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Abstract— This paper focuses on the characterization of
delay effects on the asymptotic stability of some continuous-
time delay systems encountered in modeling the post-
transplantation dynamics of the immune response to chronic
myelogenous leukemia. More explicitly, we shall discuss the
stability of the crossing boundaries of the corresponding
linearized models in the delay-parameter space. Weak, and
strong cell interactions are discussed, and analytic character-
izations are proposed. An illustrative example completes the
presentation.
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I. INTRODUCTION

The stability analysis of population dynamics and of
physiology models (specially, dynamic diseases) in pres-
ence of time-delays is a subject of recurring interest (see,
for instance, [14], [15], [17], and the references therein),
since the delays are inherent in the model representation
(maturity, gestation are never instantaneous process), and
since their presence may induce complex behaviors (insta-
bility, oscillations, chaotic behaviors).

A. Nonlinear delay model

In the sequel, we shall consider the following nonlin-
ear model proposed by [7], [13] to describe the post-
transplantation dynamics of the immune response to
chronic myelogenous leukemia:





dT (t)
dt

= −dT T (t)− kC(t)T (t)

+p2kC(t− σ)T (t− σ)
+2Np1q1kC(t− ρ−Nτ)T (t− ρ−Nτ)
+p1q2kC(t− ρ− υ)T (t− ρ− υ)

dC(t)
dt

= rC(t)
(

1− C(t)
K

)

−p̃1kC(t− ρ)T (t− ρ),

(1)
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where the variable T refers to the anti-cancer cell pop-
ulation, and C refers to the cancer cell population, both
functions of time t. All the other variables are constant and
non-negative. The constants pi, qi, and p̃i are probabilities
between 0 and 1. Furthermore, p1 + p2 = 1, and 0 ≤
q1 + q2 ≤ 1.

The various stages of the evolution of cancer cells and
of T cells are demonstrated in Figures 1 and 2. Cancer
cells have a logistic growth rate and a decrease in their
population as a result of the interaction with T cells. T
cells can interact with cancer cells, in which case they
either decide to ignore them and return to the general T cell
population after a delay σ or react with cancer cells and
eliminate them. In this case they either die, or return to the
general cell population. A return to the general population
can occur with or without a proliferation. In addition, there
is a natural death rate of T cells that is included in the
model. The natural death rate of cancer cells is already
taken into account in the logistic growth term.
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Fig. 1. Evolution of anti-cancer T cells

The original model tracks the time evolution of six
cell populations (cancer cells, anti-donor T cells, general
patient blood cells, anti-host T cells, anti-cancer T cells,
and general donor blood cells). The interaction between the
anti-cancer T cells from the donor and the cancer cells in
the host is the most important, since these T cells primarily
eliminate cancer cells in the host. Hence, to simplify
stability analysis, we consider the reduced system (1). In
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Fig. 2. Evolution of cancer C cells

addition, a time-delay model offers a unique advantage in
immune system modeling, because delays provide means
for dealing with programmed T cell responses. When
stimulated by a target, T cells undergo a program of
division even if the original stimulation is removed [4].
Thus, the overall immune response at a given time is not
dependent upon the current level of the stimulus, but on
the level at some time in the past [18].

B. Delay description

In the system (1) above, there are four distinct delays,
namely σ, ρ + Nτ , ρ + υ, and ρ. The relevant values are
approximately

1) σ = 0.0007 days = 1 min
2) ρ = 0.0035 days = 5 min
3) τ = 1 day
4) υ = 1 day
5) N is between 1 and 8 and probably close to 3.

These constants respectively represent the time for unreac-
tive interactions between T cells and cancer cells (σ), the
time for reactive interactions (ρ), the time for one round
of cell division (τ ), the T cell recovery time after killing a
cancer cell (υ), and the average number of T cell divisions
after stimulation (N ).

C. Crossing boundaries

Stability analysis is appropriate for this model, because
a stable solution implies full remission of cancer or a
controlled state, corresponding to a successful bone mar-
row transplant. On the other hand, an unstable solution
implies the eventual relapse of the cancer population,
corresponding to an unsuccessful transplant.

In the sequel, we are interested in analyzing the effects
induced by the delays presence on the (asymptotic) sta-
bility of the corresponding linearized model, and more
explicitly to derive the stability/instability mechanisms in
the delay-parameter space. More precisely, we are inter-
ested in analyzing the effect induced by the large delays υ,
and Nτ on the stability boundaries1, and in characterizing

1For example, it is important to note that the second large delay has a
relatively large range, τ ≤ Nτ ≤ 8τ .

the interactions between large and small delays. In other
words, we are interested in analyzing the stability crossing
boundaries in the delay-parameter space defined by the
large delays Nτ , and υ.

It is well known from the literature that such a stability
characterization problem is still open in the general linear
case (see, for instance, [8]), and that it is NP-hard from
the computational point of view [21]. However, the partic-
ular structure of the system, together with the particular
way in which the delays appear in the differential equa-
tions, allow the characterization of the stability crossing
boundaries in the delay-parameter space.

As presented above (nonlinear model), the large delays
Nτ , and υ describe the T/C interactions. Without any
loss of generality, we can define two types of interactions:
weak, and strong T/C interactions. The weak interaction
simply corresponds to the situation when the large delays
Nτ , and υ have a very low impact on the stability
behavior, and the stability property will be very sensitive
to the parameter variations of the small delay values. By
complementarity, the strong interaction will describe the
situation in which the stability of the model is sensitive
also to the large delays Nτ , and υ. Connections with
delay-independent/delay-dependent (stability) type proper-
ties will be also presented. Based on these simple remarks,
it seems that strong T/C interactions will be more difficult
to characterize, and present more interest. Finally, it is
important to point out that an increased (average) number
of T cell division after stimulation will significatively
affect the behavior of the crossing boundaries, and the T/C
interactions become more significant. In order to complete
the presentation, a measure for weak T/C interactions
will be derived. Such a measure will be computationally
tractable, and will allow defining properly the cases when
a T/C interaction has a weak or strong character.

