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Abstract

We study the patterns of a thermal explosion as described via u; = (A + 1)u™, m > 1. These processes, characterized by
an intrinsic length scale, always converge into very simple, universal, space-time separable, axisymmetric pattern(s) with a
compact support — referred to as dissipative compactons. When the initial datum is specified on an axisymmetric annulus,
though the evolving pattern seems to preserve this symmetry, at a later stage, it collapses very quickly to the center. In a
perturbed annulus, local axisymmetric patches of blow-up form instead of a collapse. For a planar, homogeneous, Dirichlet
problem, the space-time separability of the emerging pattern is preserved as well, but the competition between the intrinsic
and extrinsic characteristic scales generates a wider variety of spatial patterns, with the self-localization taking place on
large domains. As the width of the domain diminishes, then depending on the width-length ratio, the emerging pattem first
partially, and then fully, attaches to the boundaries. With further decrease of the domain, the emerging separable pattern,
instead of exploding, decays algebraically in time. © 1997 Elsevier Science B.V.

1. Introduction

The model problem

=AW +u™, m>1, xeR’ (D)

describes a very simple model of a thermal explosion.
This particular nonlinear balance between dissipation
and volumetric heat production of the sources endows
the problem with an intrinsic length scale and a special
symmetry. This symmetry generates space-time sepa-
rable solutions, which will be shown to play a crucial
role in the description of its asymptotic behavior. The
simplicity of the later-time behavior makes the prob-
lem accessible to analysis and enables its characteri-
zation.

We shall describe in some detail how the nonlinear
system evolves from an arbitrary initial datum (but
with a compact support) into unique attractor(s) fairly

independent of the initial start-up. This attractor is
stationary and has a compact support. However, the
evolution is of a runaway type as the system explodes
in a finite time. We shall provide accurate estimates of
the time of the blow-up as a functional of the initial
datum, and explore the basin of its attractors.

The fact that diffusive systems with sources may
explode is well known and a significant amount of
research was devoted to this subject. For semi-linear
parabolic equations (i.e., when the diffusion is linear)
the phenomenon of the blow-up is pretty well under-
stood, cf. Refs. [1-3], with the later stages of evo-
Iution very often assuming self-similar patterns. For
quasi-linear problems like the one considered here,
the main activity was carried out in the former Soviet
Union (for a recent summary see Ref. {3] and refer-
ences therein). Most of these efforts were directed at
one-dimensional (1D) problems. In contrast, the main
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thrust of our work is in the study of blow-up in higher
dimensions, but as we shall show, much remains to be
understood even in 1D. We stress that it is the presence
of the intrinsic length scale in our problem ( which can-
not occur in a semi-linear problem unless it becomes
completely linear), that endows it with its unique fea-
tures. When no characteristic length is involved, the
typical blow-up becomes self-similar. Instead, in our
case we obtain stationary compact structures which,
for reasons to be clarified shortly, will be referred to
as dissipative compactons.

On the line, the evolution is quite simple and can be
characterized by a complete localization of the explod-
ing pattern. In higher dimensions, the study of which
most of our efforts are devoted to, a larger topological
variety of pattern distribution becomes feasible. Nev-
ertheless, a great measure of simplicity underlies the
dynamics in higher dimensions as well, with axisym-
metric patterns in the plane and spherically symmet-
ric patterns in 3D being the most stable states, always
emerging from an arbitrary initial datum. Even when
the initial datum is specified on an axisymmetric annu-
lus, though the evolving pattern seems to preserve this
symmetry for a long time, suddenly, when the pattern
seems to fully converge upon its asymptotic shape, a
sudden collapse of the annulus occurs and the ultimate
pattern assumes the simplest axisymmetric form.

