doi:10.1088/1751-8113/41/45/459801

Corrigendum

Solvable model for pair excitation in trapped Boson gas at zero temperature Margetis D 2008 *J. Phys. A: Math. Theor.* **41** 385002

There is a minor error in equations (23) and (24) on page 6, which does not affect the analysis, results and conclusions presented in the rest of the paper. Equation (16) on page 6 is valid for $\mathbf{R} \in \mathcal{R}_{in}$, as stated correctly by Wu [11]. For $\mathbf{r} \in \mathcal{R}_{out}$, the evolution equation for \mathcal{K}^0 reads

$$i \partial_t \mathcal{K}^0(\mathbf{r}, \mathbf{R}, t) = -2\Delta_{\mathbf{r}} \mathcal{K}^0 + 2[-Z + V_e(\mathbf{R})] \mathcal{K}^0$$
.

Solving this equation via the Fourier transform in \mathbf{r} yields the correct form of (23):

$$\widehat{\mathcal{K}^0}(\mathbf{k}, \mathbf{R}, t) = \widehat{f}(\mathbf{k}, \mathbf{R}) e^{-2i[k^2 - Z + V_e(\mathbf{R})]t}, \qquad \mathbf{R} \in \mathcal{R}_{\text{out}}.$$
(23)

Accordingly, the correct form of (24) is

$$\mathcal{K}^{0} = \int d\mathbf{r}' f(\mathbf{r}', \mathbf{R}) \frac{e^{i|\mathbf{r}' - \mathbf{r}|^{2}/(8t)} e^{-2i[-Z + V_{e}(\mathbf{R})]t}}{(8i\pi t)^{3/2}}$$

$$\sim \frac{e^{ir^{2}/(8t)} e^{-2i[-Z + V_{e}(\mathbf{R})]t} e^{-i3\pi/4}}{(8\pi t)^{3/2}} \int d\mathbf{r}' f(\mathbf{r}', \mathbf{R}) . \tag{24}$$

These corrections do not affect any other result of the paper.