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A continuum theory is used to predict scaling laws for the morphological relaxation of crystal surfaces in
two independent space dimensions. Our goal is to unify previously disconnected experimental observations of
decaying surface profiles. The continuum description is derived from the motion of interacting atomic steps.
For isotropic diffusion of adatoms across each terrace, induced adatom fluxes transverse and parallel to step
edges obey different laws, yielding a tensor mobility for the continuum surface flux. The partial differential
equation for the height profile expresses an interplay of step energetics and kinetics, and aspect ratio of surface
topography that plausibly unifies observations of decaying bidirectional surface corrugations.
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Novel small devices rely on the stability of nanoscale sur-
face features. The lifetimes of nanostructures decaying via
surface diffusion scale as a large power of their size and
increase with decreasing temperature. Below roughening,
crystal surfaces evolve via the motion of atomic steps bound-
ing nanoscale terraces.1,2

Experiments with decaying surface features3–6 are useful
for testing step models. Particularly informative are observa-
tions of bidirectional corrugations relaxing below
roughening.3–6 In lithography-based experiments,3 where ini-
tial wavelengths in two directions differ significantly and
profiles depend nearly on one space dimension �1D�, the sur-
face height decays exponentially with time. By contrast, in
sputter-rippling experiments,5,6 where initial wavelength ra-
tios are closer to unity and profiles evidently depend on two
space dimensions �2D�, height spatial-frequency components
decay inversely linearly with time. These observations have
previously evaded a unified theory.7,8 In this Brief Report,
we use a continuum theory to plausibly unify these observa-
tions via an appropriate tensor mobility.

There are two main theoretical approaches to crystal sur-
face morphological evolution below roughening. One ap-
proach follows the motion of steps in the spirit of the Burton-
Cabrera-Frank model1 via numerical solutions of coupled
equations for step positions.9,10 Step simulations in one
dimension9 show exponential decay of surface corrugations
with attachment-detachment limited �ADL� kinetics, in
agreement with lithography experiments.3 Step simulations
in 2D invoke axisymmetry10 and are thus limited in their
ability to make predictions for general surface morphologies.

Another approach relies on equilibrium thermodynamics
and mass conservation using continuum evolution laws11–14

such as partial differential equations �PDEs�, which enable
simple scaling predictions.12 Continuum models are criti-
cized for their inaccurate description of macroscopic, planar
surface regions �“facets”�,9 but progress is made in including
facets in evolution laws.15 Continuum theories have not pre-
viously unified observations of decaying surface
corrugations.8 An ingredient of such theories is the scalar
mobility for the adatom flux in 2D,7,12–14 which does not
distinguish adatom fluxes parallel to steps from fluxes trans-
verse to steps. This formulation is valid when steps are ev-

erywhere parallel12 but is shown here to be inadequate in
general cases.

In this Brief Report, we plausibly unify experimental ob-
servations of decaying profiles by invoking a tensor macro-
scopic mobility for adatom fluxes that stem from isotropic
terrace diffusion; see Eqs. �8�–�10�. An elaborate derivation
is given in Ref. 16. Here, we provide a more general yet
simpler derivation. A discrete version of this mobility is
found in Ref. 17. We show that the resulting PDE for the
height reduces to known evolution laws for one-dimensional
geometries; also, we relate scaling predictions of the PDE to
relaxation experiments. We find that observed decay laws
with time can arise from competition of step kinetics and
surface topography. This effect is due to coupling of flux
components via terrace diffusion and is distinct from the in-
fluence of step-edge diffusion; see, e.g., Ref. 18. The similar
effect of anisotropic terrace diffusion on step meandering is
studied in Ref. 19. By contrast to Ref. 19, our model has
scalar microscopic parameters.

First, we describe the step flow model.1 A top terrace is
surrounded by non-self-intersecting and noncrossing steps
numbered i=1,2 , . . .; i=1 denotes the top step. The projec-
tion of steps on the basal plane is described by the vector
r�� ,� , t�; t is time, �=�i at the ith step, �i����i+1 on the
ith terrace, and � is the position along each step �see Fig. 1�.
The unit vectors normal and parallel to steps in the direction
of increasing � and � are e� and e�; e� ·e�=0. The metric
coefficients �to be used below� are ��= ���r� and ��= ���r�;
��ª� /��.

