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Abstract. We obtain asymptotic expansions for local probabil-
ities of partial sums for uniformly bounded independent but not
necessarily identically distributed integer-valued random variables.
The expansions involve products of polynomials and trigonometric
polynomials. Our results do not require any additional assump-
tions. As an application of our expansions we find necessary and
sufficient conditions for the classical Edgeworth expansion. It turns
out that there are two possible obstructions for the validity of the
Edgeworth expansion of order r. First, the distance between the
distribution of the underlying partial sums modulo some h ∈ N and
the uniform distribution could fail to be o(σ1−r

N ), where σN is the
standard deviation of the partial sum. Second, this distribution
could have the required closeness but this closeness is unstable,
in the sense that it could be destroyed by removing finitely many
terms. In the first case, the expansion of order r fails. In the sec-
ond case it may or may not hold depending on the behavior of the
derivatives of the characteristic functions of the summands whose
removal causes the break-up of the uniform distribution. We also
show that a quantitative version of the classical Prokhorov con-
dition (for the strong local central limit theorem) is sufficient for
Edgeworth expansions, and moreover this condition is, in some
sense, optimal.
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1. Introduction.

Let X1, X2, ... be a uniformly bounded sequence of independent
integer-valued random variables. Set SN = X1 + X2 + ... + XN ,
VN = V (SN) = Var(SN) and σN =

√
VN . Assume also that VN → ∞

as N →∞. Then the central limit theorem (CLT) holds true, namely
the distribution of (SN −E(SN))/σN converges to the standard normal
distribution as N →∞.

Recall that the local central limit theorem (LLT) states that, uni-
formly in k we have

P(SN = k) =
1√

2πσN
e−(k−E(SN ))2/2VN + o(σ−1

N ).

This theorem is also a classical result, and it has origins in De Moivre-
Laplace theorem. The stable local central limit theorem (SLLT) states
that the LLT holds true for any integer-valued square integrable in-
dependent sequence X ′1, X

′
2, ... which differs from X1, X2, ... by a finite

number of elements. We recall a classical result due to Prokhorov.

Theorem 1.1. [32] The SLLT holds iff for each integer h > 1,

(1.1)
∑
n

P(Xn 6= mn mod h) =∞

where mn = mn(h) is the most likely residue of Xn modulo h.
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We refer the readers’ to [33, 36] for extensions of this result to the case
when Xn’s are not necessarily bounded (for instance, the result holds
true when sup

n
‖Xn‖L3 < ∞). Related results for local convergence to

more general limit laws are discussed in [6, 25].
The above result provides a necessary and sufficient condition for the

SLLT. It turns out that the difference between LLT and SLLT is not
that big.

Proposition 1.2. Suppose SN obeys LLT. Then for each integer h ≥ 2
at least one of the following conditions occur:

either (a)
∑
n

P(Xn 6= mn(h) mod h) =∞.

or (b) ∃j1, j2, . . . , jk with k < h such that
k∑
s=1

Xjs mod h is uniformly

distributed. In that case for all N ≥ max(j1, . . . , jk) we have that SN
mod h is uniformly distributed.

Since we could not find this result in the literature we include the
proof in Section 6.

Next, we provide necessary and sufficient conditions for the regular
LLT. We need an additional notation. Let K = sup

n
‖Xn‖L∞ . Call t

resonant if t = 2πl
m

with 0 < m ≤ 2K and 0 ≤ l < m.

Theorem 1.3. The following conditions are equivalent:
(a) SN satisfies LLT;
(b) For each ξ ∈ R \ Z, lim

N→∞
E
(
e2πiξSN

)
= 0;

(c) For each non-zero resonant point ξ, lim
N→∞

E
(
e2πiξSN

)
= 0;

(d) For each integer h the distribution of SN mod h converges to
uniform.

The proof of this result is also given in Section 6. We refer the
readers to [7, 10] for related results in more general settings.

