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Abstract

We study the continuum limit in 2+1 dimensions of nanoscale anisotropic
diffusion processes on crystal surfaces relaxing to become flat below
roughening. Our main result is a continuum law for the surface flux in terms
of a new continuum-scale tensor mobility. The starting point is the Burton,
Cabrera and Frank (BCF) theory, which offers a discrete scheme for atomic
steps whose motion drives surface evolution. Our derivation is based on the
separation of local space variables into fast and slow. The model includes: (i)
anisotropic diffusion of adsorbed atoms (adatoms) on terraces separating steps;
(i1) diffusion of atoms along step edges; and (iii) attachment—detachment of
atoms at step edges. We derive a parabolic fourth-order nonlinear partial
differential equation (PDE) for the continuum surface height profile. An
ingredient of this PDE is the surface mobility for the adatom flux, which
is a nontrivial extension of the tensor mobility for isotropic terrace diffusion
derived previously by Margetis and Kohn (2006 Multisci. Model. Simul. 5
729-58). Approximate, separable solutions of the PDE are discussed.

PACS numbers: 68.55.—a, 81.10.Aj, 81.15.Aa, 68.35.Md, 61.46.—w,
61.50.Ah

1. Introduction

Theoretical prediction of crystal surface morphological evolution has been an intensively
active area of research for the past several decades. Thanks to advances in computational
methods and experimental techniques, our understanding of the microscopic physics driving
crystal surface motion continues to improve [1-3]. Considerable attention has been devoted to
nanoscale surface structures evolving via surface diffusion. Their stability is crucial for their
use as building blocks of novel small devices.
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Despite continued progress, basic questions on epitaxial phenomena remain unanswered.
In particular, the relation of microscopic physics to continuum laws, e.g., partial differential
equations (PDE’s) for the surface height profile, is poorly understood.

Features on crystal surfaces evolve differently according to the temperature, 7. Below the
roughening temperature, T, the discrete nature of the crystal is manifested by macroscopically
planar surface regions (facets) and distinct nanoscale terraces which separate line defects,
steps, of atomic height. The motion of steps drives surface morphological evolution, as first
described by Burton, Cabrera and Frank (BCF) [4].

Continuum theories for crystal surfaces below Tk must be the appropriate limits of step
motion laws and are challenged near facets [5-7]. By contrast, above Ty steps are created
spontaneously and surfaces appear smooth. In this case, continuum laws formulated via
thermodynamics and mass conservation are well established [5, 8, 9].

Recently, Margetis and Kohn [10, 11] derived systematically the continuum limit in 2+1
dimensions of a BCF-type model for interacting steps in the absence of material deposition
from above. Their formulation incorporates isotropic diffusion of adsorbed atoms (adatoms)
on terraces and atom attachment—detachment at steps; so, the terrace diffusivity is a scalar.
Their analysis invokes separation of local variables into fast and slow. A noteworthy element
of the resulting theory is the fensor mobility in Fick’s law for the adatom flux [10, 11]; the
corresponding mobility matrix is diagonal in the step coordinate system. In this setting, the
surface relaxes to become flat via an interplay of step energetics and kinetics, and the aspect
ratio of step topography brought about by the tensor character of the mobility [11]. Previous
continuum theories invoked only a scalar macroscopic mobility, and thus missed the explicit
influence of topography on evolution; for a discussion see [10].

In this paper we extend the continuum theory to encompass richer kinetic processes:
anisotropic adatom diffusion on terraces and atom diffusion along step edges. In terrace
diffusion, we allow for a non-diagonal diffusivity which explicitly couples adatom fluxes
normal and parallel to step edges. Our goal is to derive continuum laws for surface relaxation
that correspond more closely to realistic situations. We derive a nonlinear, parabolic fourth-
order PDE for the surface height from a large number of coupled differential equations of
step motion. In this PDE, the surface mobility tensor has off-diagonal elements in the step
coordinate system; further, one of the diagonal elements is directly modified by step edge
diffusion. We find plausible scaling laws with time via approximate, separable PDE solutions.

As a starting point, we adopt the BCF model [4] by which individual steps move via mass
conservation for atoms. Each step interacts with its nearest neighbors. Accordingly, coupled
differential equations are obtained for step positions, which correspond to a discrete scheme.
One approach is to solve this scheme numerically. This approach has been followed mainly
for one-dimensional geometries [12—14]. Another approach is to view the step flow scheme
as a discretization of a continuum evolution equation for the surface height; and derive this
equation in the appropriate limit of small step height and large number of steps. In this paper
we focus on the second approach, which lends itself conveniently to numerics and prediction
of decay laws for macroscopic surface features in two space dimensions.

Most previous continuum approaches to crystal surface morphological relaxation invoke
isotropic physics for each terrace [10, 15-19]. However, nanoscale anisotropy is almost
ubiquitous, and may stem from surface reconstruction and the substrate symmetry and structure
[20].

In this paper we focus on terrace diffusion anisotropy, which is characterized by a tensor
diffusivity and can influence pattern formation [21]. We do not address anisotropy stemming
from the step edge orientation dependence of parameters such as step line tension and stiffness;
the macroscopic limit with such parameters is studied in [10]. A transformation that relates
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anisotropic adatom diffusion and step edge orientation dependence of step parameters is
pointed out in [20]. This last aspect lies beyond our present scope.

We also include step edge diffusion [22-24] for completeness, since edge diffusion may
be important in various experimentally accessible systems [1]. In our formalism, the flux
along an edge is driven by variations of the step chemical potential, the change per atom in
the step energy upon addition or removal of atoms at a step edge. The inclusion of this effect
necessarily modifies the surface mobility tensor.