Mass conservation for atoms is described by

vi = e� · �dr

dt
�

�=�i

=
�

a
�Ji−1

� ��i,�,t� − Ji
���i,�,t�� . �1�

vi is the �normal� velocity of the ith step; � is the atomic
volume; a is the step height; Ji

�=Ji ·e� is the adatom flux
�adatoms/length/time� normal to steps; Ji=−Ds�Ci is the
�vector� flux on the ith terrace; Ds is the terrace diffusivity, a
scalar; and Ci�r , t� is the adatom density �adatoms/ �length�2�
on the ith terrace. In the quasistatic approximation, Ci solves
the diffusion equation �2Ci�0, where no material is depos-
ited from above. The boundary conditions for atom
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attachment-detachment at the ith and �i+1�th steps are10

�Ji
���l,��� = k�Ci��l,��� − Cl

eq����� . �2�

In Eq. �2�, the t dependence is omitted, l= i �upper sign� or
i+1 �lower sign�, k is the attachment-detachment rate, and
Ci

eq is the ith-step equilibrium atom density. Note that Eq. �2�
is similar to those of other growth problems, but here, there
is no morphological instability.

Next, we close Eqs. �1� and �2� by relating Ci
eq with the

step positions. First, we introduce the ith-step chemical po-
tential �i�� , t�, the change in the step energy by adding or
removing an atom at ��i ,�� �Ref. 10�: Ci

eq=Cse
�i/�kBT�

�Cs�1+
�i

kBT
�, where ��i�	kBT, Cs is the atom equilibrium

density near a straight isolated step, and kBT is Boltzmann’s
energy.

Second, we provide a relation of �i with the step posi-
tions. We use U�� ,��, the energy per length of the ith step;
thus, the length 
si=��
� of the ith step has energy 
Wi
=U��i ,��
si. Addition or removal of atoms at ��i ,��
changes �i by 
� assuming energy isotropy; so, the step
moves along the local normal �e�� by 
�=��
� and the step
energy changes by 
2Wi= ���i

�
Wi��
�. By definition of �i,

�i=
�

a


2Wi


�
si
as �
� ,
��→0, we find

�i = ��/a������U���
−1 + �U��,�����=�i

, �3�

where � is the step curvature and U=�+Uint; � is the step
line tension, assumed a constant, and Uint accounts for inter-
actions with other steps. For nearest-neighbor elastic-dipole
or entropic repulsions, Uint is2,20

Uint = g	��,�i+1;��
��i+1 − ��2 +

��,�i−1;��
�� − �i−1�2 
 , �4�

where g �energy/length� is positive and �� ,� ;�� is geom-
etry dependent, differentiable with �� ,�� and satisfies
��i ,�i+1�
si=��i+1 ,�i�
si+1.16 Suppressing �i−1 and �i+1,
Eqs. �3� and �4� yield �i= �̃��=�i ,��.

Equations �1�–�4� describe step motion via adatom isotro-
pic diffusion and atom attachment-detachment at steps. To
enable predictions at length scales large compared to the ter-
race width 
�i, we next derive a PDE for the continuum
height profile h�r , t�. Thus, 
�i is much smaller than �i� the
length over which the step density a


�i
varies and �ii� the step

radius of curvature, 1 /�. We take 
�i=�i+1−�i→0 with
fixed a


�i
. In this limit, a


�i
→ ��h�, where �h= ��xh ,�yh�T, and

vi→
�th

��h� .
Firstly, the familiar continuum mass conservation law for

atoms comes from the step velocity law, Eq. �1�. By using
the continuous extension J�r� of Ji��i ,��, we have