The local limit theorem deals with approximation of P (SN = k) up
to an error term of order o(σ−1

N ). Given r ≥ 1, the Edgeworth expansion
of order r holds true if there are polynomials Pb,N , whose coefficients
are uniformly bounded in N and their degrees do no depend on N, so
that uniformly in k ∈ Z we have that

(1.2) P(SN = k) =
r∑
b=1

Pb,N(kN)

σbN
g(kN) + o(σ−rN )
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where kN = (k − E(SN)) /σN and g(u) = 1√
2π
e−u

2/2. In Section 5 we

will show, in particular, that Edgeworth expansions of any order r are
unique up to terms of order o(σ−rN ), and so the case r = 1 coincides
with the LLT. Edgeworth expansions for discrete (lattice-valued) ran-
dom variables have been studied in literature for iid random variables
[18, Theorem 4.5.4] [30, Chapter VII], (see also [12, Theorem 5]), ho-
mogeneous Markov chains [28, Theorems 2-4], decomposable statistics
[22], or dynamical systems [15] with good spectral properties such as
expanding maps. Papers [2, 16] discuss the rate of convergence in the
LLT. Results for non-lattice variables were obtained in [13, 1, 5, 3]
(which considered random vectors) and [15] (see also [17] for corre-
sponding results for random expanding dynamical systems).

In this paper we obtain analogues of Theorems 1.1 and 1.3 for higher
order Edgeworth expansions for independent but not identically dis-
tributed integer-valued uniformly bounded random variables. We begin
with the following result.

Theorem 1.4. Let K = sup
j
‖Xj‖L∞ . For each r ∈ N there is a con-

stant R=R(r,K) such that the Edgeworth expansion of order r holds if

MN := min
2≤h≤2K

N∑
n=1

P(Xn 6= mn(h) mod h) ≥ R lnVN .

In particular, SN obeys Edgeworth expansions of all orders if

lim
N→∞

MN

lnVN
=∞.

The number R(r,K) can be chosen according to Remark 3.6. This
theorem is a quantitative version of Prokhorov’s Theorem 1.1. We
observe that logarithmic in VN growth of various non-perioidicity char-
acteristics of individual summands are often used in the theory of local
limit theorems (see e.g. [20, 21, 23]). We will see from the examples
of Section 10 that this result is close to optimal. However, to justify
the optimality we need to understand the conditions necessary for the
validity of the Edgeworth expansion.

Theorem 1.5. For any r ≥ 1, the Edgeworth expansion of order r
holds if and only if for any nonzero resonant point t and 0 ≤ ` < r we
have

Φ̄
(`)
N (t) = o

(
σ`+1−r
N

)
.

where Φ̄N(x) = E[eix(SN−E(SN ))] and Φ̄
(`)
N (·) is its `-th derivative.
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This result generalizes Theorem 1.3, however in contrast with that
theorem, in the case r > 1 we also need to take into account the
behavior of the derivatives of the characteristic function at nonzero
resonant points. The values of the characteristic function at the res-
onant points 2πl/m have clear probabilistic meaning. Namely, they
control the rate equidistribution modulo m (see part (d) of Theorem
1.3 or Lemma 6.2). Unfortunately, the probabilistic meaning of the
derivatives is less clear, so it is desirable to characterize the validity of
the Edgeworth expansions of orders higher than 1 without considering
the derivatives. Example 10.2 shows that this is impossible without
additional assumptions. Some of the reasonable additional conditions
are presented below.

We start with the expansion of order 2.

Theorem 1.6. Suppose SN obeys the SLLT. Then the following are
equivalent:

(a) Edgeworth expansion of order 2 holds;
(b) |ΦN(t)| = o(σ−1

N ) for each nonzero resonant point t;
(c) For each h ≤ 2K the distribution of SN mod h is o(σ−1

N ) close to
uniform.