The continuum limit of these processes leads to a generalized relation of the form
J o« M - Vu between the continuum-scale surface flux, J, and the continuum step chemical
potential, . The coefficient M is the macroscopic surface mobility. In the curvilinear
coordinate system with axes normal and parallel to step edges, J is

N M (IVh])  Mi([VAD (0ipm 0
My (IVh]) My (|Vh])) \oju
In this relation, M;; are matrix elements of the tensor mobility M in the local representation,
h is the surface height profile, and 9, and 9 denote space derivatives normal and parallel to
step edges where the gradient operator is V = (9, 8||)T; cf (52)—(54) of section 3.

In previous works that invoke terrace isotropy in 2+1 dimensions [10, 11], the matrix M
is diagonal in the step coordinate system: M|, = M, = 0 with M|, # M», except in the
special case of diffusion limited kinetics where M|; = M. This form of mobility does not
describe experimental situations where hopping of adatoms couples the directions normal and
parallel to step edges. This coupling is described by setting D, = D, # 0 in the diffusivity
matrix D, which in turn yields M, = M>; # 0. Here, we determine each M;; explicitly from
the step flow model.

There are several critical assumptions inherent to our analysis. Our starting model
originates from the mesoscale BCF description where steps are replaced by smooth curves.
Hence, we do not consider explicitly atomistic processes which occur at a smaller scale; see
e.g. [25]. In our analysis, the terrace width, a microscopic length, is assumed to be much
smaller than: (i) the macroscopic length over which the step density varies; (ii) the step radius
of curvature; and (iii) the length over which the step curvature varies. Step trains that satisfy
(i)—(iii) are referred to as ‘slowly varying’. The terrace width is comparable to or larger than
the step height so that in the continuum limit the step density approaches the surface slope.
We treat monotonic step trains with descending steps and vicinal terraces surrounding a top
terrace (peak), and do not address step motion near a bottom terrace (valley).

In an attempt to obtain insights into solutions of the derived parabolic PDE and plausible
connections to experiments, we find various scaling laws for the continuum-scale height
profile, h. Here, the term ‘scaling law’ describes the time-dependent part A(z) of a separable
solution, A(r,?) =~ H(r)A(t); see table 1. Note that in principle the initial-boundary value
problem for the PDE is not guaranteed to admit separable solutions. This property relies
crucially on the initial data. Further, nonlinearities of the PDE can play an important role
introducing couplings not captured by scaling scenarios such as ours. We predict scaling laws
previously identified for isotropic diffusion [11].

We do not address the numerical solution of the PDE in this paper. A promising approach
based on the finite element method when facets are absent is work in progress. Another
challenge is to solve the PDE in the presence of facets, where explicit boundary conditions can
be available only from discrete simulations [26]. In the same vein, the validity of separable
PDE solutions is not studied in the present paper.

We assume that the physics of each terrace, although allowed to be anisotropic, does
not vary from one terrace to the next. Hence, our model cannot fully describe ‘surface
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reconstruction’, the situation where adatoms on neighboring terraces adapt differently to
the missing bonds at the solid—vapor interface [27, 28]. We have neglected additional
complications such as sublimation, material deposition from above, electromigration and
elasticity; the last effect may induce long-range, beyond-nearest-neighbor step interactions.
The inclusion of these influences in a more general PDE for the surface height in 2+1
dimensions is the subject of future work.

We organize the remainder of the paper as follows. In section 2 we present briefly the
BCF model; and summarize a previous derivation [10, 11] of continuum evolution laws from
discrete equations of step motion for isotropic diffusion. In section 3 we derive the continuum
limit in the case with anisotropic terrace diffusion and step edge diffusion by placing emphasis
on the relation between surface flux and step chemical potential. In section 4 we apply
approximately separation of variables to the derived PDE. Finally, in section 5 we summarize
our results and discuss limitations of our theory.

2. Background: BCF model and PDE with terrace isotropy

In this section we review briefly elements of a previous theory [10, 11] that forms the basis of
our analysis. The notation, geometry and methodology outlined here serves section 3 where
we consider anisotropic terrace diffusion and step edge diffusion.

We start with the seminal BCF theory [4], which introduced a framework to reconcile the
discrete character of crystals in the bulk with the motion of crystal surfaces. In this context,
crystal surface evolution is driven by the motion of steps with atomic height, a.

Motion laws for step edges are determined via mass conservation for atoms: the step
velocity is the sum of fluxes toward and along an edge. Fluxes result from kinetic processes,
including attachment and detachment of atoms at step edges, diffusion of adatoms on terraces
and diffusion of atoms along step edges. Equilibrium values in kinetic processes are related to
step energetics, namely, the step stiffness and elastic-dipole or entropic step repulsions [1, 29].
We assume that each step interacts only with its nearest neighbors. Beyond-nearest-neighbor
elastic dipole interactions only renormalize the step—step interaction strength and thus are not
essentially different in the continuum limit [10].

2.1. Step geometry

In the spirit of BCF [4], the edges of steps are projected to closed, noncrossing, and non-self-
intersecting smooth curves in a fixed (‘basal’) reference plane; see figure 1. These curves are
treated as moving boundaries for the adatom diffusion of each terrace.