As seen below, we can rewrite the linearized model in
some nice, and appealing way, that allows using a simple
geometrical idea (as suggested by some of the authors of
this note in [10] for some class of quasipolynomials in-
cluding two independent delays) for defining the frequency
crossing set (all frequencies corresponding to all the points
in the stability crossing curves). However, the approach
in [10] cannot be applied directly to the case study under
consideration, and the definition of the crossing set here is
more complicated.

Next, this crossing set will allow the characterization of
the stability crossing curves in the delay-parameter space
defined by the large delays υ, and Nτ , that is a series
of smooth curves excepting some degenerate cases to be
considered. The classification of the boundaries will be
done in the light of the approach considered by [10] (see
Section III). The novelty with respect to [10] is the use of
more general analytic functions, and the particular way to
treat the small delays σ, and ρ. Furthermore, the approach
considered here will allow the analytic characterization of
weak/strong T/C interactions. As mentioned above, we will



give the explicit computation of some quantitative measure
that characterizes weak T/C interaction.

The presentation will be as simple as possible, focusing
more on the main mathematical ideas (and less on complete
proofs), and the related interpretations of the results in
terms of post-transplantation dynamics of the immune
response to chronic myelogenous leukemia.

The remaining paper is organized as follows: Section
II is devoted to some preliminary results, and to various
interpretations needed in the next paragraphs. The main
results are presented in Section III, and some illustrative
example is discussed in Section IV. Finally, some conclud-
ing remarks end the paper. The notations are standard.

II. PRELIMINARY RESULTS, AND INTERPRETATIONS

We start by deriving the linearized model of the system
(1), and next we discuss its stability in the case free of
delays. The particular structure of the linearized model
leads to a nice form of the corresponding characteristic
equation in the presence of delays. Its structure will allow
defining some appropriate auxiliary system including small
delays needed in the next section to complete the analysis.

For convenience, let

b1 = dT , b5 = p1q2k, τ̃ = ρ + Nτ,
b2 = k, c1 = r, υ̃ = ρ + υ,
b3 = p2k, c2 = r/K,
b4 = 2Np1q1k, c3 = p̃1k,

(2)

and rewrite (1) as




dT (t)
dt = −b1T (t)− b2C(t)T (t)

+b3C(t− σ)T (t− σ)
+b4C(t− τ̃)T (t− τ̃)
+b5C(t− υ̃)T (t− υ̃),

dC(t)
dt = c1C(t)− c2C(t)2 − c3C(t− ρ)T (t− ρ).

(3)

For future reference, we note that all parameters in (2) are
positive. Let b = −b2 +b3 +b4 +b5. Then the fixed points,
(T0, C0), of (3) are solutions to

{
0 = −b1T0 + bC0T0 = (−b1 + bC0)T0,

0 = (c1 − c2C0 − c3T0)C0,

i.e., the three fixed points are (T0, C0) = (0, 0),
(
0, c1

c2

)
,

and
(

c1−c2b1/b
c3

, b1
b

)
.

The fixed point (0, 0) represents the ideal outcome,
where the cancer population is entirely eliminated and the
cancer-reactive T cells become unnecessary and disappear.
Unfortunately, we will later show that this fixed point is
a saddle regardless of the values of the parameters, which
means that this fixed point is unattainable.

The fixed point
(
0, c1

c2

)
represents the case where cancer

expands to full capacity and the cancer-reactive T cells
die off completely. This is the most undesirable state, and

we will later show that the fixed point is unstable for
biologically reasonable parameter choices.

The final fixed point,
(

c1−c2b1/b
c3

, b1
b

)
, represents the

scenario where the cancer and T cell populations coexist at
relatively low populations. This means that cancer is not
completely eliminated, but is controlled by the immune
response. For biologically reasonable parameters, we will
show that this fixed point can be stable for appropriate
values of the delays.

To study the stability of (3), we linearize it around a
fixed point (T0, C0) and obtain





dT (t)
dt = −b̃1T (t)− b2T0C(t)

+b3C0T (t− σ) + b3T0C(t− σ)
+b4C0T (t− τ̃) + b4T0C(t− τ̃)
+b5C0T (t− υ̃) + b5T0C(t− υ̃),

dC(t)
dt = c̃1C(t)− c3C0T (t− ρ)− c3T0C(t− ρ),

(4)

where b̃1 = b1 + b2C0 and c̃1 = c1 − 2c2C0.

A. Stability analysis without delays

The first step in studying the stability of the fixed points
of (4) is to study the stability when all delays are set to
zero, i.e.,{

dT (t)
dt = (−b1 + bC0)T (t) + bT0C(t),

dC(t)
dt = −c3C0T (t) + (c̃1 − c3T0)C(t).

(5)

The characteristic equation of (5) is

det

[
−b1 + bC0 − s bT0

−c3C0 c̃1 − c3T0 − s

]
,

which simplifies to

s2+(b1−c̃1−bC0+c3T0)s+(−b1c̃1+b1c3T0+bc̃1C0) = 0.

In conclusion, we have the following fixed points:
1) Fixed point I (FP–I): (T0, C0) = (0, 0).