Corollary 7.3 provides an extension of Theorem 1.6 for expan-
sions of an arbitrary order r under an additional assumption that
ϕ := min

t∈R
inf
n
|φn(t)| > 0, where R is the set of all nonzero resonant

points. The latter condition implies in particular, that for each ` there
is a uniform lower bound on the distance between the distribution of
Xn1 + Xn2 + · · · + Xn` mod m and the uniform distribution, when
{n1, n2, . . . , n`} ∈ N` and m ≥ 2.

Next we discuss an analogue of Theorem 1.1 for expansions of order
higher than 2. It requires a stronger condition which uses an additional
notation. Given j1, j2, . . . , js with jl ∈ [1, N ] we write

SN ;j1,j2,...,js = SN −
s∑
l=1

Xjl .

Thus SN ;j1,j2,...,js is a partial sum of our sequence with s terms removed.
We will say that {Xn} admits an Edgeworth expansion of order r in a
superstable way (which will be denoted by {Xn} ∈ EeSs(r)) if for each
s̄ and each sequence jN1 , j

N
2 , . . . , j

N
sN

with sN ≤ s̄ there are polynomials
Pb,N whose coefficients are O(1) in N and their degrees do not depend
on N so that uniformly in k ∈ Z we have that

(1.3) P(SN ;jN1 ,j
N
2 ,...,j

N
sN

= k) =
r∑
b=1

Pb,N(kN)

σbN
g(kN) + o(σ−rN )
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and the estimates in O(1) and o(σ−rN ) are uniform in the choice of the
tuples jN1 , . . . , j

N
sN
. That is, by removing a finite number of terms we can

not destroy the validity of the Edgeworth expansion (even though the
coefficients of the underlying polynomials will of course depend on the
choice of the removed terms). Let ΦN ;j1,j2,...,js(t) be the characteristic
function of SN ;j1,j2,...,js .

Remark 1.7. We note that in contrast with SLLT, in the definition
of the superstrong Edgeworth expansion one is only allowed to remove
old terms, but not to add new ones. This difference in the definition is
not essential, since adding terms with sufficiently many moments (in
particular, adding bounded terms) does not destroy the validity of the
Edgeworth expansion. See the proof of Theorem 1.8 (i) or the second
part of Example 10.1, starting with equation (10.2), for details.

Theorem 1.8. (1) SN ∈ EeSs(1) (that is, SN satisfies the LLT in a
superstable way) if and if it satisfies the SLLT.

(2) For arbitrary r ≥ 1 the following conditions are equivalent:
(a) {Xn} ∈ EeSs(r);
(b) For each jN1 , j

N
2 , . . . , j

N
sN

and each nonzero resonant point t we

have ΦN ;jN1 ,j
N
2 ,...,j

N
sN

(t) = o(σ1−r
N );

(c) For each jN1 , j
N
2 , . . . , j

N
sN

, and each h ≤ 2K the distribution of

SN ;jN1 ,j
N
2 ,...,j

N
sN

mod h is o(σ1−r
N ) close to uniform.

To prove the above results we will show that for any order r, we can
always approximate P(SN = k) up to an error o(σ−rN ) provided that
instead of polynomials we use products of regular and the trigono-
metric polynomials. Those products allow us to take into account
possible oscillatory behavior of P (SN = k) when k belongs to dif-
ferent residues mod h, where h is denominator of a resonant frequency.
When MN ≥ RVN for R large enough, the new expansion coincides
with the usual Edgeworth expansions. We thus derive that the condi-
tion MN ≥ R lnVN is in a certain sense optimal.

2. Main result

Let X1, X2, ... be a sequence of independent integer-valued random

variables. For each N ∈ N we set SN =
N∑
n=1

Xn and VN = Var(SN). We

assume in this paper that lim
N→∞

VN = ∞ and that there is a constant

K such that
sup
n
‖Xn‖L∞ ≤ K.
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Denote σN =
√
VN . For each positive integer m, let qn(m) be the second

largest among∑
l≡j mod m

P(Xn = l) = P(Xn ≡ j mod m), j = 1, 2, ...,m

and jn(m) be the corresponding residue class. Set

MN(m) =
N∑
n=1

qn(m) and MN = min
m

MN(m).

