Publications

     
  1. H. Cho and D. Levy, Modeling the Chemotherapy-Induced Selection of Drug-Resistant Traits During Tumor Growth, submitted
  2. H. Cho and D. Levy, Modeling the Dynamics of Heterogeneity of Solid Tumors in Response to Chemotherapy, submitted
  3. A. Lorz, D.-A. Botesteanu, and D. Levy, Modeling Cancer Cell Growth Dynamics in Vitro in Response to Antimitotic Drug TreatmentFrontiers in Oncology, accepted
  4. M. Becker and D. Levy, Modeling the Transfer of Drug Resistance in Solid Tumors, Bulletin of Mathematical Biology, accepted
  5. A. Besse, G. Clapp, S. Bernard, F.E. Nicolini, D. Levy, and T. Lepoutre, Stability Analysis of a Model of Interaction Between the Immune System and Cancer Cells in Chronic Myelogenous Leukemia, Bulletin of Mathematical Biology, accepted
  6. D.-A. Botesteanu, J.-M. Lee, and D. Levy, Modeling the Dynamics of High-Grade Serous Ovarian Cancer Progression for Transvaginal Ultrasound-Based Screening and Early Detection, PLoS One, e0156661, 2016.
  7. D.-A. Botesteanu, S. Lipkowitz, J.-M. Lee, and D. Levy, Mathematical Models of Breast and Ovarian CancersWIREs Systems Biology and Medicine, 2016, 8:337-362.
  8. J. Greene, D. Levy, S.P. Horrid, M. Gottesman, and O. Lavi, Mathematical Modeling Reveals that Changes to Local Cell Density Dynamically Modulate Baseline Variations in Cell Growth and Drug Response, Cancer Research, 76, 2016, pp.2882-2890
  9. G. Clapp, T. Lepoutre, F.E. Nicolini, and D. Levy, BCR-ABL Transcript Variations in Chronic Phase Chronic Myelogenous Leukemia Patients on Imatinib First-Line:Possible Role of the Autologous Immune SystemOncoImmunology, 5(5), 2016, e1122519
  10. G. Clapp, T. Lepoutre, R. El Cheikh, S. Bernard, J. Ruby, H. Labussiere-Wallet, F.E. Nicolini, and D. Levy, Implications of the Autologous Immune System in BCR-ABL Transcript Variations in Chronic Myelogenous Leukemia Patients Treated with Imatinib, Cancer Research, 75, 2015, pp. 4053-4062.
  11. J. Greene, D. Levy, K.L. Fung, P.S. de Souza, M. Gottesman, and O. Lavi, Modeling Intrinsic Heterogeneity and Growth of Cancer CellsJournal of Theoretical Biology, 367, 2015, pp. 262-277.
  12. G. Clapp and D. Levy, A Review of Mathematical Models for Lymphoma and LeukemiaDrug Discovery Today: Disease Models, 2015, pp. 1-6.
  13. G. Clapp and D. Levy, Incorporating Asymmetric Stem Cell Division into the Roeder Model for Chronic Myeloid Leukemia, in A. Eladdadi et al. (Eds.) “Mathematical Models of Tumor-Immune Systems Dynamics”, Springer, New York, 2014, pp. 1-20.
  14. D. Weinberg and D. Levy, Modeling Selective Local Interactions with Memory: Motion on a 2D Lattice, Physica D, 278-279, 2014, pp.13-30.
  15. J. Greene, O. Lavi, M. Gottesman, and D. Levy, The Impact of Cell Density and Mutations in a Model of Multidrug Resistance in Solid Tumors, Bulletin of Mathematical Biology, 74, 2014, pp.627-653.
  16. O. Lavi, J. Greene, D. Levy, and M. Gottesman, Simplifying the Complexity of Resistance Heterogeneity in Metastatic Cancer, Trends in Molecular Medicine, 20, 2014, pp.129-136.
  17. K. Thompson, T.K. Cooke, W. Fagan, D. Gulick, D. Levy, K. Nelson, E. Redish, R.F. Smith, and J. Presson, Infusing Quantitative Approaches Throughout the Biological Sciences Curriculum, International Journal of Mathematical Education in Science and Technology, 44, 2013, pp.817-833.
  18. O. Lavi, J. Greene, D. Levy, and M. Gottesman, The Role of Cell Density and Intratumoral Heterogeneity in Multidrug ResistanceCancer Research, 73, 2013, pp.7168-7175.