In this case, the characteristic equation is

s2 + (b1 − c̃1)s− b1c̃1 = (s + b1)(s− c̃1),

which means that the stability of FP–I is a saddle,
since b1c̃1 = b1c1 is always a positive quantity.

2) Fixed point II (FP–II): (T0, C0) = (0, c1/c2).
Here, the characteristic equation is

s2 + (b1 − c̃1 − bc1/c2)s + (−b1c̃1 + bc̃1c1/c2).
(6)

Recall that c̃1 = c1 − 2c2C0 = c1 − 2c1 = −c1, so
(6) simplifies to

s2 + (b1 + c1 − bc1/c2)s + (b1c1 − bc2
1/c2). (7)

The discriminant of (7) is

D =
(

b1 − c1 − bc1

c2

)2

. (8)

Hence, the stability of FP–II depends on the parame-
ters.



3) Fixed point III (FP–III): (T0, C0) =
(

c1−c2b1/b
c3

, b1
b

)
.

In this case the characteristic equation is

s2 +
b1c2

b
s + b1

(
c1 − b1c2

b

)
. (9)

The discriminant of (9) is

D =
(

b1c2

b

)2

− 4b1

(
c1 − b1c2

b

)
. (10)

Similar to FP–II, the stability of FP–III depends on
the parameters.

Notice that the parameters considered in [7] define FP–
II and FP–III as an unstable, and respectively stable fixed
points. Further discussions are included in Section IV.

B. Linearized model structure in presence of delays

The characteristic equation of (4) is
det(sI −A(e−s)) = 0, where

A11(e−s) = b̃1 − b3C0e
−σs − b4C0e

−τ̃s − b5C0e
−υ̃s,

A12(e−s) = −b2T0 + b3T0e
−σs + b4T0e

−τ̃s + b5T0e
−υ̃s,

A21(e−s) = −c3C0e
−ρs,

A22(e−s) = c̃1 − c3T0e
−ρs.

It is important to note that the characteristic equation (4)
has a particular structure since the corresponding “entry”
matrices for the delays ρ, τ̃ , υ̃, and σ are of rank
one, which simplifies the characteristic equation. More
precisely, the characteristic equation writes as follows:

p0(s) + p1(s)e−ρs + p2(s)e−σs + p3(s)e−τ̃s

+p4(s)e−υ̃s = 0,

where

p0(s) = −(b̃1 + s)(c̃1 − s),
p1(s) = c3T0(b1 + s),
p2(s) = b3C0(c̃1 − s),
p3(s) = b4C0(c̃1 − s),
p4(s) = b5C0(c̃1 − s).

Since p0(s) has no purely imaginary roots, we write

a(s) = 1 + a1(s)e−ρs + a2(s)e−σs + a3(s)e−τ̃s

+ a4(s)e−υ̃s, (11)

where ak(s) = pk(s)/p0(s).

III. MAIN RESULTS

One way of visualizing the crossing surface of (4) is
to fix two delays and determine the crossing curves for
the other two delays. Based on the particular form of the
characteristic equation and of the delays scales, it seems
reasonable to consider the (natural) delays partition in
small, and large delays.

Introduce now an auxiliary system associated to small
delays, and given by the following characteristic equation:

aρ,σ(s) = 1 + a1(s)e−ρs + a2(s)e−σs = 0. (12)

Using the geometric approach proposed by [10], we can
easily characterize the stability crossing curves of aρ,σ(s)
given by (12) in the delay-parameter space defined by the
small delays ρ, and σ. Based on such a characterization,
and using a standard continuity argument (see, for instance,
[6]) of the roots of the characteristic equation (11) with
respect to the delay parameters, we make the following
assumption:

Assumption 1: Let Iρ ⊂ R+, and Iσ ⊂ R+ be some
real intervals such that there exists some δ > 0, such that
aρ,σ(s) 6= 0 for all the pairs (σ, ρ) ∈ Iσ × Iρ, and for all
s ∈ Vδ , where Vδ is defined by:

Vδ = {s ∈ C : −δ < Re(s) < δ} . (13)
The assumption above can be seen as a regularity

condition for the original linearized model, and it simply
says that there exists some delay intervals such that aρ,σ is
invertible in some neighborhood Vδ of the imaginary axis
for all the pairs (σ, ρ) ∈ Iσ × Iρ.

It is important to note that the assumption above is not
restrictive. Indeed, assume now that there exists at least one
root on the imaginary axis for the auxiliary characteristic
equation aρ,σ(s) = 0. Then the number of roots on the
imaginary axis of aρ,σ(s) = 0 is always finite (see the
arguments in [10]).

Next, if jωc 6= 0 is one of such roots of the auxiliary
characteristic equation aρ,σ(jωc) = 0, than it is also a
root of (11) if and only if | p3(jωc) |=| p4(jωc). If not,
the regularity condition aσ,ρ(s) 6= 0 is still valid on some
interval on the imaginary axis Iω including jωc.