Theorem 2.1. There ∃J = J(K) <∞ and polynomials Pa,b,N , where
a ∈ 0, . . . , J − 1, b ∈ N, with degrees depending only on b but not on
a,K or on any other characteristic of {Xn}, such that the coefficients
of Pa,b,N are uniformly bounded in N , and, for any r ≥ 1 uniformly in
k ∈ Z we have

P(SN = k)−
J−1∑
a=0

r∑
b=1

Pa,b,N((k − aN)/σN)

σbN
g((k−aN)/σN)e2πiak/J = o(σ−rN )

where aN = E(SN) and g(u) = 1√
2π
e−u

2/2.

Moreover, P0,1,N ≡ 1, and given K, r, there exists R = R(K, r) such
that if MN ≥ R lnVN then we can choose Pa,b,N = 0 for a 6= 0.

We refer the readers to (6.1) for more details on these expansions in
the case r = 1, and to Section 6 for a discussion about the relations
with local limit theorems. The resulting expansions in the case r = 2
are given in (9.1). We note that the constants J(K) and R(K, r) can
be recovered from the proof of Theorem 2.1.

Remark 2.2. Since the coefficients of the polynomials Pa,b,N are uni-
formly bounded, the terms corresponding to b = r + 1 are of order

O(σ
−(r+1)
N ) uniformly in k. Therefore, in the r-th order expansion we

actually get that the error term is O(σ
−(r+1)
N ).

Remark 2.3. In fact, the coefficients of the polynomials Pa,b,N for
a > 0 are bounded by a constant times (1 + M q

N)e−c0MN , where
c0 > 0 depends only on K and q ≥ 0 depends only on r and
K. Therefore, these coefficient are small when MN is large. When
MN ≥ R(r,K) lnVN these coefficients become of order o(σ−rN ). There-
fore, they only contribute to the error term, and so we can replace them
by 0, as stated in Theorem 2.1.

Remark 2.4. As in the derivation of the classical Edgeworth expan-
sion, the main idea of the proof of Theorem 2.1 is the stationary phase
analysis of the characteristic function. However, in contrast with the
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iid case there may be resonances other than 0 which contribute to the
oscillatory terms in the expansion. Another interesting case where the
classical Edgeworth analysis fails is the case of iid terms where the
summands are non-arithmetic but take only finitely many values. It is
shown in [8] that in that case, the leading correction to the Edgeworth
expansion also comes from resonances. However, in the case studied in
[8] the geometry of resonances is more complicated, so in contrast to
our Theorem 2.1, [8] does not get the expansion of all orders.

3. Edgeworth expansions under quantitative Prokhorov
condition.

In this section we prove Theorem 1.4. In the course of the proof
we obtain the estimates of the characteristic function on intervals not
containing resonant points which will also play an important role in
the proof of Theorem 2.1. The proof of Theorem 2.1 will be completed
in Section 4 where we analyze additional contribution coming from
nonzero resonant points which appear in the case MN ≤ R lnσN . Those
contributions constitute the source of the trigonometric polynomials in
the generalized Edgeworth expansions.

3.1. Characterstic function near 0. Here we recall some facts about
the behavior of the characteristic function near 0, which will be useful
in the proofs of Theorems 1.4 and 2.1. The first result holds for general
uniformly bounded sequences {Xn} (which are not necessarily integer-
valued).

Proposition 3.1. Suppose that lim
N→∞

σN = ∞, where σN =
√
VN =√

V (SN). Then for k = 1, 2, 3, ... there exists a sequence of polynomials
(Ak,N)N whose degree dk depends only on k so that for any r ≥ 1 there
is δr > 0 such that for all N ≥ 1 and t ∈ [−δrσN , δrσN ],

(3.1) E
(
eit(SN−E(SN ))/σN

)
= e−t

2/2

(
1 +

r∑
k=1

Ak,N(t)

σkN
+
tr+1

σr+1
N

O(1)

)
.