The projection of step edges motivates our choice of local coordinates. The steps are
descending and are numbered i = 1, 2, ..., N, starting from the topmost step (i = 1). The
basal plane position vector r(n, o, t) € R? is a function of time 7 and local coordinates n and
o. The variable n identifies the step; n = n; for the ith step. The coordinate o indicates the
position along an edge, corresponding to the angle in polar coordinates; for definiteness, o
increases counterclockwise. The unit vectors normal and parallel to step edges are e, and e,
which are mutually orthogonal and directed toward increasing 1 and o. The associated metric
coefficients, which will be needed below when we compute spatial derivatives, are [30]

sn = |3,71'|, & == 10,1 (2)

The step geometry outlined here remains of course unaltered when we consider terrace
anisotropy in section 3.
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Figure 1. Geometry of steps and terraces near surface peak. Top: projection of step edges to
smooth curves on basal plane (top view); unit vectors e, and e, are normal and parallel to step
edges. Bottom: side view of step train; a is the constant step height and p is typical terrace width.

2.2. BCF model with step interactions in 2+1 dimensions

A quantitative discussion of the BCF theory begins by introducing the adatom density, C;, on
the ith terrace, n; < n < n;41. This C; satisfies the diffusion equation,

8,C; =div(D" - V()), (3)
where D is a tensor (2 x 2 matrix) diffusivity and V = (§ﬂ’ 19,,&° 180) is the gradient on
the basal plane. Note that we have omitted from (3) terms that describe atom desorption,
electromigration and material deposition from above. A further simplification emerges from
the ‘quasisteady approximation’, 9;C; =~ 0, which asserts that the time scale for step motion
is much larger than the time scale for terrace diffusion; thus, the time dependence in C; enters
through the boundary conditions at step edges. We define the adatom flux as J7 = —D” - VC;.

Robin boundary conditions at the ith and (i + 1)th step edges complement (3) to yield a
unique solution for C;. These conditions emerge from linear kinetics [1, 12]:

—J' (i o, 1) = kJCi(ni o, 1) — C(o, )], )
J,’TJ_(T/Hl’ o', 1) = kalCi(is1, 0", 1) — C?§1 (o', 0], (5)

where k,, k; are kinetic rates that account for the Ehrlich-Schwoebel barrier [31, 32],
JI (n,0.1) == e,-J] is the transverse component of the adatom flux, and C(o, 1) is
the equilibrium density at the ith step edge.

Next, we express Cl.eq as a function of step positions by applying the near-equilibrium
thermodynamics law [1, 12]

a ) ©

C¥(0) = C,exp M2 L ¢,
i (@) XPT ksT
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where u; is the chemical potential of the ith step. This x; depends on the step edge curvature
and the energy of interactions with other steps [1, 12, 10]. The linearization in (6) is permissible
under typical experimental conditions [33].

The chemical potential u; can in principle be given as a function of the step curvature and
positions. In [10], u; is found with recourse to differential geometry. The result reads

Q(la U, + U) (7)
Mi = —\ VUi TKU;J,
a 5,,”

where 2 is the atomic volume, U; is the total energy per length of the ith step edge and «; is
the step edge curvature. We use the definition [10]

Ui =B+U", (8)
where B is the step line tension, assumed here to be a constant, and U}"‘ is the interaction
term which in principle depends on the positions {n;}. For a vicinal surface (i.e., one with

sufficiently small slope) and entropic or elastic dipole nearest-neighbor interactions, Ul.int is
[1, 10, 11, 29]

Uiin[ =Viia+Viio, )

ni
Viea = Smioi . o= [ Cgan = (10)
3 o Pi+l — Pi
where g is a positive constant (g > 0), p; corresponds to distance in polar coordinates, m; is
the discrete step density, and & is a shape factor; note that ®(p;, p;) = const [10].

An important remark is in order. Because C;* and u; are defined as independent of the
kinetic processes, the formulation for the step chemical potential here carries through unaltered
when we introduce anisotropic terrace diffusion in section 3.

Lastly, we introduce the step velocity law. By including diffusion of atoms along the step
edge with constant edge diffusivity D, the normal velocity of the ith step edge is [20, 22-24]

dr,- Q T

v=e gt ==L, - JL) +ad, (DEasé‘—"T> , (11

where 9, is the space derivative along a step edge; d; = &, '9,. The first term in (11) is
the contribution of terrace adatom fluxes. The second term is due to step edge diffusion and
stems from the variation of the step chemical potential, i;. A reasoning for using u; both in
edge diffusion and in Cf’q relies on the fact that u; controls the equilibrium shape of a step.
This equilibrium state is expected to be independent of the kinetic pathway (edge diffusion or
attachment-detachment). So, if mass exchange with the terrace is turned off and relaxation
occurs via edge diffusion, the step attains the same shape as in the case where edge diffusion
is turned off and relaxation is allowed only by attachment-detachment kinetics. This property
implies that the thermodynamic driving force has to be the same chemical potential, w;, in
both cases [34].

Equations (3)—(11) in principle lead to a system of coupled differential equations for
the step positions. This system is a discrete scheme of step flow and has been solved
numerically for straight and circular interacting steps [12—14]. In this section we focus
on (2+1)-dimensional settings with Df = 0.

2.3. Approximations for slowly varying step train

Evidently, the adatom flux J! plays a pivotal role in connecting the step velocity to the step
chemical potential. Next, we find an explicit formula for this flux by solving the diffusion
equation (3) approximately following [10].
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The key idea is to consider slowly varying step trains and treat the local variables 1 and o
as fast and slow, respectively. This assumption enables us to neglect the o derivatives in (3).
Accordingly, for constant D7 the diffusion equation for C; reduces to

3y (? a,,c) ~ 0, (12)
n

which has the explicit solution
n
Ci%Ai(G,l)/ g—ﬂdﬂ/+3i(0,f) ni <N <Ni+l, (13)
ni o

where A; and B; are integration constants to be determined via the boundary conditions (4)
and (5).