A. Identification of the crossing points, and crossing set
characterization

We have the following result:
Proposition 2: Assume that the auxiliary system given

by (12) satisfies the Assumption 1. Define now aτ̃ ,υ̃ by:

aτ̃ ,υ̃(s) = 1 + aτ̃ (s)e−sτ̃ + aυ̃(s)e−sυ̃, (14)

where:

aτ̃ (s) =
p3(s)

aσ,ρ(s)
, aυ̃(s) =

p4(s)
aσ,ρ(s)

,

for all (σ, ρ) ∈ Iσ×Iρ. Then for any (σ, ρ) ∈ Iσ×Iρ, the
characteristic equation associated to (11) and aτ̃ ,υ̃(s) have
the same solutions in a neighborhood Vδ of the imaginary
axis, where:

Vδ = {s ∈ C : δ ≥ Re(s) > −δ},
for some δ > 0.
Proof. The proof follows from the continuity argument
with respect to the delay parameters (see, e.g. [6]), and
from the equivalence between the characteristic equations
(14) and (11) if aρ,σ(s) 6= 0 in some vertical strip including
the imaginary axis (Assumption 1). ¤



B. Weak T/C interactions, and delay-independence type
results

As mentioned in the Introduction, we will consider first
the case of weak T/C cell interactions. Without any loss of
generality, a weak T/C interaction simply means a reduced
probability of interactions of anti-cancer and cancer cells.
In other words, the weak T/C interaction describes the
situations when the anti-cancer cells will ”mostly” ”ignore”
the cancer cells. Roughly speaking, such a T/C interaction
will be translated in ”small” values for b4 = 2Np1q1k,
and b5 = p1q2k, which may correspond to the case when
no crossing in the delay-parameter space defined by large
delays exists. In conclusion, a weak T/C interaction may
correspond to some delay-independent type property with
respect to the delay parameters under consideration, and
the last argument will give a way to define a measure for
characterizing the interaction character.

With the notations, and the results above, we have the
following:

Proposition 3 (Delay-independence in large delays):
Assume that the auxiliary system given by the
characteristic equation (12) satisfies the Assumption
1, and that aτ̃ ,υ̃(0) 6= 0, where aτ̃ ,υ̃ is defined by (14).

Then the following statements are equivalent:
(a) If the auxiliary system (12) is stable for some pair

(ρ, σ) ∈ Iρ × Iσ, and if the system free of delays
(σ = ρ = µ = υ ≡ 0) given by (5) is stable, then the
system (3) is stable for all pairs (τ̃ , υ̃) ∈ R+×R+, and
there does not exist any root crossing the imaginary
axis when the delays τ̃ , and υ̃ are increased in R+.

(b) The following frequency-sweeping test holds:

| C0 |
√

c̃2
1 + ω2

| aτ̃ ,υ̃(jω) | <
1

(2Nq1 + q2)p1k
, ∀ω > 0. (15)

The same equivalence holds if the stability property is
replaced by the instability of the system with a prescribed
number of unstable roots.
Proof. It is easy to see that the condition (15) is equivalent
to the condition aτ̃ ,υ̃(jω) 6= 0, for all ω > 0. Then the
equivalence between conditions (a) and (b) above follows
straightforwardly since aτ̃ ,υ̃ 6= 0 whenever ω = 0 (see, for
instance, the arguments in [9], [19] for delay-independent
stability characterization). ¤

In other words, the result above gives a simple test for
describing the situations when the system (3), stable or
unstable in the case when is delay-free, will remain stable
or respectively unstable for all positive (large) delays τ̃ ,
and υ̃.

Remark 4: The main difference between the result
above, and the standard delay-independent frequency-
sweeping tests (see, e.g. [9]) is given by the fact that, in
our case, we do not impose the delay-independent property
with respect to the whole set of delays, that is: ρ, σ, υ̃, and
τ̃ , but only on some partition of it: delay-independent with

respect to τ̃ , and υ̃. Several remarks about “mixed” delay-
independent/delay-dependent stability results can be found
in [19]. Furthermore, the delay-independent character can
be seen as the existence of at least one unbounded direction
in the corresponding delay-parameter set.

Remark 5 (Weak T/C interaction measure): The
frequency-sweeping test (15) can be used to define a
measure for characterizing the T/C interaction type in the
following sense: the T/C interaction will be called weak
if the probabilities (q1, q2), and the average number of
cell division N verify the condition:

2Nq1 + q2 <
1

p1k
· 1

supω∈R
|C0|

√
c̃2
1+ω2

|aτ̃,υ̃(jω)|

. (16)

The condition (16) gives the corresponding T/C interaction
measure. It becomes clear that the average number N
of cell division plays a central role in defining the T/C
interaction character, since the quantity 2Nq1 + q2 is an
increasing function of N .

C. Strong T/C interactions, and identification of the cross-
ing points

As mentioned in the previous paragraph, the existence
of crossing sets in the delay-parameter space defined by τ̃
and υ̃ is related to the fact that the inequality (15) is not
verified for all ω > 0, or in other words that the parameters
(q1, q2, N) do not satisfy the measure condition (16) for
the T/C weak interaction.

Inspired by the work in [10], the condition that aτ̃ ,υ̃

defined by (14) has at least one root jω0 on the imaginary
axis is reduced geometrically to the condition that the
“lengths” 1, | aυ(jω0) |, and | aµ(jω0) | define a triangle.
Thus, some simple computations lead to the following
criterion for the identification of the crossing points:

Proposition 6: Assume that the auxiliary system given
by the characteristic equation (12) satisfies the Assumption
1. Then each ω ∈ R+ can be a solution of the characteristic
equation associated to Σ for some (τ̃ , υ̃) ∈ R2

+ if and only
if:

1

(2Nq1 + q2)p1k
≤ | C0 |

p
c̃2
1 + ω2

| aτ̃ ,υ̃(jω) | ≤ 1

| 2Nq1 − q2 | p1k
.

(17)
Then, the crossing set Ω will be defined by all ω ∈ R+,

for which the frequency condition (17) holds. In conclu-
sion, the algorithm for identifying the crossing points can
be resumed as follows:

• first, we represent graphically
| C0 |

√
c̃2
1 + ω2

| aτ̃ ,υ̃(jω) |
against ω, and

• next we analyse the intersection of this graphic with
two parallel lines to ω-axis: 1/((2Nq1 + q2)p1k) and
1/(| 2Nq1 − q2 | p1k), respectively.