�th = −
�

����

������J�� + �����J��� = − � � · J . �5�

Next, we apply Eq. �2� to relate J�r , t� to the continuum
step chemical potential ��r , t�= �̃��i ,� , t�. The following
procedure is more general than the analysis in Ref. 16. �i� We
apply Eq. �2� with the upper sign for ��=� and with the
lower sign for ��=�+
�. �ii� We expand the transverse cur-
rent Ji

�, the density Ci, and �̃, each evaluated at ��i+1 ,�
+
��, at ��i ,�� using Ji=−Ds�Ci, e.g., �Ci�i+1,�+
���Ci�i
−Ds

−1����
�iJi
��i+ ���
�Ji

��i�, where �Q�pªQ��p ,�� and Ji
�

=Ji ·e� is the longitudinal current. �iii� We subtract the ±
parts of Eq. �2� dropping terms that are negligible as 
�i
→0. Thus, we find

�1 + q
a


�i
�Ji

� +
CsDs

kBT

���̃

��

+
��

��
�Ji

� +
CsDs

kBT

���̃

��
�
� = 0,

�6�

where q=
2Ds

ka . By setting 
�=0 in Eq. �6�, we obtain

Ji
� → J�r,t� · e� = −

DsCs

kBT

1

1 + q��h�
���

��

, �7a�

where �a /
�i�q is fixed. Hence, Eq. �6� reduces to

Ji
� → J�r,t� · e� = −

DsCs

kBT

���

��

. �7b�

By Eq. �7b�, the longitudinal flux J� has the terrace dif-
fusivity Ds, whereas the normal flux J�, Eq. �7a�, has the

slope-dependent diffusivity D̃s=Ds�1+q��h��−1, cf. Ref. 17.

Note that D̃s=Ds for terrace diffusion limited �TDL� kinetics,
q��h�	1. The distinction between J� and J� results from
coarse graining in 2D, which combines atom attachment-
detachment, terrace diffusion, and step topography. For ADL
kinetics, q��h��1, J� depends on step variations of � since
steps are sources and sinks of atoms by Eq. �2�, whereas J� is
sensitive to space variations of � along steps due to adatom
diffusion between nonparallel steps. Equations �7a� and �7b�
read J=−CsM ·��, where the mobility M
�length2 /energy/ time� is a second-rank tensor. In the basal’s
plane Cartesian system �x ,y�, the matrix elements Mij �i , j
=x ,y� are

Mxx =
Ds

kBT

��xh�2

��h�2 	 1

1 + q��h�
+ �2
 , �8�

FIG. 1. Schematic of steps on the basal plane. Local coordinates
relative to a top terrace are �� ,��. The arrow shows longitudinal
flux directed to a valley. Dots denote many steps.

BRIEF REPORTS PHYSICAL REVIEW B 76, 193403 �2007�

193403-2



Mxy = Myx = −
Ds

kBT

q��h�
1 + q��h�

��xh�2

��h�2
� , �9�

Myy =
Ds

kBT

��xh�2

��h�2 	 �2

1 + q��h�
+ 1
 , �10�

where �ª

�yh

�xh
. For biperiodic profiles, � is estimated by

�x

�y
,

the �aspect� ratio of dominant �maximum-amplitude� wave-
lengths in x and y; we take �x��y and, thus, ��1.

Next, we obtain a PDE for the height profile h�r , t�. First,
we derive a relation between � and �h via Eqs. �3� and �4�
by expanding in ��i−�� the function ��i ,� ;�� of Eq. �4�,
where �=�i+1 or �i−1.16 After some algebra, the limit 
�i
→0 of �i= �̃��=�i ,�� yields

� = ��g1� − g3 � · ���h� � h�� , �11�

where �=−� · �h
��h� is the step-edge curvature, g1= �

a , and g3

= 3g
a

� ��

a
�2

��i ,�i�; g1 and g3 have dimensions of energy per
area. This � also results from the variational derivative of the
surface energy E=dxdy�g1��h�+ �g3 /3���h�3�.11,12,16 By
Eqs. �5�, �7a�, �7b�, and �11�,