For isotropic adatom diffusion [10] with (scalar) diffusivity D7 the vector-valued adatom
flux is computed by

J =-D"v(,. (14)

By use of (4) and (5), the flux components restricted at n = n; are

DTC 1 Mivl — i
Jin = ksT &l D : it & (15)
5T &l DT (g + ) + o 22 dn

C?q fﬁm %'_ndn
]7]1+1 ér] d

eq eq
T T Ci+1 Ci
D D (i + et)
o
. T 1
Soli D (kmm k,,sa|,)

) (16)

r_
iy =

where Ji-,TH := e, - J7. For details on the anisotropic case see section 3.

We pause here to review the assumptions underlying the above approximations. The
derivative 9, is treated as O () in comparison to the derivative 9,, which is treated as O (1);
€ < 1. Itis reasonable to think of € as being of the order of ak where k = O (A~!) is a typical
step curvature and A is a suitable macroscopic length [10]. Once the continuum-scale surface
flux is derived, the assumptions for the n and o derivatives are relaxed: both derivatives are
allowed to be O(1). An alternative yet equivalent approach based on Taylor expansions at
adjacent step edges is described in [11] and in section 3 below.

2.4. Continuum theory with isotropic diffusion in 2+1 dimensions

Step motion laws are viewed as the result of discretizing a PDE for the continuum-scale surface
height profile. In this section we review the continuum limit of the discrete model (3)—(11)
when the physics of each terrace is isotropic (D” = DT scalar) and there is no step edge
diffusion (D¥ = 0) [10]. Accordingly, we derive a nonlinear fourth-order PDE for the surface
height.

First, we summarize the main assumptions made in [10]. The continuum limit
corresponds formally to taking a/A — 0 where A is a macroscopic length. The metric
coefficients &, and &, are O(X), while the terrace width 8p; is O(a). Therefore, we have
SN = Nyl — M~ Spién_' = O(a/r) — 0. In this limit, we must keep as fixed, O(1)
quantities the step density m; = a/8p; and the kinetic parameters D7 /(k;a) where [ = u or d.

The limiting procedure relies on identifying any discrete variable Q; atastep edge (7 = ;)
with the interpolation of a continuous, sufficiently differentiable function Q(n = n;). Thus,
Qiv1 — Qi ~ (81;)0,Q|; where Al; denotes A(n;) throughout. The following assertions
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made in [10] carry through for the continuum limit of section 3. (i) The step density
approaches the surface slope, m; — m = |Vh||; = O(1). (ii) The unit vector normal to
the ith step edge becomes e,|; — e, = \VZ\ (iii) The step curvature, k; = V - ¢,];,
approaches k; — Kk = —V - (IVhI) (iv) The step normal velocity, v; = e, - dr;/d¢, becomes

v; = v(r, t) = the velocity of the level set with height 4.

IVhI’

2.4.1. Adatom flux. Next, we outline the continuum limit of the flux components (15) and
(16). The terms on the right-hand sides of these equations are replaced by series expansions
as én; — 0.

The resulting continuum limit has the form of a matrix equation involving the adatom
mobility M7, viz.?,

JT
W= = (5 ) =—cmr (%H), a7
4 dyp
where
DT (Lt 0
M’ = — | L+4[Vh| , (18)
kgT 0 1
9, = &9, 8y = &, '8, and the kinetic parameter ¢ is defined by
2DT
g="— k= (kK 2. (19)
a

Equation (17) is complemented with a mass conservation statement for the height profile &
and a continuum law for the continuum-scale step chemical potential .

2.4.2. Continuum step chemical potential. Next, we invoke (7)—(10) for the step chemical
potential ;. Note that we can treat the step edge energy per unit length U; as the restriction
to n; of a continuous function U (n) [10]. It follows that u; (o, 1) = % div(Ue,)l;.

The continuum step chemical potential u(r, ¢) is found by taking the continuum limit of
(7)—(10). The result is [10] (see footnote 3)

Vh
wi(t) — pn = ——d1v [(ﬂ+g|Vh| )W} g = gP(pi, pi) = const. (20)

Note that the definition of w; and thus the limit (20) is not affected by the kinetics; thus, (20)
remains unaltered by the inclusion of step edge diffusion and terrace diffusion anisotropy.

2.4.3. Mass conservation for adatoms. For DF = 0 the step velocity law (11) reduces to the
usual mass conservation statement for adatoms [10]. Indeed, in the continuum limit the step
velocity v; approaches 9,4 /|Vh|. On the other hand, J _1,1li in the term JT Ll — le|1' of
(11) is replaced by an expression involving J! | evaluated at n = 5;_; through integration of
divJ7 ; = 0 on the (i — 1)th terrace. This substltutlon yields a sum that is recognized as a

divergence in the continuum limit: the right-hand side of (11) approaches —WV J” when
E = 0 [10]. The resulting equation is
dh+Qdiv)’ =0. (21)

3 By abusing notation, we use the symbols J7 and y to denote the continuum limits of JiT |i and w;, respectively.
Strictly speaking, JiT li = J'(r, 1) and u; () — Ji(r, ) in the continuum limit.
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2.4.4. Evolution equation for surface height. A PDE for the surface height A (r, ) is found
by combination of (17), (20) and (21) [10, 11]:

Vh
8m==—Bdw{A7~V[mv<———+§ﬁVMVh)}}, (22)
IVh| &1
where
kgT DT C,g,Q?
A= TIM gi=Bla, gi=dla, B:=T§‘ (23)

Evidently, the material parameter B has dimensions (length)4 /time and AT is dimensionless.

3. Anisotropic diffusion

In this section we extend the theory of section 2 to cases with a tensor-valued terrace diffusivity
D7 and a nonzero edge diffusivity D¥, which offer a more realistic description of diffusion
processes on terraces and steps. Our goal is to derive a PDE for the surface height. A main
ingredient is the surface mobility, which is an extension of (18).