2. Dissipative compactons on the line

We start by considering the exploding patterns of

u,=(u2)m+u2, x € (—00,00). (2)

The solution that serves as an attractor is found via a
separation of variables u = ¢(#) Z(x). For ¢(1) we
have ¢(t) = 1/(t. —t) while the spatial part is found
among the solutions of

(ZHu+2?-Z=0. (3)
Among the solutions of Eq. (3), the one found to be

relevant to our efforts is

cos’(x/4), |x| < 2w, (4)

"3t oD

and vanishes elsewhere. Thus, the intrinsic length scale
in our problem is 47 (note that the coefficient, 1, of

the source term has dimensions of 1/ LY. Notably, our
solution satisfies Eq. (2) in the classical sense. For a
partial motivation to the very basic question of why
this specific solution should be of any relevance to the
problem at hand, we refer to a recent work [4], where
a quasi-linear dispersive equation,

ur+ () + (W) =0, x€(—00,00), (5)

was found to support solitons with a compact support,
the compactons,

u= 4?Acos2[4l(x — AN ],
vanishing elsewhere. Unlike a conventional soliton,
due to the existence of an intrinsic characteristic in
Eq. (5), the width of the compacton (6) is fixed and
independent of the amplitude. The compactness is the
result of the degeneracy of the third operator at u = 0.
In a travelling frame, the ordinary differential equation
that describes these compactons is identical to Eq. (4);
it was this observation that hinted to the special role
that solution (4) may play, and also motivated us to
refer to these solutions as dissipative compactons.

The possibility to sustain compact pulse(s) for a
finite time (determined by the time of explosion) is
consistent with the following.

(i) The flux ~ —(u?) vanishes on the front where
u~ x%

(ii) For nonlinear diffusion on a line, if the initial
datum is under a parabola, it takes a finite time be-
fore the front can move [5]. This effect, known as the
waiting time, is caused by the degeneracy of the ther-
mal conductivity at u =0. A gradient build-up takes
a finite time, and only upon the crossing of a cer-
tain threshold, the motion of the interface begins. In a
cold background, this degeneracy also causes the ther-
mal waves to propagate with a finite speed. Nonlinear
diffusion also has an important impact on reaction-
diffusion processes, cf. Refs. [6-8]. With the addition
of a nonlinear source, the unbounded growth attracts
the “mass” into the center of growth. This counter-
acts the natural diffusion, and thus further enhances
the delay effect on the front.

‘We now turn to considering the attraction basin(s)
of Eq. (2). To this end, it is useful to turn to Figs. 1-4,
where several different evolution scenarios are consid-
ered. In Fig. 1 the support of the initial datum is fully

lx — At| < 2, (6)
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Fig. 1. Narrow initial datum. Observe how with the progress of
time the evolving pulse approaches the dissipative compacton.
Note that in this and all other figures the domain is scaled by
a factor 477, For comparison, here and elsewhere, the displayed
amplitudes are normalized to one. Note the immense disparity of
scales between the various puises.

contained within the fundamental interval. The conse-
quent evolution is normalized at the peak and clearly
shows a convergence to the separable solution (4).
The explosion time is then numerically computed to
be t. = 3.65. Since Eq. (2) is invariant under

u— Au, t—t/A, (7

an initial increase in amplitude by a factor of A short-
ens the explosion time by the same factor. This pro-
vides the explosion times for all stretchings (or com-
pressings) of a given initial distribution. The scaling
property is also extensively used in all our numerical
studies; it enables us to renormalize the amplitudes, so
that the numerically challenging approach to the blow-
up manifests itself through a compression in time.

In Fig. 2 the initial distribution is wider than the
fundamental width (it is actually twice the fundamen-
tal width). The display of the resulting evolution, as
in Fig. 1, is always normalized to one. One observes
that the evolving pattern approaches and engulfs the
dissipative compacton from the outside. The evolving
pattern pulse does not expand much beyond its initial
span. Its growth is localized within the fundamental
interval, and stays so until the moment of explosion.
In normalized units the tail becomes negligible, as
the moment of explosion is approached. The pattern
becomes indistinguishable from the dissipative com-
pacton quite late in the evolution. By then it has ac-
quired quite a large, and sometimes very large ampli-
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Fig. 2. Evolution of a wide initial square as it converges from the
outside upon the dissipative compacton.
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Fig. 3. Emergence of two dissipative compactons out of a sym-
metric initial datum.

tude; see, for instance, Fig. 2. Depending on the pro-
cess at hand, this may or may not be an observable
phenomenon.