�th = B � · �� · �	� · � �h

��h�� +
g3

g1
� · ���h� � h�
� ,

�12�

where �=−
kBT

Ds
M and B=

DsCsg1�2

kBT ��length�4 / time�. By Eqs.
�8�–�10� for M, Eq. �12� describes an interplay of step ener-
getics and kinetics, and aspect ratio �. This dependence on �
is absent in previous studies of morphological evolution be-
low roughening.7,12–14

It is tempting to compare ingredients of Eq. �12� to simi-
lar treatments of steps, e.g., Ref. 19 for a step meander with-
out deposition. The last term of Eq. �14� in Ref. 19 pertains
to the flux along the step edge, with a mobility that depends
on the step-edge slope; in the small-slope limit, this term
appears to agree with Eq. �7b�. We emphasize that the �iso-
tropic� physics for each terrace in our model is different from
that of Ref. 19 where anisotropic terrace diffusion coexists
with step-edge diffusion.

We now show that Eq. �12� reduces to known macro-
scopic laws for everywhere parallel steps. We set J�=0 by
which the effective mobility becomes M =

Ds

kBT �1+q��h��−1,
a scalar. For straight steps �in 1D�, �=x, we
additionally have ��0 and the PDE becomes �th

=−B3�x��1+q��xh��−1�xx���xh��xh��, where B3=
DsCsg3�2

kBT ,
which is consistent, e.g., with Ref. 9. The reduced PDE
is applied to smooth regions of periodic corrugations.3,9,11

For concentric circular, descending steps of radius r
�in 2D�, we have �=1/r and Eq. �12� becomes �th

=Br−1�r��1+qm�−1�−r−1+
g3

g1
r�r(r

−1�r�rm2�)��, where m
= ��rh�, which is suitable for smooth regions of axisymmetric
mounds.10,12,15

We next apply separation of variables to Eq. �12� for
smooth regions of biperiodic profiles, aiming to unify decay
laws in relaxation experiments. Consistent with step simula-
tions in 1D9 and kinetic Monte Carlo simulations in 2D,13

both for initial sinusoidal profiles, we set h�r , t��A�t�H�r�
and find A�t�. This variable separation, which we call a “scal-
ing ansatz,” is satisfied only approximately: additive terms in
� and M scale differently with A. In �, Eq. �11�, the step line
tension �g1 term� scales with A0 and the step interaction �g3
term� scales with A2; in Mij, Eqs. �8�–�10�, the kinetic term
�= �1+q���h���−1 must be compared to the aspect ratio
squared, �2; ���h���� is a typical slope.

Here, we do not address the evaluation of H�r�, which
solves a nonlinear PDE. Because boundary conditions for H
at facet edges require feedback from step simulations,15 a
numerical scheme for H within continuum is not currently
feasible. By Refs. 9 and 13, the scaling ansatz seems reason-
able for long t and initial sinusoidal profiles.

We next focus on ADL kinetics, �	1, distinguishing four
cases. In the first case, �i� step interactions dominate,
�g3� · ���h��h��� �g1�� or

g3

g1
� � �

�
�2 by dimensional analysis

for sinusoidal profiles, where ��
hpv

�/2 and hpv is the peak-to-
valley height variation, and �ii� ���2 so that longitudinal
fluxes are considerable. Thus, � scales with A2, and the ma-

trix elements of � are �xx�−
��yh�2

��h�2 , �yy �−
��xh�2

��h�2 , and �xy

=�yx�
��xh���yh�

��h�2 , which scale with A0 as in TDL kinetics. We
find dA /dt�−cB3A2. Hence,

A�t� = A0�1 + cB3A0t�−1, A0 ª A�0� . �13�

The constant c ��length�−4� depends on H and is thus influ-
enced by facets. Equation �13� suggests an inverse linear
decay with time if the �y� adatom flux in the direction of the
longer wavelength ��y� is significant.

In the second case, �i� step interactions remain dominant
and �ii� ���2, so that transverse fluxes prevail. Thus, we
obtain dA /dt=−CB3A, by which

A�t� = A0e−CB3t, �14�

where C is influenced by H. The remaining cases for ADL
kinetics follow similarly. The results are summarized in
Table I. The square-root decay with time when line tension
dominates and ���2 is in agreement with Ref. 13.