The terrace diffusivity D7 is assumed to have the tensor form D7 = D, 1€,€, + Dire e, +
D;1es €, + Dye,e,. For the sake of some generality, we do not enforce the symmetry relation
Dy, = Dy, although this equality is often dictated on physical grounds. The components of
the surface flux J7 are related to both spatial derivatives of the adatom density C; through the
linear relation

g1 Dy Dp £-19,C;

s _ n n“i

== N oem M <N <Nt (24)
<‘]i,T Dy Dx <5o 19, C; ) l !

assuming that no drift term is present, which would arise from an electromigration current.

3.1. Approximations for fast and slow step variables

In this subsection we provide relations for the adatom flux components at step edges for slowly
varying step trains. The starting point is the diffusion equation (3), which becomes

0 (&;Dq; 0C; d aC; d aC; 9 [(&,Dy 0C;
— — ) +— | Dp— |+ — | Dyy— |+ — — ) =0, (25)
on & On an do do an do & do

where n; < n < n;41. In particular, for slowly varying step train we invoke the separation of
the variables (1, o) into fast and slow as outlined in section 2.4. Hence, (25) reduces to (12),
which is solved by (13). By (24), the corresponding flux components are

D D n
I~ =R Ao, 1) — =28, [Bi(o, 1)+ Ai(o, 1) f é—"dn’] : (26)
£, g, &
D D n
Ty & —é—z‘A,(o, 1) — =20, [B,- @.0+an [ 2 dn’} : @7)
o o ni o

Equations (26) and (27) are simplified when we evaluate JiT at n = n;. The resulting
matrix equation is

JI i Dy Dy A;
&[5 = : (28)
‘]i,H |i D21 D22 8(7 Bi

By inspection of (28), the term d, B; must be treated on equal footing with A;, since both
terms make comparable contributions to the surface flux. We proceed to invert the matrix
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equation (28), viewing A; and 9, B; as integration constants that we have to eliminate from
the boundary conditions (4) and (5). Thus, we obtain the formula

A; _ &l Dy, —Dup)\ (Il 29)
%B;) DT \=Dy  Du)\Jli)’

where |D” | := Dy Dy, — Dy, D, denotes the determinant of D7

Next, we apply the boundary conditions (4) and (5) for atom attachment-detachment at
step edges. By substituting the solution for the adatom density C; into these conditions, we
find the relations

—J' (i 0. 1) = k[ Bi(0,1) — C{*(0, 1)] (30)

Ni+l E
n
—dn

Ni o

I @i o' ) =kq [Bi (', t)+ A0, 1) —CY (o, t)}

€1y

We eliminate B; by setting o’ = o in equation (31), multiplying (30) by k,/k, and
subtracting the resulting equation from (31). Substituting for A; from (29), we arrive at the
first desired relation between the surface flux components:

&1iDxn /"'” & T L oy
—+ d J: i+—J- i
(ku o ), g, 1)t i

‘§J|iD12 it sn T eq eq
— D7 /n S—adn Jigli=C7 =Gy (32)

We obtain a second relation by exploiting variations in o, which can be taken to be
arbitrarily small; in contrast, changes in 7 are restricted by a and the requirement of finite
slope. Therefore, we differentiate (30) with respect to o and substitute for d, B; from (29).
Subsequently, we neglect d, Ji,T , consistent with the hypothesis of slowly varying step edge
curvature. Thus, the second desired relation of the flux components reads

& li
IDT|
which in turn becomes

2 (Do J] |, = DuJly ) — 9, C =0,

Cs |D | 05 i CleTl
kgT kgT
Equations (32) and (33) suffice for the purpose of taking the continuum limit.

D21J | D]]J “ = 8||,bL,‘. (33)

3.2. Continuum-scale adatom flux

In this subsection we derive the analogue of (17) and (18), the relation between continuum
adatom flux and step chemical potential. The resulting terrace mobility, M7, will still need
modification to account for step edge diffusion.

First, we simplify relations (32) and (33) for JiT. Considering 8n; = 1,41 — 1; as small,
we make the approximations

R 11y

it oI = (o ) s oG, (34)
Ni+1

/ g”d §"||l3n1[1+0(5m)] 35)
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We consolidate the kinetic rates k,, k; into the parameter k = 2 / (k; L k;l) of (19). Thus,
(32) reduces to

2 §&,1iDxn T &yli D12 T
[(% ' "|D—T|5”f> I, = Sprsm ] | 1+ 0@n) = ¢ - € (36)
We multiply (36) by |D7|/ (&,1i67m;) and thereby obtain
2ID7| ct—cil
(Dzz + —> I | = Dndl | = D ———=L (37)
k&ylidn; &plidn;

As 8n; — 0, the right-hand side of (37) approaches C;|D” |3, 1/ kg T. On the other hand,
the ratio of parameters in the prefactor of J, lﬂ |; has the limiting value

2/D7” 2|D7” 2|D7”
b7 2 ||Vh|:DT|Vh|, DT .= D]
k&, idm; ka ka

where DT has dimensions of diffusivity [(Iength)?/time].
A matrix equation for the continuum-scale surface flux J* = (J], J”T)T in terms of the
step chemical potential u comes from combining (33), (37) and (38):

, (38)

Dn+DT|Vh| —Dp\ (J] _ CGDT| foLp (39)
—Dy, Dy ) \J/ kgT \oyu)’
By solving (39) for J7 we obtain
J{ I
J = 3@ = =-CM". , 40
I (r, 1) (JT) o (40)

where the continuum-scale adatom mobility is

1 Dy, D 2Dy
MT =V . = . 41
ksT (1+q|Vh]) (DZ1 Dy, + DT |Vh| 9= (41)

This formula reduces to the equation with diagonal M found in [10] when Dy} = Dy =
DT and D, = D;; = 0; cf (18). In contrast to the case with scalar diffusivity, all matrix
elements of the mobility in (41) depend on the slope. This dependence is quite pronounced
in the kinetic regime of attachment-detachment limited (ADL) kinetics, which we discuss in
section 4.