Moreover, the coefficients of Ak,N are algebraic combinations of mo-
ments of the Xm’s and they are uniformly bounded in N . Furthermore

(3.2) A1,N(t) = − i
6
γN t

3 and A2,N(t) = Λ4(S̄N)σ−2
N

t4

4!
− 1

36
γ2
N t

6

where S̄N = SN − E(SN), γN = E[(S̄N)3]/σ2
N and Λ4(S̄N) is the fourth

comulant of S̄N .



9

The proof is quite standard, so we just sketch the argument. The
idea is to fix some B2 > B1 > 0, and to partition {1, ..., N} into
intervals I1, ..., ImN so that B1 ≤ Var(SIl) ≤ B2 where for each l we set

SIl =
∑
j∈Il

Xi. It is clear that mN/σ
2
N is bounded away from 0 and ∞

uniformly in N . Recall next that there are constants Cp, p ≥ 2 so that
for any n ≥ 1 and m ≥ 0 we have

(3.3)

∥∥∥∥∥
n+m∑
j=n

(
Xj − E(Xj)

)∥∥∥∥∥
Lp

≤ Cp

1 +

∥∥∥∥∥
n+m∑
j=n

(
Xj − E(Xj)

)∥∥∥∥∥
L2

 .

This is a consequence of the multinomial theorem and some elemen-
tary estimates, and we refer the readers to either Lemma 2.7 in [10], or
Theorem 6.17 in [24] for such a result in a much more general set-
tings. Using the latter estimates we get that the Lp-norms of SIl
are uniformly bounded in l. This reduces the problem to the case
when the variance of Xn is uniformly bounded from below, and all
the moments of Xn − E(Xn) are uniformly bounded. In this case, the
proposition follows by considering the Taylor expansion of the function
lnE

(
eit(SN−E(SN ))/σN

)
+ 1

2
t2, see [13, §XVI.6].

Proposition 3.2. Given a square integrable random variable X, let
X̄ = X − E(X). Then for each h ∈ R we have∣∣∣E(eihX̄)− 1

∣∣∣ ≤ 1

2
h2V (X).

Proof. Set ϕ(h) = E(eihX̄). Then by the integral form of the second
order Taylor reminder we have

|ϕ(h)− ϕ(0)− hϕ′(0)| = |ϕ(h)− ϕ(0)| =
∣∣∣∣∫ h

0

(t− h)ϕ′′(t)dt

∣∣∣∣
≤ V (X)

∫ |h|
0

(|h| − t)dt =
1

2
h2V (X). �

3.2. Non resonant intervals. As in almost all the proofs of the LLT,
the starting point in the proof of Theorem 1.4 (and Theorem 2.1) is
that for k,N ∈ N we have

(3.4) 2πP(SN = k) =

∫ 2π

0

e−itkE(eitSN )dt.

Denote T = R/2πZ. Let

ΦN(t) = E(eitSN ) =
N∏
n=1

φn(t) where φn(t) = E(eitXn).
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Divide T into intervals Ij of small size δ such that each interval
contains at most one resonant point and this point is strictly inside Ij.
We call an interval resonant if it contains a resonant point inside. Then

(3.5) 2πP(SN = k) =
∑
j

∫
Ij

e−itkE(eitSN )dt.

We will consider the integrals appearing in the above sum individually.

Lemma 3.3. There are constants C, c > 0 which depend only on δ and
K so that for any non-resonant interval Ij and N ≥ 1 we have∫

Ij

|ΦN(t)|dt ≤ Ce−cVN .

Proof. Let q̂n, q̄n be the largest and the second largest values of P(Xn =

j) and let ĵn, j̄n be the corresponding values. Note that

(3.6) φn(t) = q̂ne
itĵn + q̄ne

itj̄n +
∑

l 6=ĵn,j̄n

P(Xn = l)eitl.