  19. S. Wilson and D. Levy, Functional Switching and Stability of Regulatory T Cells, Bulletin of Mathematical Biology, 75, 2013, pp.1891-1911.
  20. A. Galante and D. Levy, Modeling Selective Local Interactions with Memory, Physica D, 260, 2013, pp.176-190.
  21. C. Davis, R. Wahid, F. Toapanta, J. Simon, M. Sztein, and D. Levy, Applying Mathematical Tools to Accelerate Vaccine Development: Modeling Shigella Immune Dynamics, PLoS One, 8(4): e59465. dpi:10.1371/journal.pone.0059465, 2013.
  22. A. Galante, S. Wisen, D. Bhaya, and D. Levy, Modeling Local Interactions During the Motion of Cyanobacteria, Journal of Theoretical Biology, 309, 2012, pp.147-158. 
  23. P. Kim, P. Lee, and D. Levy, Basic Principles in Modeling Adaptive Regulation and Immunodominance, in U. Ledzewicz et al. (eds): Mathematical Methods and Models in Biomedicine, Springer, New York, 2013, pp. 33-57. 
  24. O. Lavi, M. Gottesman, and D. Levy, The Dynamics of Drug Resistance: a Mathematical Perspective, Drug Resistance Updates, 15, 2012, pp.90-97.
  25. S. Wilson and D. Levy, A Mathematical Model of the Enhancement of Tumor Vaccine Efficacy by Immunotherapy, Bulletin of Mathematical Biology, 74, 2012, pp.1485-1500. 
  26. A. Galante, K. Tamada, and D. Levy, B7-H1 and a Mathematical Model for Cytotoxic T Cell and Tumor Cell Interaction, Bulletin of Mathematical Biology, 74, 2012, pp.91-102. 
  27. A. Galante and D. Levy, Stochastic Models and Simulations of Phototaxis, Proceedings of the Eighth International Conference on Complex Systems (ICCS 2011), Boston, MA, 2011.
  28. P. Kim, P. Lee, and D. Levy, A Theory of Immunodominance and Adaptive Regulation, Bulletin of Mathematical Biology, 73, 2011, pp. 1645-1665.
  29. D. Paquin, P. Kim, P. Lee, and D. Levy, Strategic Treatment Interruptions During Imatinib Treatment of Chrnoic Myelogenous Leukemia, Bulletin of Mathematical Biology, 73, 2011, pp. 1088-1100. 
  30. C. Tomasetti and D. Levy, The Role of Symmetric and Asymmetric Division of Stem Cells in Developing Drug Resistance, Proceedings of the National Academy of Sciences, 107, 2010, pp. 16766-16771.  
  31. C. Tomasetti and D. Levy, An Elementary Approach to Modeling Drug Resistance in Cancer, Mathematical Biosciences and Engineering, 7, 2010, 905-918.
  32. A. Galante, D. Levy, and C. Tomasetti, A Mathematical Model for Microenvironmental Control of Tumor Growth, in K.E. Herold, W.E. Bentley, and J. Vossoughi (Eds.): SBEC 2010, IFMBE Proceedings 32, Springer, 2010, pp. 213-216. 
  33. C. Tomasetti and D. Levy, Drug Resistance Always Depends on the Cancer's Turnover Rate, in K.E. Herold, W.E. Bentley, and J. Vossoughi (Eds.): SBEC 2010, IFMBE Proceedings 32, Springer, 2010, pp. 552-555. 
  34. S. Wilson, P. Lee, and D. Levy, A Mathematical Model of the Primary T Cell Response with Contraction Governed by Adaptive Regulatory T Cells, in K.E. Herold, W.E. Bentley, and J. Vossoughi (Eds.): SBEC 2010, IFMBE Proceedings 32, Springer, 2010, pp. 209-212. 
  35. P. Kim, P. Lee, and D. Levy, Emergent Group Dynamics Governed by Regulatory Cells Produce a Robust Primary T Cell Response, Bulletin of Mathematical Biology, 72, 2010, pp. 611-644.
  36. S. Niculescu, P. Kim, K. Gu, P. Lee, and D. Levy, Stability Crossing Boundaries of Delay Systems Modeling Immune Dynamics in Leukemia, Discrete and Continuous Dynamical Systems B, 13, 2010, pp. 129-156. 