3.3. Alternative approach to continuum: Taylor expansions

For the sake of completeness, we re-derive (40) and (41) via an alternative yet equivalent
route. This is based on expansions of the boundary conditions (4) and (5) for atom attachment-
detachment in appropriate Taylor series when §n; = 0,41 — 7; > Oand 8o = o’ — o — 0.

Following the derivation outlined by one of us in a letter [11], we first expand C;|;+1 and
JT| li+1 in (5) to first order in S0 and &1;:

ki (JTL |+ 0y | 810 + 0597 |.80) = kuka[Cili + 3,Ci1:8m; + 35 Ci|i60 — C{(o + 80, 1)].
(42)

Second, we multiply (4) by k,; and subtract the resulting equation from (42), so as to eliminate
C;. By neglecting the n- and o -derivatives of Ji’TL, we find

Cs
(ku +ka)J11 |, = kuka {3nCi|i577i +0,Cilid0 — ﬁ[#(’?m, o +é0) — pu(m, 0)]} . (43)
B

11
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Next, we solve for 9, C; and 9, C; by applying the matrix equation (24). The substitution of
9, C; and 9, C; into (43) and subsequent expansion of the difference w (111, 0 +60) — u(n;, o)
about (1;, o) yields a relation between J! and the gradient of the continuum step chemical
potential wu(r, t) :

1 1  Dp&dni\ ,r & D12dn; o Cy
e I e R
(ku o ) el T ”| o7 o
§o
|:|DT|(D12J — DuJ))li — nM|z (44)

Setting o = 0 in (44) and taking the continuum limit provides our first equation for the
components of the surface flux in terms of w :
2|D7| Dy,  CD7|
1+ Vhl ) Jlr - =gl = - —_ . 45
< kaDn | | n Doy I kBTD22 oL (45)
The continuum limit of (44) still applies when §o # 0. By (45), we know that the left-hand

side of (44) tends to zero in that limit. Therefore, the term proportional to §o must also vanish
as én; — 0. Thus, we have

C,|D7|
T T _ s
DZ]JL —D”J“ = kB—TaH/J/. (46)
By solving simultaneously (45) and (46) for the components of the continuum surface
flux, we find
JI _ —Cy Dy Dy (Oin @7
gl kgT (1+q|Vh|) \Dai Dy +DT|Vh]| )’

which is directly identified with the combination of (40) and (41).

3.4. Mass conservation law and total surface flux

In this subsection we define the fotal surface flux J so that the mass conservation law for atoms
is satisfied in the presence of step edge diffusion. The surface mobility is defined accordingly
through the relation of J and p.

At a given location o on the ith step edge, the step normal velocity v; must respect
conservation of mass, taking into account all possible sources and sinks of atoms; see (11).
By section 2.4.3, in the continuum limit (11) reduces to

bh——qv. g4 AV, [DT o n (48)
‘i:a 7 ";:a 7 kBT ’

where the adatom flux J7 is described by (40) and (41).

Since the terrace is a level set for the height, we have h = H (), t); in other words, & does
not vary in the step-longitudinal (o -) direction. Thus, |VA| = En’ 1 |0, H| and the factor |3, H |
can be passed through the o derivative in (48). It follows that

ah=-Qv-J'+ ! s {aDE|Vh|$"8 < a )} (49)
£néo & \kgT

We recognize the second term on the right-hand side of (49) as the divergence of

aDE|Vh|8H (u/kpT)e,. Hence, we refer to the ter T)e, as the edge
atom flux, denoted by JZ. Combining the two divergence terms into one term, we obtain the
mass conservation law

h=-QV-JT+J5) =-QVv -], (50)

12
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where

_ T , {E E___aDE K
J=J +J°, J5 = ) [Vh|9, <kBT>eg. (28

Thus, the matrix equation (47) involving the mobility tensor can be updated accordingly
for the effective surface flux:

JL M, M, o al/L
J(I‘,t)=< >=_Cs< " ")( >=—C5M'V , (52)
J Moy Mos) \3u a
where
_( My My
M= <Mur] Maa) ’ (53)
Dy1/(kpT) Dyy/(kpT)
/B s Y a—— M’IU = T S Diiwil’
1+2Dujvp| 1+2Dujvp|
27| E (54)
D21/(kBT) 1 D22+ T|Vh| ClD
o= T Do’ Moo = — D + |Vh|
1+22u1vp) kT 1+220vn) © QC,

In applications it is often desirable to represent the total mobility tensor M with respect
to a fixed coordinate system. We invoke the similarity transformation outlined in [10] in order
to obtain the basal plane’s Cartesian representation of M. Using the change-of-basis matrix

—0ch 9,k
— -1 x Yy
S = |Vh| <_8yh —axh>’ (55)

we obtain the representation

M, e.e. +M.ee, +M,ee +M,eze,

M, =SMS™! = , 56
) kpT|VAI? (1+ 221 |Vh]) 0
where
M., := Dy;(3,h)> — (D + Dy1)(0ch)(0,h) + |:(D22 +D"|Vh|)
£ 2Dy,
vh| (1 Vh a,h)2, 57
+QCS| |(+ka| |>](y) (57)
M.y := Dia(8:h)> — D21 (3,h) + [Dn — (D3, + D" |Vh])
aD” wal (14 22 | @oumy@,m) (58)
QC, ka A
M, = Dy (8:h)> — Dia(d,h)* + |:D11 — (Dy + D" |Vh))
aD” wal (14 220 | om0 (59)
QC, ka TS
M,, = | (D + DT |VA|) + aDE|Vh| 1+ 220 90 Lo,y
w2 QC, ka v
+ (D12 + Da1)(8,h)(3,h) + Dy (3,h)*. (60)
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So far, we derived a relation of the form J = —C;M - Vu for the surface flux where
d;h = —Qdiv J. The chemical potential u is related to derivatives of & through (20).