We have seen that when the initial datum is given on
a single interval, things are quite simple. If, however,
the initial datum consists of a number of disjointed
or inhomogeneous patches, things may become far
more involved. Let us follow Fig. 3, where the same
overall support (which is identical to the support in
Fig. 2) is made of two disjointed patches. The sepa-
ration between their centers is larger than the funda-
mental length, and hence two modes emerge.

For asymmetric initializations, one observes a sort
of thermal cannibalization; bigger pulses prey on the
smaller ones; cf. Fig. 4. In actuality, the small pulse
grows at a slower rate, but in units normalized by the
quick growth its growth seems suppressed. Even more
puzzling is the evolution shown in Fig. 5; the inhomo-
geneous distribution partially shifts the support of the
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Fig. 4. Asymmetric initial data. Note the effect of cannibalization.
The larger pulse appears to prey on the smaller one. In actuality
the smaller pulse grows as well. However, in units normalized by
the largest peak this growth appears to be suppressed.
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Fig. 5. A shift in the location of the center of explosion due to
an uneven initial distribution. This figure exemplifies the difficulty
to locate the center of explosion; though ultimately only one
compacton emerges, its support is shifted with respect to the
original support.

emerging compacton outside of the initial support.

We thus come to an open problem: Given an initial
datum, how are the center(s) of explosion selected?

This problem is far more difficult than it may seem.
One hopes that an analogy with the purely diffusive
case will do. We thus consider the conservation laws
for Eq. (2). Multiplying it by f(x) and integrating
by parts we obtain

/f(x)u(x, t) dx = const,
0

provided that

')+ f(x) =0 (8)

is satisfied. In the purely dissipative case Eq. (8) now
implies /" = 0 = f = mp + myx, where mg rep-
resents conservation of mass. The conservation of its
first moment m; is then used to locate the center of the
self-similar solution in the center of the mass of the
initial distribution. In our case f;(x) = cos(x) and
f2(x) =sin(x). Since f| and f, are non-monotonical
functions, the conservation of f cos(x)u(x,t)dx and
f sin(x)u(x,t) dx, and their periodic extension, do
not seem to be of much help in determining the ex-
plosion center(s). The problem remains: What are the
selection rules for these center(s)?

2.1. The time of explosion

We have seen that an increase in the amplitude
shortens the explosion time by the same factor. We
now consider the impact of widening the support. Let
u(x,0) =1 for 0 < x < L and zero elsewhere. The
corresponding explosion time was evaluated numeri-
cally and is drawn in Fig. 6 in L/47 units. Two effects
are seen: For L < 44 the shorter the initial pulse is,
the longer it takes it to explode (the spread-out takes
time). On the other hand, once L/4s > 1, the explo-
sion time becomes practically independent of the ini-
tial width.

One can easily derive an estimate of the explosion
time. If M(t) = max, u(x,t), then

M < M? andthust, > 1/M(0). (9)

This bound is independent of the choice of the initial
datum and is thus a lower bound on the explosion. How
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Fig. 6. Explosion time for a square pulse as a function of its
width. Note that parabolic and triangular pulses need a larger time
to explode.
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sharp is this estimate? Comparing it with the explosion
time of the square pulses we see that it fairly well rep-
resents square pulses wider than 44r. Of course, if ini-
tially # = 1 on the whole line, then ¢, = 1 and spatially
the solution remains homogeneous. If, however, the
homogeneous distribution has a finite span it will, ulti-
mately, converge towards the special distributed shape.
Notably, if ab initio we assume u(x,0) = cos®(x/4),
then the explosion time is ¢, = 4/3, which is not only
larger than for the square pulse, but is also the largest
among the other initial convex shapes having the same
initial maximal amplitude and span. For instance, a tri-
angular (or parabolic) pulse with the same initial am-
plitude and support explodes quicker than the asymp-
totic form (see Fig. 6). This means that throughout
the reorganization towards the asymptotic stage, the
growth of the pulse is quicker than in its asymptotic
form. Note that since among all initial distributions,
the homogeneous start-up appears to be first to ex-
plode, one can consider this initialization to be the
most unstable one.