  37. P. Kim, D. Levy, and P. Lee, Modeling and Simulation of the Immune System as a Self-Regulating Network, Methods in Enzymology, 467, 2009, pp. 79-109.
  38. S.-Y. Ha, K. Lee, and D. Levy, Emergence of Time-Asymptotic Flocking in a Stochastic Cucker-Smale System, Communications in Mathematical Sciences, 7, 2009, pp. 453-469. 
  39. M. Peet, P. Kim, S.-I. Niculescu, and D. Levy, New Computational Tools for Modeling Chronic Myelogenous Leukemia, Mathematical Modeling of Natural Phenomena, 4, 2009, pp. 48-68. 
  40. S.-Y. Ha and D. Levy, Particle, Kinetic, and Fluid Models for Phototaxis, Discrete and Continuous Dynamical Systems B, 12, 2009, pp. 77-108. 
  41. D. Paquin, D. Levy, and L. Xing, Multiscale Registration of Planning CT and Daily Cone Beam CT Images for Adaptive Radiation Therapy, Medical Physics, 36, 2009, pp. 4-11. 
  42. P. Kim, P. Lee, and D. Levy, A PDE Model for Imatinib-Treated Chronic Myelogenous Leukemia, Bulletin of Mathematical Biology, 70, 2008, pp. 1994-2016. 
  43. D. Levy and T. Requeijo, Stochastic Models for Phototaxis, Bulletin of Mathematical Biology, 70, 2008, pp. 1684-1706. 
  44. P. Kim, P. Lee, and D. Levy, Dynamics and Potential Impact of the Immune Response to Chronic Myelogenous Leukemia, PLOS Computational Biology, 4, 2008, e1000095 doi:10.1371/journal.pcbi.1000095.
  45. D. Paquin, D. Levy, and L. Xing, Multiscale Deformable Registration of Noisy Medical Images, Mathematical Biosciences and Engineering, 5, 2008, pp. 125-144. 
  46. D. Levy and T. Requeijo, Modeling Group Dynamics of Phototaxis: From Particles to PDEs, Discrete and Continuous Dynamical Systems B, 9, 2008, pp. 108-128.
  47. P. Kim, P. Lee, and D. LevyModeling Imatinib-Treated Chronic Myelogenous Leukemia: Reducing the Complexity of Agent-Based Models, Bulletin of Mathematical Biology, 70, 2008, pp. 724-744.
  48. D. Bhaya, D. Levy, and T. Requeijo, Group Dynamics of Phototaxis: Interacting Stochastic Many-Particle Systems and their Continuum Limit, in S. Benzoni-Gavage and D. Serre (Eds.), "Hyperbolic Problems: Theory, Numerics, Application", Proceedings of HYP 2006, Lyon, France; Springer-Verlag, Berlin, 2008, pp. 145-169.
  49. D. Paquin, D. Levy, and L. Xing, Hybrid Multiscale Landmark and Deformable Registration, Mathematical Biosciences and Engineering, 4, 2007, pp. 711-737.
  50. P. Kim, P. Lee, and D. Levy, Mini-Transplants for Chronic Myelogenous Leukemia: A Modeling Perspective, in Queinnec et al. (eds.) "Biology and Control Theory: Current Challenges", Lecture notes in control and information sciences, LNCIS 357, Springer, Berlin, 2007, pp. 3-20.
  51. S. Niculescu, P. Kim, P. Lee, and D. Levy, On Stability of a Combined Gleevec and Immune Model of Chronic Myelogenous Leukemia: Exploiting Delay System Structure.   Proceedings of 2007 IFAC Symposium on Nonlinear Control (NOLCOS'07), Pretoria (South Africa). 
  52. P. Kim, P. Lee, and D. Levy, Modeling Regulation Mechanisms in the Immune System, Journal of Theoretical Biology, 246, 2007, pp. 33-69.
  53. S.-I. Niculescu, P. Kim, K. Gu, and D. Levy, On the Stability Crossing Boundaries of Some Delay Systems Modeling Immune Dynamics in Leukemia, Proc 17th Int Symp on Mathematical Theory of Networks and Systems, Kyoto, 2006.
  54. D. Levy, S. Nayak, C.-W. Shu, and Y.-T. Zhang, Central WENO Schemes for Hamilton-Jacobi Equations on Triangular Meshes, SIAM Journal on Scientific Computing, 28, 2006, pp. 2229-2247. 