3.5. PDE for height profile

We now combine the mass conservation law (50) with the effective surface flux (52) and the
formula for the continuum step chemical potential (20) in order to derive a PDE analogous to
(22) for the surface height profile, 2 (r, t). With the substitutions for © and J by (20) and (52),

the mass conservation law (50) becomes
2

ah = _2G div {M Y (div |:(,3 +g|Vh|2)V—hD} . (61)
a |Vh|

To consolidate the physical parameters, we define g = B/a, g3 = &/a, and B = Q2C,g;
see (23). Accordingly, we obtain (22) with M7 replaced by the effective total mobility M.

4. Scaling laws

In this section we derive approximate, separable solutions of PDE (61). Our goal is to find
plausible connections of actual continuum solutions to decay laws observed in biperiodic
profiles, e.g. observations reported in [35-38]. Our discussion is heuristic; the relation of PDE
solutions to experiments is not well understood at the moment.

We start with the ansatz i (r, 1) =~ A(t) H (r). This separation of variables, called a ‘scaling
ansatz’, is consistent with previously reported step flow simulations in 1D [13] and kinetic
Monte Carlo simulations in 2D [18], both with initial sinusoidal profiles. The amplitude A(¢)
can be obtained formally from an ordinary differential equation (ODE) by direct substitution in
(61). We alert the reader that conditions on the initial data and material parameters for having
separable solutions and recovering an ODE for A are currently elusive, requiring detailed
numerical studies. Such studies lie beyond our present scope.

Additive terms in the driving force Vi and in the total mobility M scale differently with
A. We need to retain in the right-hand side of the PDE terms proportional to the same power
of A and thus resort to approximations. It should be borne in mind that the nonlinearities in M
and p lead to spatial-frequency coupling for biperiodic height profiles; accordingly, evolution
is in principle more complicated than that implied here by our simple scaling scenario.

Depending on the powers of A that possibly prevail in the evolution equation, we find
several plausible behaviors of & with time, including the exponential decay and inverse linear
decay reported in related experiments [35-38]. By (20) the driving force Vu scales as A® if
the dominant term is step line tension. If step interactions are dominant, then Vu scales as
A?. To determine the scaling of the mobility tensor, it is convenient to introduce the ‘aspect
ratio’ a := 0yh/0,h; it is plausible yet not compelling to estimate o by A, /A, where A, and
A, are wavelengths in the x and y directions. We also define the slope-dependent quantity
b:= 1+ sz—a” [VA|)~!. Note that « scales as A°. When step edge diffusion is absent (D = 0),
the possible scalings found for A with nonzero D, and D, are not different from those for
isotropic adatom diffusion (where Dy, = D, = 0) [11].

With these definitions, the elements M;; = (kzT)~'|Vh|"2bM;; (i, j = x, y) from the
Cartesian representation (57)—(60) of M read

b@:h)? T (Dyy + Day) +a>D 2D 2|Vh|+“DE°‘2|Vh|
oy = ———— -« o a — |
kBT|Vh|2 11 12 21 22 bQCd

b(3:h)? Diy + (D Dy) — a?D 2|DT| Vi aDEwa|Vh|
f = o - -« — o -,
YT keT\VRE | e T Tk bQC,
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b(d,h)? D + 0Dy — D) — D 2ID7| - aDEa|Vh]|
= — o — — — -,
yx kBT|Vh|2 21 11 22 a D2 ka (24 bQC,
@7 [, (Dyy + Day) +a>D +2|DT||Vh|+“DE|Vh|
= - o o .
W ke TIVRE |2 2T N bQC,

(62)

We restrict attention to ADL kinetics which closely correspond to relevant experimental

situations [35-38]. It follows that b < 1 where b scales as A~!; by the scaling ansatz for A, the
b(3:h)*
ksT|Vh|2

IDT| &~ DD (i.e., if the off-diagonal diffusivity elements Dy, D,; are small in comparison
to the diagonal elements) and D7 |/(ka) > aD* /(bQ2C,). The dominant terms in M scale as

(i) A%if b < min{(D»n/D11)e?, (Dy/D11)a™2, Dy /Dy }; and
(i) A7Vif b > max{(Da/D11)a?, (Dy/Di1)e™2, Dyy/ Dy}

In the presence of step edge diffusion with |D7|/(ka) <« aD?/(bQ2Cy), the dominant
terms in the mobility tensor scale as A'. Note that in all these cases the matrix M tends to
become singular since the lowest eigenvalue acquires a small value. Hence, correction terms
in M, which strictly spoil the scalings reported here, are physically important; solutions of
the form A(#) H(r) should be thought of as leading-order terms of appropriate asymptotic
expansions for 4.