A sharper estimate on the explosion time of a par-
ticular initialization is obtained exploiting a maximum
principle. Using sub and super solutions u and & (with
respective explosion times ¢, and 7.) such that

u(x,0) < u(x,0) < a(x,0), (10)
both the solution and the explosion time of a given
initial pulse must satisfy

u(x,t) Sulx,t) <ilx,t),

o<t <L, (11)

To prove that Eq. (10) implies Eq. (11), we assume
that u(x, t) and v(x,1) are both solutions of Eq. (2)
with up(x) = u(x,0) > 0, vp(x) = v(x,0) 2 0 and
ug(x) — vo(x) = 0. Denoting by w the difference,
w(x,t) :=u(x,t) —v(x,t), we have

we=we(u+v)+2we(u+v),
+wl(u+0v)+ (u+v)]. (12)

Denoting y(¢) = min, w(x,t), and utilizing the fact
that a solution of Eq. (2) remains non-negative for
non-negative initial data, Eq. (12) yields

y = a(t)y, a(t) =[(u+ )+ (u +U)]|x(r),r)»

y(0) = 0.

Hence,

!
d .
a[exp (— /a(s) ds)y(t)] =0,

which implies (by the smoothness of the solution),
that V¢, y(t) 2 0, and the proof is complete.

The quality of these estimates depends to a large ex-
tent on how closely the sub and super solutions bound
a given datum. For that purpose we can either use the
numerically established data for the explosion times of
square pulses (see Fig. 6) and/or the explosion time
of Acos®(x/4), which is t =4/3A.

2.2. Other values of m

The same space-time separability emerges for other
m’s. The emerging shape is obtained via the solution
of (V™) ,x+ V™ =V with a vanishing flux at the edge,
and takes the form
V= acosz/("'_”(,Bx).

In particular,

m=3, V=+/3/2cos(x/3),
—3m/2 < x € 3m/2,

m=4, V=(8/5)"3cos*?(3x/8),
—47w/3 < x < 47/3,

and vanishes elsewhere. Note that as m increases, the
solution narrows, and for m > 3, they become weak
solutions.

3. Thermal explosion in higher dimensions

We consider mainly the planar case,

e = (1) xx + (u?)yy + 0,
u(x,y,t =0)=F(x,y), (13)

and quote the results for the spherical case.

As in the one-dimensional case, the patterns that
emerge asymptotically always have a space-time sep-
arable form, and blow up in a finite time (see Figs. 7-
9).

The ultimate spatial shape of each of the patches
always appears to be the same axisymmetric pattern
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Fig. 7. Emergence of axisymmetric dissipative compactons out of Fig. 8. A change of the initial distribution may affect the number
an initial datum specified in a narrow strip. of emerging dissipative compactons and their location.
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Fig. 9. Thermal evolution for an initial distribution of a square
shell.

regardless of the initial distribution. As in 1D, to find
this radial compacton, we turn to solve Eq. (13) viaa
separation of variables, u = ¢(t) R(r). For ¢(t) we
have ¢(t) = 1/(t. — t) while the radial part is found
among the solutions of

(Rz)rr+%(R2),+R2—R=O. (14)

We were not able to solve this equation analytically
and had to do it numerically. The diameter of this radial
dissipative compacton was numerically estimated to
be ~ 14.1, which is larger than the span of the 1D
compacton, 4.

The location and the number of emerging patches
depend on the inhomogeneity of the initial distribu-
tion, the characteristic radius of each initial patch, and
its distance from its neighbors, see Figs. 7-9 for self-
explanatory examples. Similarly to 1D, the conserva-
tion laws for Eq. (13) are found via

Af(x,y) + f(x,y) =0. (15)

As before, the resulting conservation laws do not seem
to pin the location of the center(s) of the explosion.
Most of our one-dimensional computations can be
straightforwardly repeated in the multi-dimensional
setup. Eq. (13) is also invariant under Eq. (7), with
similar consequences. Analogously to Eq. (9),

1
max, , #(x,y,t=0)’

L 2

is a lower bound on the explosion time, independent
of the choice of the initial datum.