Our predictions, based on Eq. �12� with ADL kinetics, can
be extended to TDL kinetics. The mobility M then reduces to
Ds

kBT . Thus, we obtain Eq. �13� or Eq. �14�, regardless of �, for
step-interaction- or line-tension-dominated �.

Next, we compare our predictions with observations on
Si�001� �Refs. 3 and 5� and Ag�110�.6 In Si�001�, with �
�2Ds /k�1000 nm7 and terrace width �w�10 nm,3,5,7

q���h��� �
�w �100 which suggests ADL kinetics. We find

TABLE I. Decay laws for the amplitude A�t� in ADL kinetics.
Top row: kinetic-geometric conditions on mobility, Eqs. �8�–�10�.
Leftmost column: dominant effects in �, Eq. �11�. The constants C,
c, and t* �t*� t� depend on A�0�=A0 and H.

�2	�	1 �	�2�1

Step interaction A0e−CB3t A0�1+cB3A0t�−1

Line tension A0
�1− t / t* A0�1− t / t*�
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decay laws comparing �i� the kinetic factor �, �� �w
�

�0.01, with the aspect ratio squared, �2�� �x

�y
�2

, and �ii� the

relative strength of step interactions,
g3

g1
, with � �

�
�2. In Ref. 3,

��10−3 and thus ���2. Also, ��1/30 and
g3

g1
�1,21 and

thus
g3

g1
� � �

�
�2. Equation �14� follows, in agreement with Ref.

3. In Ref. 5, ��10−1, ��1/15, and
g3

g1
�100.21 So, ���2

and
g3

g1
� � �

�
�2. Equation �13� follows, in agreement with Ref.

5.
Note that Si�001� may have properties not entirely consis-

tent with Eq. �12�, e.g., terrace diffusion is anisotropic and
step interactions can deviate from �4�.22 Although the terrace
anisotropy modifies M, it does not change the scalings with
time.23 Further, the assumed dipole interactions can dominate
on Si�001� when terraces are sufficiently narrow, e.g., when
double steps form.22

We now discuss observations on Ag�110� �Ref. 6� where
step interactions are mainly entropic.2,24 By ��10−36 and
��1/15,25 we have ���2. We estimate

g3

g1
by g1=

�k

aa0

−
kBT

aa0
ln�coth

�k

2kBT
� and g3�

�2a0kBT

2a3 �sinh� �k

2kBT
��−2

, where �k is
the kink formation energy, 0.04 eV��k�0.1 eV,2,26 a

=1.4 Å, a0�4 Å, and T=210 K; thus, 2
17 �

g3

g1
�1. With �

�2/25,6,27 g3

g1
=O� �2

�2 �; thus, our criterion for step energetics
appears inconclusive for scaling. A possible reason is the

terrace anisotropy of Ag�110�, which may modify the nu-
merical values of requisite parameters. Further study of the
dynamics with reliable boundary conditions at facets is indi-
cated.

Our work forms a basis for a general approach to morpho-
logical evolution below roughening. Extensions in 2D in-
clude the Ehrlich-Schwoebel �ES� barrier,28 long-range step
interactions, step-edge diffusion, anisotropy of step stiffness,
and material deposition. Inclusion of the ES barrier28 with
rates ku and kd amounts effectively to k=2�1/ku+1/kd�−1 in
Eq. �12�.16 Step-edge diffusion contributes to longitudinal
fluxes but may not be important for Si�001�.2

Connecting predictions of Eq. �12� to actual experimental
situations has yet to be explored. Our scaling ansatz should
be tested for realistic initial profiles. Despite couplings
caused by nonlinearities,14 our scaling should be valid for a
range of prevailing wavelengths.5,6,14 Other predictions of
our approach include crossovers from exponential to inverse
linear profile decay via aspect-ratio changes of the surface
shape. Our work should stimulate further studies and relax-
ation experiments on crystal surfaces below roughening.
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