  55. S. Bryson and D. Levy, Mapped WENO and Weighted Power ENO Reconstructions in Semi-Discrete Central Schemes for Hamilton-Jacobi Equations, Applied Numerical Mathematics, 56, 2006, pp. 1211-1224.
  56. S. Bryson and D. Levy, On the Total Variation of High-Order Semi-Discrete Central Schemes for Conservation Laws, Journal of Scientific Computing, 27, 2006, pp. 163-175.
  57. D. Paquin, D. Levy, E. Schreibmann, and L. Xing, Multiscale Image Registration, Mathematical Biosciences and Engineering, 3, 2006, pp. 389-418. 
  58. S. Bryson and D. Levy, Balanced Central Schemes for the Shallow Water Equations on Unstructured Grids, SIAM Journal on Scientific Computing, 27, 2005, pp. 532-552.
  59. D. Levy, A Stable Semi-Discrete Central Scheme for the Two-Dimensional Incompressible Euler Equations, IMA Journal of Numerical Analysis, 25, 2005, pp. 507-522.
  60. R. DeConde, P. Kim, P. Lee, and D. Levy, Post Transplantation Dynamics of the Immune Response to Chronic Myelogenous Leukemia, Journal of Theoretical Biology, 236, 2005, pp. 39-59. 
  61. R. Fetecau and D. Levy, Approximate Model Equations for Water Waves, Communications in Mathematical Sciences, 3, 2005, pp. 159-170.
  62. F. Gibou, D. Levy, C. Cardenas, P. Liu, and A. Boyer, PDE-based Segmentation for Radiotherapy Treatment Planning, Mathematical Biosciences and Engineering, 2, 2005, pp. 209-226.
  63. Z. Shou, Y. Yang, C. Cotrutz, D. Levy, and L. Xing, Quantitation of the a Priori Dosimetric Capabilities of Spatial Points in Inverse Planning and its Significant Implication in Defining IMRT Solution Space, Physics in Medicine and Biology, 50, 2005, pp. 1469-1482. 
  64. S. Bryson, A. Kosovichev, and D. Levy, High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere, Physica D., 201, 2005, pp. 1-26. 
  65. S. Bryson, A. Kurganov, D. Levy, and G. Petrova, Semi-Discrete Central-Upwind Schemes with Reduced Dissipation for Hamilton-Jacobi Equations, IMA Journal of Numerical Analysis, 25, 2005, pp. 113-138. 
  66. Y.-N. Young and D. Levy, Registration-based Morphing of Active Contours for Segmentation of CT Scans, Mathematical Biosciences and Engineering, 2, 2005, pp. 79-96. 
  67. A. Chertock and D. Levy, On Wavelet-Based Numerical Homogenization, Multiscale Modeling and Simulation, 3, 2004, pp. 65-88.
  68. D. Levy and S. Nayak, Central Schemes for Hamilton-Jacobi Equations on Unstructured Grids, in M. Feistauer et al. (Eds.), "Numerical Mathematics and Advanced Applications'', Proceedings of ENUMATH 2003, Prague, Czech Republic; Springer-Verlag, Berlin, 2004, pp.623-630. 
  69. D. Levy, C.-W. Shu, and J. Yan, Local Discontinuous Galerkin Methods for Nonlinear Dispersive Equations, Journal of Computational Physics, 196, 2004, pp. 751-772. 
  70. S. Bryson and D. Levy, Central Schemes for Multidimensional Hamilton-Jacobi Equations, SIAM Journal on Scientific Computing, 25, 2003, pp. 769-791.
  71. S. Bryson and D. Levy, High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations, SIAM Journal of Numerical Analysis, 41, 2003, pp. 1339-1369.
  72. S. Bryson and D. Levy, High-Order Semi-Discrete Central-Upwind Schemes for Multi-Dimensional Hamilton-Jacobi Equations, Journal of Computational Physics, 189, 2003, pp. 63-87.
  73. S. Bryson and D. Levy, High-Order Central WENO Schemes for Multidimensional Hamilton-Jacobi Equations, in T.Y. Hou and E. Tadmor (Eds.), "Hyperbolic Problems: Theory, Numerics, Applications'', Proc. Ninth International Conference on Hyperbolic Problems, CalTech, 2002; Springer-Verlag, Berlin, 2003, pp.387-396.