Following the 1D arguments (see Eq. (11)), a
sharper estimate of the explosion time is obtained via
a maximum principle. If initially

u(x,y,0) <ulx,y0) <ia(x,y0), (16)

then both the solution and the explosion time satisfy

w(x,y, 1) <u(x,y.t) <a(x,yt)
fo <t <L (17)

The most remarkable effect, which cannot exist on
the line. is the effect of thermal collapse. This unique
phenomenon is demonstrated in Figs. 10 and 11 for
two and three space dimensions. Initially the datum
is specified on an axisymmetric annular strip. At the
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Fig. 10. Collapse of axisymmetric annulus in 2D. Note that in (c)
we zoomed in on the domain.
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Fig. 11. Evolution and collapse of (a) an axisymmetric annulus
(compare with Fig. 10), and (b) a spherical shell (3D). Note
that the collapse is almost immediate.

first stage of evolution, the pulse seems to evolve to-
wards the universal shape around the center of the an-
nular strip, and while doing so, it acquires a sizable
amplitude. When this process seems to be almost ac-
complished, it suddenly starts to collapse very quickly
towards the center, where it ultimately explodes. At
every stage of the evolution, even a slight perturba-
tion of the front from its axisymmetric state (which
may be caused by, say, truncation errors, or due to
a Cartesian representation of the axisymmetric data)
can destroy the front. Indeed, such a perturbation may
bring the collapse process to a halt and instead of a
collapse, local patch(es) of explosion develop. Con-
sequently, thermal collapse may be considered to be
an inherently unstable process.
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4. The 2D Dirichlet problem

We have seen that the intrinsic length built into
Eq. (1) is responsible for the emergence of dissipa-
tive compactons. Imposing boundaries with homoge-
neous boundary conditions introduces a second, ex-
trinsic length scale into the problem. The ratio between
these two scales to a very great extent determines the
evolutionary outcome in the present problem.

In Ref. [3], the authors demonstrate that the first
eigenvalue, A;, of the associated linear problem,

AWj+/\jo=0, j=1,2,...,

determines whether there is a blow-up (A; < 1), oran
algebraic decay (A; > 1), without saying much more
about the forming pattern. We shall demonstrate that
the decay mode assumes a space-time separable form.
In larger domains, characterized by A; < 1, though
there is always a blow-up, the plot thickens -~ for now
the intrinsic length enters into the play. On the line, the
characterization is simple: If the size of the domain,
L, is m < L < 47, then we observe the emergence of
a space-time separable blow-up within the restraints
of a homogeneous Dirichlet problem. The spatial dis-
tribution is found by solving

(VM + V"=V =0, V' (0)=V(L/2)=0. (18)

It is also easy to see that Eq. (18) implies

vy
L=2/ dz —,
4
Vo = V(0). (19)

A numerical computation of the integral (19) is
shown in Fig. 12. Clearly, the only feasible values of
L are those between 7 < L < 44r. Below 7, the so-
Iution does not blow up; instead, a decay is observed
(for decaying solutions the sign of the last term in
Eq. (18) changes). When V, = 4/3 the integral (19)
is elementary, and we obtain a solution identical with
Eq. (4). At this limiting value of V;, the flux on the
boundaries vanishes, and hence, in this case, one can
remove the boundaries. Thus, effectively, this solution
is a dissipative compacton. When L > 4, a domain
filling Dirichlet solution is no longer possible. A
self-localized solution confined to 47 emerges, pretty

4/3
V(x=0)

Fig. 12. The span, L, of the Dirichlet solution as a function of the
peak value at the center. Note that L is confined to 7 < L < 4.
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Fig. 13. The universal spatial profiles of the homogeneous Dirichlet
problem. The widest pulse represents the self-localized pattern
(which develops if ! = L/4s > 1) that is detached from the
boundaries. It is followed by a Dirichlet blow-up (7 < L < 47)
and then by a decaying pattern (L < 7). In the last two cases the
profiles span the whole domain.

much ignoring the boundary conditions. This self-
localized solution has a space-time separable structure
and is thus recognized as a dissipative compacton.
When L > 87, under favorable initial conditions two
or more compactons may form.