Let ω ∈ Ω be a crossing point. Then from the triangle



geometry it follows that:

‘̃τ = τ̃u±(ω) =
∠aτ̃ (jω) + (2u− 1)π ± θ1

ω
≥ 0,

u = u±0 , u±0 + 1, u±0 + 2, ..., (18)

υ̃ = υ̃v±(ω) =
∠aυ̃(jω) + (2v − 1)π ∓ θ2

ω
≥ 0,

v = v±0 , v±0 + 1, v±0 + 2, ..., (19)

where θ1, θ2 ∈ [0, π] are the internal angles of the triangle
formed by the lengths 1, | aµ |, and | aυ |, and can be
calculated by the law of cosine as

θ1 = cos−1

(
1 + |aτ̃ (jω)|2 − |aυ̃(jω)|2

2|aτ̃ (jω)|
)

, (20)

θ2 = cos−1

(
1 + |aυ̃(jω)|2 − |aτ̃ (jω)|2

2|aυ̃(jω)|
)

, (21)

and u+
0 , u−0 , v+

0 , v−0 are the smallest possible integers
(may be negative and may depend on ω) such that the
corresponding µu+

0 +, µu−0 −, υv+
0 +, υv−0 − calculated are

nonnegative.
Let T +

ω,u,v and T −ω,u,v be the singletons defined by

T ±ω,u,v = {(τu±
1 (ω), τv±

2 (ω))},
and define

Tω =




⋃

u≥u+
0

v≥v+
0

T +
ω,u,v




⋃



⋃

u≥u−0
v≥v−0

T −ω,u,v


 .

Then Tω is the set of all (µ, υ) such that aτ̃ ,υ̃ has one zero
at s = jω.

Remark 7: It is easy to see that
| C0 |

√
c̃2
1 + ω2

| aτ̃ ,υ̃(jω) | → 0,

when ω → +∞, and in conclusion ∞ 6∈ Ω. In other words,
Ω is bounded.

D. Characterization of the crossing curves
The next step is to characterize the crossing curves

of the system (3), or equivalently all the crossing curves
satisfying aτ̃ ,υ̃(s) = 0 for s = jω, ω ∈ Ω.

Using an argument similar to the one developed by [10]
(type classification of the crossing points), define by Ωk ⊂
Ω some interval of crossing set Ω, and let T k ⊂ T be the
corresponding stability crossing curves for some positive
integer k, we have the following:

Proposition 8: Under the standing assumption (1), the
stability crossing curves T k corresponding to Ωk must be
an intersection of R2

+ with a series of curves belonging to
one of the following categories:

A. A series of closed curves;
B. A series of spiral-like curves with axes oriented either

horizontally, vertically, or diagonally.
C. A series of open ended curves with both ends

approaching ∞.
Remark 9: The classification above is given by the

way the end points of the corresponding intervals Ωk are
derived.

E. Tangent and smoothness

In this section, for a given k, we will discuss the

smoothness of the curves in T k and thus T =
N⋃

k=1

T k. We

will understand a k is given and will refer to T k without
further comments. In addition to the explicit formulas (18)
and (19), we will also use an approach similar to the
one described in Chapter 11 of [8] based on the implicit
function theorem.

For this purpose, we consider τ̃ and υ̃ as implicit
functions of s = jω defined by aτ̃ ,υ̃ = 0. As s moves along
the imaginary axis, (τ̃ , υ̃) = (τ̃u±(ω), υ̃v±(ω)) moves
along T k.

For a given ω ∈ Ωk, let

R0 = Re

(
j

s

∂aτ̃ ,υ̃(s)
∂s

)

s=jω

=
1
ω

Re
(
[a′τ̃ (jω)− τ̃ aτ̃ (jω)] e−jτ̃ω

+[a′υ̃(jω)− υ̃aυ̃(jω)]e−jυ̃ω
)
, (22)

I0 = Im

(
j

s

∂aτ̃ ,υ̃(s)
∂s

)

s=jω

=
1
ω

Im
(
[a′τ̃ (jω)− τ̃ aτ̃ (jω)] e−jτ̃ω

+[a′υ̃(jω)− υ̃aυ̃(jω)]e−jυ̃ω
)
, (23)

and

Rl = −Re

(
1
s

∂aτ̃ ,υ̃(s))
∂τk

)

s=jω

, (24)

Il = −Im

(
1
s

∂aτ̃ ,υ̃(s)
∂τk

)

s=jω

, (25)

for l = 1, 2, and τ1, τ2 correspond to τ̃ , and υ̃, respectively.
Then, since aτ̃ ,υ̃(s) is an analytic function of s, τ̃ and υ̃,
the implicit function theorem indicates that the tangent of
T k can be expressed as

(
dµ
dω
dυ
dω

)
=

(
R1 R2

I1 I2

)−1 (
R0

I0

)

=
1

R1I2 −R2I1

(
R0I2 − I0R2

I0R1 −R0I1

)
,(26)

provided that
R1I2 −R2I1 6= 0. (27)

It follows from a well known result [3] that T k is smooth
everywhere except possibly at the points where either (27)
is not satisfied, or when

dτ1

dω
=

dτ2

dω
= 0. (28)

A careful examination of these cases allows us concluding
that

Proposition 10: Under the standing assumptions includ-
ing (1), the curves in T k are smooth everywhere except
possibly at the degenerate points corresponding to ω in any
one of the following two cases:



Case 1. s = jω is a multiple solution of
qµ,υ(jω, e−jω) = 0.

Case 2. ω is an end point, and d
dω (|g(jω, ρ, σ)|) = 0.