  74. S. Bryson and D. Levy, High-order Central WENO Schemes for 1D Hamilton-Jacobi Equations, in F. Brezzi et al. (Eds.), "Numerical Mathematics and Advanced Applications'', Proc. ENUMATH 2001, Ischia, Italy; Springer-Verlag, Italy, 2003, pp.45-54.
  75. A. Chertock and D. Levy, A Particle Method for the KdV Equation, Journal of Scientific Computing, 17, 2002, pp. 491-499.
  76. D. Levy,  G. Puppo, and G. Russo, A Fourth Order Central WENO Scheme for Multi-Dimensional Hyperbolic Systems of Conservation Laws, SIAM Journal on Scientific Computing, 24, 2002, pp. 480-506. 
  77. A. Kurganov and D. Levy, Central-Upwind Schemes for the Saint-Venant System, Mathematical Modelling and Numerical Analysis, 36, 2002, pp. 397-425.
  78. A. Chertock and D. Levy, Particle Methods for Dispersive Equations, Journal of Computational Physics, 171, 2001, pp. 708-730.
  79. A. Kurganov and D. Levy, A Third-Order Semi-Discrete Central Scheme for Conservation Laws and Convection-Diffusion Equations, SIAM Journal on Scientific Computing, 22, 2000, pp. 1461-1488.
  80. D. Levy,  G. Puppo, and G. Russo, Compact Central WENO Schemes for MultiDimensional Conservation Laws, SIAM Journal on Scientific Computing, 22, 2000, pp. 656-672.
  81. A.J. Chorin, R. Kupferman, and D. Levy, Optimal Prediction for Hamiltonian Partial Differential Equations, Journal of Computational Physics, 162, 2000, pp. 267-297.
  82. D. Levy,  G. Puppo, and G. Russo, On the Behavior of the Total Variation in CWENO Methods for Conservation Laws, Applied Numerical Mathematics, 33, 2000, pp. 415-421.
  83. D. Levy,  G. Puppo, and G. Russo, A Third Order Central WENO Scheme for 2D Conservation Laws, Applied Numerical Mathematics, 33, 2000, pp. 407-414.
  84. Y. Brenier and D. Levy, Dissipative Behavior of Some Fully Non-Linear KdV-Type Equations, Physica D., 137, 2000, pp. 277-294.
  85. D. Levy,  G. Puppo, and G. Russo, Central WENO Schemes for Hyperbolic Systems of Conservation Laws, Mathematical Modeling and Numerical Analysis, 33, no. 3, 1999, pp. 547-571.
  86. T. Katsaounis and D. Levy, A Modified Structured Central Scheme for 2D Hyperbolic Conservation Laws, Applied Math Letters, 12, no. 6, 1999, pp. 89-96.
  87. P. Rosenau and D. Levy, Compactons in a Class of Nonlinearly Quintic Equations, Physics Letters A., 252, 1999, pp. 297-306.
  88. G. Fibich and D. Levy, Self-Focusing in the Complex Ginzburg-Landau Limit of the Critical Nonlinear Schrodinger Equation, Physics Letters A., 249, 1998, pp. 286-294.
  89. D. Levy, Third-order 2D Central Schemes for Hyperbolic Conservation Laws, INRIA School on Hyperbolic Systems, Vol. I, 1998, pp. 489-504.
  90. G.-S. Jiang, D. Levy, C.-T. Lin, S. Osher, and E. Tadmor, High-Resolution Non-Oscillatory Central Schemes with Non-Staggered Grids for Hyperbolic Conservation Laws, SIAM Journal on Numerical Analysis, 35, no. 6, 1998, pp. 2147-2168.
  91. A. Kurganov, D. Levy, and P. Rosenau, On Burgers-type Equations with Non-Monotonic Dissipative Fluxes, Communications on Pure and Applied Mathematics, 51, no. 5, 1998, pp. 443-473. 
  92. D. Levy and E. Tadmor, From Semi-Discrete to Fully-Discrete: The Stability of Runge-Kutta Schemes by the Energy Method, SIAM Review, 40, no.1, 1998, pp. 40-73.
  93. D. Levy and P. Rosenau, On a Class of a Thermal Blow-up Patterns, Physics Letters A., 236, 1997, pp. 483-493.
  94. D. Levy and E. Tadmor, Non-Oscillatory Central Schemes for the Incompressible 2D Euler Equations, Mathematical Research Letters, 4, 1997, pp. 321-340.


                                         © Doron Levy 2017