Since Ij is non resonant, the angle between eitĵn and eitj̄n is uniformly
bounded from below. Indeed if this was not the case we would have
tj̄n − tĵn ≈ 2πln for some ln ∈ Z. Then t ≈ 2πln

mn
where mn = j̄n −

ĵn contradicting the assumption that Ij is non-resonant. Accordingly

∃c1 > 0 such that
∣∣∣eitĵn + eitj̄n

∣∣∣ ≤ 2− c1. Therefore∣∣∣q̂neitĵn + q̄ne
itj̄n
∣∣∣ ≤ (q̂n − q̄n) + q̄n

∣∣∣eitĵn + eitj̄n
∣∣∣ ≤ q̂n + q̄n − 2c1q̄n.

Plugging this into (3.6), we conclude that |φn(t)| ≤ 1−2c1q̄n for t ∈ Ij.
Multiplying these estimates over n and using that 1− x ≤ e−x, x > 0,
we get

|ΦN(t)| ≤ e−2c1
∑
n q̄n .

Since V (Xn) ≤ c2q̄n for a suitable constant c2 we can rewrite the pre-
ceding as

(3.7) |ΦN(t)| ≤ e−c3VN , c3 > 0.

Integrating over Ij we obtain the result. �

3.3. Prokhorov estimates. Next we consider the case where Ij con-
tains a nonzero resonant point tj = 2πl

m
.

Lemma 3.4. There is a constant c0 which depends only on K so that
for any nonzero resonant point tj = 2πl/m we have

(3.8) sup
t∈Ij
|E(eitSN )| ≤ e−c0MN (m).
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Thus, for any r ≥ 1 there is a constant R = R(r,K) such that if
MN(m) ≥ R lnVN , then the integral

∫
Ij
e−itkE(eitSN )dt is o(σ−rN ) uni-

formly in k, and so it only contributes to the error term.

Proof. The estimate (3.8) follows from the arguments in [33], but for
readers’ convenience we recall its proof. Let X be an integer-valued
random variable so that ‖X‖L∞ ≤ K. Let t0 = 2πl/m be a nonzero
resonant point, where gcd(l,m) = 1. Let t ∈ T be so that

(3.9) |t− t0| ≤ δ,

where δ is a small positive number. Let φX(·) denote the characteristic
function of X. Since x ≤ ex−1 for any real x we have

|φX(t)|2 ≤ e|φ(t)|2−1.

Next, we have

|φX(t)|2 − 1 = φ(t)φ(−t)− 1 =
2K∑

j=−2K

∑
s

P̃j [cos(tj)− 1]

where
P̃j =

∑
s

P(X = s)P(X = j + s).

Fix some −2K ≤ j ≤ 2K. We claim that if δ in (3.9) is small enough
and j 6≡ 0 mod m then for each integer w we have |t− 2πw/j| ≥ ε0 for
some ε0 > 0 which depends only on K. This follows from the fact that
−2K ≤ j ≤ 2K and that 2πw/j 6= t0 (and there is a finite number of
resonant points). Therefore,

cos(tj)− 1 ≤ −δ0

for some δ0 > 0. On the other hand, if j = km for some integer k then
with w = lk we have

cos(tj)− 1 = −2 sin2(tj/2) = −2 sin2 ((tj − 2πw)/2)

= −2 sin2 (j(t− t0)/2) ≤ −δ1(t− t0)2

for some δ1 > 0 (assuming that |t− t0| is small enough). We conclude
that

|φX(t)|2 − 1 ≤ −δ0

∑
j∈A

P̃j − δ1(t− t0)2
∑
j∈B

P̃j

where A = A(X) is the set of j’s between −2K and 2K so that j 6≡
0 mod m and B = B(X) is its complement in Z∩ [−2K, 2K]. Let s0 be
the most likely residue of X mod m and s1 be the second most likely
residue class. Since

P(X ≡ s0 mod m) ≥ 1

m
and P(X ≡ s1 mod m) = qm(X)
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it follows that
∑
j∈A

P̃j ≥
qm(X)

m
.

