INSTRUCTOR: David W. Kueker
MTH 2105, ext. 55159
e-mail: dwk@math.umd.edu

DESCRIPTION: This course is an introduction to mathematical logic aimed at a broad audience. Mathematical logic studies reasoning as used in mathematics.

In mathematics we try to show that various statements are true of some specific mathematical structure — for example, the integers under +, −, · and < — or some class of structures — for example, the class of abelian groups. We do this by constructing proofs, that is, arguments following certain specified rules. The obvious question is: do proofs enable us to derive all statements true of the structure or structures involved?

Gödel gave two contrasting answers to this question, for statements which can be written in first order logic. In his Completeness Theorem he showed that a statement is true in all models of a set of axioms if and only if it has a proof from those axioms. In his Incompleteness Theorem he showed that no axiomatic proof system is adequate to derive all the true statements about any structure rich enough to contain arithmetic on the integers.

Our goal in this course is to explain and prove these two theorems.

PREREQUISITES: MATH 141.

TOPICS:

Sentential Logic
- Sentences and truth tables
- Proofs
- Completeness of the proof system

First Order Logic
- Formulas and structures
- Proofs
- Completeness of the proof system

Incompleteness
- Computable functions
- The Incompleteness Theorem

TEXT: (recommended) J.N. Crossley et al, What is Mathematical Logic? Dover, 1990. In addition, notes will be supplied by the instructor.

COURSE WORK: Homework, two midterm exams, final exam.