F. Direction of crossing

Next, we will discuss the direction in which the solutions
of the characteristic equation given by aτ̃ ,υ̃(s) = 0 cross
the imaginary axis as (τ̃ , υ̃) deviates from a curve in T k.
We will call the direction of the curve that corresponds
to increasing ω the positive direction. Notice, as the curve
passes through the points corresponding to the end points
of Ωk, the positive direction is reversed. We will also call
the region on the left hand side as we head in the positive
direction of the curve the region on the left. Again, due to
the possible reversion of parametrization, the same region
may be considered on the left with respect to one point
of the curve, and be considered as on the right on another
point of the curve.

For the purpose of discussing the direction of crossing,
we need to consider τ̃ and υ̃ as functions of s = r+jω, i.e.,
functions of two real variables r and ω, and partial deriva-
tive notation needs to be adopted instead. Since the tangent
of T k along the positive direction is (∂τ̃/∂ω, ∂υ̃/∂ω), the
normal to T k pointing to the left hand side of the positive
direction is (−∂υ̃/∂ω, ∂τ̃/∂ω). Also, as a pair of complex
conjugate solutions of aτ̃ ,υ̃ = 0 cross the imaginary axis to
the C+, (τ̃ , υ̃) move along the direction (∂τ̃/∂r, ∂υ̃/∂r).
We can therefore conclude that if the inner product of these
two vectors are positive, i.e.,

[
∂τ̃

∂ω

∂υ̃

∂r
− ∂υ̃

∂ω

∂τ̃

∂r

]

s=jω

> 0, (29)

the region on the left of T k at ω has two more solutions in
C+. On the other hand, if the inequality in (29) is reversed,
then the region on the left of T k has two fewer solutions
on the right hand side of the complex plane. We can very
easily express, parallel to (26), that,

(
∂τ̃
∂r
∂υ̃
∂r

)

s=jω

=
(

R1 R2

I1 I2

)−1 (
I0

−R0

)

=
1

R1I2 −R2I1

(
R0R2 + I0I2

−R0R1 − I0I1

)
, (30)

where Rl and Il, l = 0, 1, 2, are defined in (22) to (25).
This allows us to arrive at the following proposition.

Proposition 11: Let ω ∈ Ωk, but an end point, and
(τ̃ , υ̃) ∈ T k such that jω is a simple solution of aτ̃ ,υ̃(s) =
0, and

aτ̃ ,υ̃(jω′) 6= 0, for any ω′ > 0, ω′ 6= ω. (31)

Then as (τ̃ , υ̃) moves from the region on the right to the
the region on the left of the corresponding curve in T k, a
pair of solutions of aτ̃ ,υ̃(s) = 0 cross the imaginary axis
to the right if

R2I1 −R1I2 > 0. (32)

The crossing is in the opposite direction if the inequality
is reversed.

IV. ILLUSTRATIVE EXAMPLE

In this section, we show how the techniques developed
in Sections 3 and 4 can be used to study the stability in
the delay space of model (1). The analysis is completed
by various discussions on the results derived together with
their interpretations.

A. Stability without delays

For our application in [7], we estimated values of the
parameters to be approximately

dT = 0.2, p1 = 0.5, ρ = 0.0035,
r = 0.2, p2 = 0.5, σ = 0.0007,
k = 1, q1 = 0.5, τ̃ = 2.0035,
N = 2, q2 = 0.5, υ̃ = 1.0035.
K = 200, p̃1 = 0.5,

(33)

Hence, b1, c1, and b are of order 1 or 0.1, while c1/c2 = K,
the carrying capacity of the cancer population, which is
around 200.

Proposition 12: The fixed points of the linearized sys-
tem without delay have the following properties:
(a) The fixed-point FP-I (T0, CO) = (0, 0) is a saddle.
(b) The fixed point FP-II (T0, C0) = (0, c1/c2) is unsta-

ble.
(c) The fixed point FP-III (T0, C0) =

(
c1−c2b1/b

c3
, b1

b

)
is

stable.
Proof. (a) As mentioned in Section II, FP–I is a saddle
independently of the parameters’ choice. (b) Next, for
the considered parameters, simple computations prove that
the discriminant (8) and the middle term of (7) are both
negative, making the fixed point FP-II an unstable spiral.
(c) In this case, for parameters in the vicinity of (33),
the first term of (10) is of order 1/K2 ∼ 10−4 and the
second term is an order 10−1, so the discriminant is of
order −10−1. Thus, the solution at the controlled disease
fixed point is a stable spiral. ¤

In our case, FP–III is of most interest to us because it is
stable and represents the case where the immune response
controls the cancer population. However, since the middle
term of (9) is b1c2/b ∼ 10−4, the approach to the fixed
point is very slow. In fact, the stability of the fixed point
is so low that numerical error may cause the solution to
become unstable. When solving DDEs in Matlab, one way
around this problem is to increase the relative and absolute
tolerances of the MATLAB DDE solver.

B. Stability with delays

As mentioned in the previous section, one way of
visualizing the crossing surface of (4) is to fix two delays
and determine the crossing curves for the other two delays.
This procedure is demonstrated in Figure 3.

In this case, any pairwise combination of ρ, σ, or τ gives
open curves such as the ones shown on the left side of
Figure 3. Any pair containing υ leads to spiral-like curves
such as the ones shown on the right side of Figure 3.



For the choice of parameters in (33), fixed point III is
stable in the no-delay case, so there is a stability region for
sufficiently small delays. However, this region is very small
and disappears quickly as the delays increase. Figure 4
shows the crossing curves for σ vs. ρ, when (τ, υ) =
(0, 0) for the linearization of (3) around fixed point III,(

c1−c2b1/b
c3

, b1
b

)
.