Next, we combine the three possible scalings of M with the two possible scalings of V.
Each combination yields an ODE of the form A o« —A” for some exponent p; the minus sign
here is assumed for achieving profile decay. In the case of ADL kinetics, outlined above, we
have p € {—1,0, 1} U {1, 2, 3}, where the first set corresponds to dominant step line tension
and the second set corresponds to dominant step interactions in V. Since p = 1 is common
to both sets, the associated scaling law A = Agexp(—¢/t) could perhaps be observed in a
wide range of experimental situations. On the other hand, the scaling law A = A¢//1+¢/T
associated with p = 3 and dominance of step edge diffusion may not be physical; to our
knowledge, this last decay law has not been observed.

We illustrate the procedure of finding A for weak anisotropy under condition (ii) above
and dominant step interactions; thus, p = 1. The PDE has the form

(8xH)2 (mxx My
IVHP \my.  my,
where the prefactor is positive and the elements {m;; }; j=x are constants that stem from M )
after factoring out A (but not H); the precise definition of m;; is omitted here.

To satisfy (63) for all # and r, we require that the time-dependent part A(z) solve
A(t) = —CA for some positive constant C (C > 0). The height profile H(r) solves a
nonlinear PDE of the form

prefactor

also scales as A~!. For the sake of simplicity we consider weak anisotropy,

A()H (r) o —A(z)div{ ) -V[div(|VH|VH)]} . (63)

8XH2 XX X
CHo<div{( )<’” Mxy

IVHP \my. myy
The solution for A(¢) is given in terms of the separation constant C and the initial amplitude
Ap: A(t) = Age . Using a similar procedure, we derive other possible scaling laws for
ADL kinetics under different restrictions. Our results are summarized in table 1.

We do not address the issue of solving (64) in this analysis. Particularly interesting is the
case with facets. The continuum limit breaks down at facet edges and associated boundary
conditions for H must take into account the discrete step flow equations [26]. A numerical
scheme to implement these boundary conditions within continuum is still under development.

) : V[div(|VH|VH)]} . (64)
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Table 1. Decay laws for height amplitude A(7) in ADL kinetics. The leftmost column indicates
plausible conditions. The next two columns list decay laws for line tension and step interaction
dominated V. The time constant 7 depends on A(0) and H.

Line tension Step interaction

IDT| ~ Dy Dy
b>> max{(Dyn/Di)a?, Dya/Di1, (Dn/DiNa™}  Ao/T—1/t  Agexp(—t/7)
b < min{D2/D11)a?, D2/ D11, (Da2/Di1)e™2) Ao(l —1t/7) Ao/(1+1/7)

IDT|/(ka) < aDE /(bACs) Agexp(—t/t)  Ao/JT+i/T

A similar analysis can be carried out if terrace diffusion is the slowest process, i.e.,
q|Vh| = |Vh|Dy/(ka) < 1. Then, b is approximately a constant, » &~ 1. The dominant
terms in the mobility tensor scale as A% or A!. Thus, we obtain A o« —AP for pe€{0,1,2,3},
which yields four of the five decay laws already found for ADL kinetics.

5. Conclusion

By interpreting a (2+1)-dimensional step flow model for a relaxing surface as a discretization
of a continuum evolution equation, we derived the relevant PDE for the surface height profile.
The starting point is a step velocity law that accounts for anisotropic adatom diffusion on
terraces, diffusion of atoms along step edges and atom attachment-detachment at steps. In
the continuum limit we obtained a relation between the surface flux and the step chemical
potential. This relation involves a tensor surface mobility as an effective coefficient.

We gave two different derivations of the surface mobility under the assumption of linear
kinetics at step edges. Our main approach relies on the direct solution of the diffusion equation
for adatoms on each terrace via the separation of local step coordinates into fast and slow. The
continuum limit is attained by letting the step height and terrace widths tend to zero under the
condition that the slope remains finite.

Combining the step velocity law with the continuum relation between the surface flux
and the step chemical potential resulted in a nonlinear, fourth-order parabolic PDE for
the surface height. Transforming the mobility tensor from local step coordinates to fixed
coordinates induced a dependence on the height partial derivatives. This dependence offers
a plausible scenario of how an epitaxial surface can exhibit different decay laws. We found
separable solutions for the height that approximately satisfy the evolution equation under
certain conditions. These separable solutions exhibit different decay and may be used as a
guide in interpreting experimental observations from a continuum viewpoint.

Our PDE only accounts for a part of the possible microscopic physics. We neglected
elasticity which may induce long-range interactions between steps, surface reconstruction,
material deposition, and evaporation/condensation (sublimation).  Incorporating these
processes into the theory is work in progress. For example, the inclusion of evaporation/
condensation requires only an additive term in the step velocity law [17]. The continuum limit
with this additional effect is already within the scope of the analysis presented here. More
challenging is the inclusion of processes that modify (i) the terrace diffusion equation; (ii) the
kinetic boundary conditions at step edges; and (iii) the formula for the step chemical potential.

The tensor mobility depends crucially on the kinetics of each terrace. More general
mobility tensors might emerge by encompassing terms that account for (i)—(iii) above. With
the inclusion of step edge diffusion, which was absent from previous derivations of a tensor
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mobility [10, 11], we found an effective mobility whose elements still depend only on |Vh|;
even then, the mobility M does not involve powers of |Vh| greater than 1. We plan to
investigate the possible structure of M in more general physical settings.

The PDE we derived for the surface height may admit separable solutions under certain
conditions, which are not precisely known at the moment. We hope to make connections
to experiments on surface relaxation with anisotropic diffusivity. One challenge in making
these comparisons is to single out experimentally measurable quantities that correspond to
PDE solutions in an appropriate sense. Another challenge in this context is the incorporation
of facets within a viable scheme of solving the PDE. The theory presented here can serve
as a basis for future work, in which the PDE for surface height evolution is implemented
numerically for comparisons with experimental data.
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