AMSC 466: Midterm 2

Prof. Doron Levy April 14, 2016

Read carefully the following instructions:

- Write your name & student ID on the exam book and sign it.
- You may <u>not</u> use any books, notes, or calculators.
- Solve all problems. Answer all problems after carefully reading them. Start every problem on a new page.
- Show all your work and explain everything you write.
- Exam time: 75 minutes
- Good luck!

- 1. (a) **(10 points).** Define a spline of degree k on [a, b]. Prove that if S(x) is a spline of degree k on [a, b] then S'(x) is a spline of degree k 1 on [a, b].
 - (b) (10 points). Determine the coefficients a, b, c, d such that

$$S(x) = \begin{cases} S_0(x), & 0 \le x \le 1, \\ S_1(x), & 1 \le x \le 2, \end{cases} = \begin{cases} x^2 + x^3, & 0 \le x \le 1, \\ a + bx + cx^2 + dx^3, & 1 \le x \le 2, \end{cases}$$

is a cubic spline that satisfies $S_1'''(x) = 12$.

- 2. (a) (10 points). Use f(x-2h), f(x), f(x+4h) to write an approximation for f''(x). What is the order of this approximation?
 - (b) (10 points). What is the most accurate approximation you can write for f'(x) using the same three values, f(x-2h), f(x), f(x+4h)? What is the order of this approximation?
- 3. (a) **(6 points).** Find the first two orthogonal polynomials, $P_0(x)$, $P_1(x)$ with respect to the weight $w(x) = \sqrt{x}$ on the interval [0,1]. Do not normalize them.
 - (b) (4 points). Normalize $P_0(x)$.
 - (c) **(6 points).** Let $Q_1^*(x) = a_0 P_0(x) + a_1 P_1(x)$. What should a_0, a_1 satisfy so that $Q_1^*(x)$ minimizes

$$\int_0^1 (x - Q_1(x))^2 \sqrt{x} dx.$$

over all linear polynomials $Q_1(x)$. Express a_0 and a_1 as integrals. Do not explicitly compute these integrals quite yet.

(d) (4 points). Find a_0 .