In particular, the delays for T cell division, τ̃ , and
recovery from a cytotoxic process, υ̃, are about 2 and 1
days, respectively, so fixed point III is unstable.

However, for low values of ρ and σ, we find another
stable region in (τ̃ , υ̃)-space away from the origin. For
ρ = 0.0035 and σ = 0.0007, the crossing curves for τ̃ and
υ̃ are shown in Figure 5(left). A stable solution is shown
in Figure 5(right).

In this region, the values for ρ and σ are 5 and 1 minutes
as estimated in (33). The delay τ̃ , corresponding to N = 2
cell divisions, is about 1 day, which is a little fast, but still
reasonable. On the other hand, the delay υ̃, corresponding
to the turn around time for T cell recovery after cytotoxic
responses, is around 20 to 30 days, which is far longer
than the expected 1 day turn around time.

From the perspective of medical intervention, the larger
stable region away from the origin is more interesting,
because it is probably easier to slow rates down than to
speed them up. For contrast, consider the small stable
region around the origin in Figure 5. In this region, the
delays τ̃ and υ̃ are constrained to values less than 0.005
(7 min) and 0.02 (30 min), respectively, and it is almost
impossible to accelerate T cell division or the T cell
recovery time to these rates.

C. Stabilization by changing non-delay parameters

Because of the interdependence of the non-delay param-
eters, it is difficult (but not impossible) to generate crossing
diagrams for each of the parameters. As a result, we study
numerically the effect of non-delay parameters on stability.
As before, we focus on the stability of fixed point III.

For most parameters, the stability region around the
origin is very small, so we approximate the region as a
4-dimensional polyhedron with planar faces. Furthermore,
it is straightforward to calculate the values of the points
on the ρ, σ, τ̃ , and υ̃ axes that bound this polyhedron.
These calculations entail solving the caracteristic equation
(9) for one delay, while setting the other delays to 0.
The expressions for these values are given in Appendix .
If the values of these points are sufficiently small, the
volume of the stable region is close to the volume of the
polyhedron defined by the four points and the origin. This
approximation is no longer useful if the volume of the
polyhedron is large or if a point does not exist, i.e., if the
crossing surface no longer intersects one of the axes.

We vary the non-delay parameters according to the
ranges shown in Table I and calculate the volume of the
polyhedron for all combinations of these values. Average
polyhedron volumes for individual parameter values are
shown in Figure 6. In these figures, we plot the volume

obtained by fixing one parameter and averaging over the
volumes obtained by varying the other parameters.

The parameters that influence the size of the stability
region the most are the kinetic coefficient k and the T cell
death rate dT . Lower kinetic rates k and higher T cell death
rates dT lead to larger stable regions. In either case, the
region around the origin is not large enough to allow for
biologically meaningful values of τ̃ and υ̃.

However, if we consider the extreme case where we set
k = 0.01, dT = 0.5, all other parameters according to
the estimates in (33), and (ρ, σ) = (0.0035, 0.0007), we
obtain the stable region shown in Figure 7.

Here, the assumption that the stable region is approxi-
mated by a polyhedron collapses, so the numerical analysis
discussed above is invalid. However, this region covers
a large area in (τ̃ , υ̃)-space, including the biologically
reasonable point (τ̃ , υ̃) = (2, 1).

D. Discussion

Surprisingly, the results indicate that the stability of the
controlled state, fixed point III, benefits from T cells that
are slowly reacting, rapidly dying, and have long turn
around times after killing cancer cells. These results are
counterintuitive.

While, in principle, we cannot overrule such results
from being biologically significant, it is probably reasonale
to assume that our model is too simple to capture the
full nature of the interactions. Specifically, the delay term
corresponding to ρ in (3) causes the cancer population
to sometimes pass below zero. This, in turn, drags the
T cell population below zero and often results in an
unstable oscillation. This situation is unrealistic, and as
a result, stability usually entails avoiding these situations.
More inert T cells lead to more gradual declines of the
cancer populations, which reduce the likelihood that either
population swings very much below zero. Hence, in this
formulation of the CML model, more gradual reduction
of the cancer population is favored over rapid elimination.
We did not have to deal with this issue in our previous
CML work, [7], since there we studied the ruin problem,
i.e., once the cancer population hit zero, we stopped.

It is straightforward to reformulate the model so that
neither population can pass below zero. The study of such
a model is left for future work.

V. CONCLUDING REMARKS

This paper addressed the problem of characterization
of stability boundaries in some delay-parameter set for
a dynamical system including four (independent) delays,
system that describes the post-transplantation dynamics of
the immune response to chronic myelogenous leukemia.
Such a model includes two small delays, and two large
delays.

The stability analysis proposed in the paper allowed
us to define two types of T/C cell interactions: weak,
and strong, and a quantitative measure for the weak
T/C interaction was introduced, and explicitly computed.



Furthermore, we have proved that the large delay values
have a low influence on the stability properties in the weak
cell interaction case. Next, the strong cell interaction case
was analyzed in terms of stability crossing curves, and a
classification of the such crossing curves is given. Finally,
an example was considered for illustrating the derived
results. Several interpretations and discussions complete
the presentation.

REFERENCES

[1] Beretta, E. and Kuang, Y.: Geometric stability switch criteria in
delay differential systems with delay dependent parameters. SIAM
J. Math. Anal. 33 (2002) 1144-1165.

[2] Boese, F.G.: Stability with respect to the delay: On the paper of
K.L. Cooke and P. van den Driessche. J. Math. Anal.Appl., 228
(1998) 293-321.