Fig. 13 displays three examples of solutions of the
Dirichlet problem for a symmetric initial datum, cen-
tered around 0. The inner solution describes the spatial
distribution of the decaying solution of the Dirichlet
problem. The second profile corresponds to domain
filling, an exploding solution of the Dirichlet problem.
In both cases, a finite flux is deposited at the bound-
aries. The widest profile represents a self-localized
pattern. If, however, like in Fig. 5, the initial datum
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Fig. 14. Example of 2D blow-up with Dirichlet boundary conditions for different sizes of the domain. The initial datum is assumed to be
1 inside the domain and O on the boundary. (a) Fully localized pattern, (b) semi-localized pattern, (c) a genuine Dirichlet blow-up. Here

the pattern fills the domain.

has an asymmetric distribution, the emerging pattern
may no longer be symmetrically located, and its emer-
gence occurs at exceedingly high amplitudes.

Before turning to higher dimensions, we note that
the space-time separable solutions since some time
ago are known to be attractors [9] for the purely dif-
fusive, initial-boundary value problem with homoge-
neous Dirichlet boundary conditions.

In higher dimensions, the interaction between the

two scales becomes even more interesting, for now
new possibilities arise. For one, we may obtain a new
mode of semi-localization. In this mode, in one direc-
tion we have a bona fide Dirichlet problem, while in
the other, there is a self-localization. This is a hybrid
mode which occurs in long and narrow strips. It is also
noteworthy that on the line there is unique topological
order with respect to the length of the domain (local-
ization on long intervals, blow-up with heat loss on
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the boundaries for intermediate lengths, followed by
a decay when L < 7).

In following the emerging patterns in Fig. 14, it
helps to note that for rectangular domains (L being
the length and d the width), the critical dimensions
(A =1) for the onset of decay are given via

w 2 ks 2
(2) -(3) - =

which makes it clear that in thin domains with d < =,
only a decaying mode can be observed. Elongated do-
mains will have a critical width slightly above the min-
imal width of 7. Similarly, since for a square the crit-
ical length is (2#)!/2, any planar domain into which
such a square can be inserted will undergo thermal
blow-up. If also a circle of diameter 14.1 can be fitted
into this domain, localization of the blow-up will be
observed as well.

Fig. 14a shows that a fully localized, axisymmetric
pattern is seen to emerge. If we now keep the length
fixed but reduce the width, a semi-localized pattern
emerges. As we keep reducing the width, the shape of
the patterns becomes more and more elongated, but
insofar as blow-up occurs, the pattern remains semi-
localized (see Fig. 14b). At the critical widthat which
the pattern fills the domain, the resulting Dirichlet
problem describes a decay (not shown here). In other
words, in this geometrical setup, we bypass the Dirich-
let blow-up.

If, on the other hand, the initial rectangle has the
same width but a shorter length, say, 18, as we de-
crease the width we observe, as before, localized
states followed by semi-localized ones. We can now
pinpoint the difference between these two cases; for
the same width for which the previous case provided
a semi-localized pattern, in the present case there is
a Dirichlet blow-up (see Fig. 14c). Note that due to
numerical roundoff, the actual width in case (c) is
closer to 3.5 than to 3, the value given in Fig. 14c.
With a further decrease in width, Dirichlet decay (not
shown) emerges. Thus in 2D, three modes of blow-
up are possible, all having in common space-time

separable attractors. One remark regarding the numer-
ics is in order: Though for the first example in Fig. 14
we did not find a Dirichlet blow-up, it is still possi-
ble that close to the critical width there exists a “thin
boundary layer” of widths where such a phenomenon
may occur. This calls for a far more detailed study
than intended within the scope of the present Letter.

As a final remark in this section we note that our
conclusions are based on numerical experiments in
simple planar domains. Thus, in higher dimensions a
greater variety of partial localizations may be expected
to emerge. For instance, while in the plane we did not
observe decaying semi-localized states, they should
not be precluded in higher dimensions. Similarly, in
more complex geometries a larger variety of patterns
may emerge.
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