects of this problem will be discussed in class, before the due date.