[3] Bruce, J.W., and Giblin, P.J.: Curves and singularities (Cambridge
Univ. Press: Cambridge, 1984).

[4] Chao, D. L., Forrest, S., Davenport, M. P., Perelson, A. S.: Stochas-
tic stage-structured modeling of the adaptive immune system. Proc.
of the Computational Systems Bioinformatics, 2003.

[5] Cooke, K. L. and van den Driessche, P.: On zeroes of some
transcendental equations. in Funkcialaj Ekvacioj 29 (1986) 77-90.

[6] Datko, R.: A procedure for determination of the exponential stability
of certain differential-difference equations. Quart. Appl. Math. 36
(1978) 279-292.

[7] DeConde, R., Kim, P. S., Levy, D., Lee, P. P.: Post-transplantation
dynamics of the immune response to chronic myelogenous
leukemia. J. Theor. Biol. 236 (2005) 39-59.

[8] Diekmann, O., van Gils, S. A., Verduyn-Lunel, S. M. and Walther,
H. -O.: Delay equations, Functional-, Complex and Nonlinear
Analysis (Appl. Math. Sciences Series, 110, Springer-Verlag, New
York, 1995).

[9] Gu, K., Kharitonov, V.L. and Chen, J.: Stability and robust stability
of time-delay systems. (Birkhauser: Boston, 2003).

[10] Gu, K., Niculescu, S.-I., and Chen, J.: On stability of crossing curves
for general systems with two delays. in J. Math. Anal. Appl., 311
(2005) 231-253.

[11] Hale, J. K. and Verduyn Lunel, S. M.: Introduction to Func-
tional Differential Equations (Applied Math. Sciences, 99, Springer-
Verlag, New York, 1993).

[12] Kharitonov, V.L., Niculescu, S.-I., Moreno, J., and Michiels, W.:
Stattic output feedback stabilization: Necessary conditions for mul-
tiple delay controllers. IEEE Trans. Automat. Contr., 50 (2005) 82-
86.

[13] Kim, P.S., DeConde, R., Levy, D., and Lee, P.: Post-transplantation
dynamics of the immune response to chronic myelogenous
leukemia. in presented at Int. Conf. on Diff. Eqs. and Appli. in
Math. Biology, Nanaimo, BC, Canada, July 2004.

[14] Kuang, Y.: Delay differential equations with applications in popu-
lation dynamics (Academic Press, Boston, 1993).

[15] MacDonald, N.: Biological delay systems: linear stability theory.
(Cambridge University Press, Cambridge, 1989).

[16] Michiels, W., and Roose, D.: An eigenvalue based approach for the
robust stabilization of linear time-delay systems. Int. J. Control 76
(2003) 678-686.

[17] Murray, J.D.: Mathematical Biology (BioMath. 18, Springer: Berlin,
2nd Edition, 1993).

[18] Murali-Krishna, K., Altman, J. D., Suresh, M., Sourdive, D. J. D.,
Zajac, D. J. D., Miller, J. D., Slansky, J., Ahmed, R.: Counting
antigen-specific CD8+ T cells: a re-evaluation of bystander activa-
tion during viral infection. Immunity 8 (1998) 177-187.

[19] Niculescu, S.-I.: Delay effects on stability. A robust control approach
(Springer-Verlag: Heidelberg, LNCIS, vol. 269, 2001).

[20] Niculescu, S.-I., Fu, P., and Chen, J.: Stability switches and reversals
of linear systems with commensurate delays: A matrix pencil
characterization. Internal Note HeuDiaSyC’04 (submitted).
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APPENDIX

The ρ intercept, (i.e. the lowest non-negative point that
a crossing surface intersects the ρ-axis in delay space), is

(arctan(ω/c̃1) + arctan(ω/b1)− π/2)/ω,

where

ω =

(
−B +

√
B2 − 4C

2

)1/2

, (34)

and

B = c̃2
1 − (c1 − b1c2/b)2, C = −b2

1(c1 − b1c2/b)2.

The σ, τ̃ , and υ̃ intercepts are of the form

σ = (− arctan((ωQ)/(ω2 + P ))− arctan(ω/c̃1))/ω,

where ω is as in (34) and

B = 2P + Q2 −R2,

C = P 2 − c̃2
1R

2,

P = −b1(c1 − b1c2/b) + b1bic̃1/b,

Q = c̃1 − (c1 − b1c2/b)− b1bi/b,

R = b1bi/b, (35)

where i = 3, 4, and 5, respectively.

Param. Description Test values
dT T cell death rate 0.1, 0.12, 0.14, ..., 0.3
k Kinetic mixing coefficient 5× (10−2, 10−1.6,

10−1.2, ..., 10−0.4)
p1 Prob. a T cell reacts 0.3, 04, 0.5, ..., 0.9

cytotoxically to a cancer cell
p2 Prob. a T cell does not react 1− p1

cytotoxically to a cancer cell
p̃1 Prob. a cancer cell dies due p1

to an interaction with a T cell
n Average number of T cell 1, 1.5, 2, ..., 4

division after stimulation
q1 Prob. a T cell starts dividing 0.3, 0.4, 0.5, ..., 0.9

after a cytotoxic response
q2 Prob. a T cell does not divide 1− q1

after a cytotoxic response
rC Growth rate of cancer 3× (10−2, 10−1.9,

10−1.8, ..., 10−1)
K Logistic carrying capacity of 200, 210, 220, ..., 300

the cancer population

TABLE I
PARAMETER TEST VALUES USED IN SECTION IV-C. WE SCAN OVER

ALL POSSIBLE COMBINATIONS OF THESE VALUES.
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