Combining this with the trivial bound
∑
j∈B

P̃j ≥ P2(X ≡ s0) ≥ 1

m2

we obtain

|φX(t)| ≤ exp−
[

1

2

(
δ0qm(X)

m
+
δ1(t− t0)2

m2

)]
.

Applying the above with t0 = tj and X = Xn, 1 ≤ n ≤ N we get that

(3.10) |ΦN(t)| ≤ e−c0MN (m)−c̄0N(t−tj)2 ≤ e−c0MN (m)

where c0 is some constant. �

Remark 3.5. Using the first inequality in (3.10) and arguing as in
[33, page 264], we can deduce that there are positive constants C, c1, c2

such that

(3.11)

∫
Ij

|E(eitSN )|dt ≤ C

(
e−c1σN +

e−c2MN (m)

σN

)
.

This estimate plays an important role in the proof of the SLLT in [33],
but for our purposes a weaker bound (3.8) is enough. Note also that
in order to prove (3.8) we could have just used the trivial inequality
cos(tj) − 1 ≤ 0 when j ≡ 0 mod m, but we have decided to present
this part from [33] in full.

Remark 3.6. Let dR be the minimal distance between two different
resonant points. Then, when δ < 2dR, we can take δ0 = 1− cos(dR) in

the proof of Lemma 3.4. Therefore, we can take c0 = 1−cos(dR)
4K

in (3.8).

Hence Lemma 3.4 holds with R(r,K) = r+1
2c0
.

3.4. Proof of Theorem 1.4. Fix some r ≥ 1. Lemmas 3.3 and 3.4
show that if MN ≥ R(r,K) lnVN , then all the integrals in the right
hand side of (3.5) are of order o(σ−rN ), except for the one corresponding
to the resonant point tj = 0. That is, for any δ > 0 small enough,
uniformly in k we have

2πP(SN = k) =

∫ δ

−δ
e−ihkΦN(h)dh+ o(σ−rN ).

In order to complete the proof of Theorem 1.4, we need to expand the
above integral. Making a change of variables h → h/σN and using
Proposition 3.1, we conclude that if δ is small enough then∫ δ

−δ
e−ihkΦN(h)dh =
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σ−1
N

∫ δσN

−δσN
e−ihkN e−h

2/2

(
1 +

r∑
u=1

Au,N(h)

σkN
+
hr+1

σr+1
N

O(1)

)
dh

where kN = (k − E(SN)) /σN . Since the coefficients of the polynomials
Au,N are uniformly bounded inN , we can just replace the above integral
with the corresponding integral over all R (i.e. replace ±δσN with
±∞). Now the Edgeworth expansions are achieved using that for any

nonnegative integer q we have that (it)qe−t
2/2 is the Fourier transform

of the q-th derivative of n(t) = 1√
2π
e−t

2/2 and that for any real a,

(3.12)

∫ ∞
−∞

e−iatn̂(q)(t)dt = n(q)(a) =
1√
2π

(−1)qHq(a)e−a
2/2

where Hq(a) is the q-th Hermite polynomial.

4. Generalized Edgeworth expansions: Proof of Theorem
Theorem 2.1

4.1. Contributions of resonant intervals. Let r ≥ 1. As in the
proof of Theorem 1.4, our starting point is the equality

(4.1) 2πP(SN = k) =

∫ 2π

0

e−itkE(eitSN )dt =
∑
j

∫
Ij

e−itkE(eitSN )dt

which holds for any k ∈ N. We will consider the integrals appearing
in the above sum individually. By Lemma 3.3 the integrals over non-
resonant intervals are of order o(σ−rN ), and so they can be disregarded.
Moreover, in §3.4 we have expanded the integral over the resonant inter-
val containing 0. Now we will see that in the case MN < R(r,K) lnVN
the contribution of nonzero resonant points need not be negligible.

Let tj = 2πl
m

be a nonzero resonant point so that MN(m) <
R(r,K) lnVN and let Ij be the resonant interval containing it. Theo-
rem 2.1 will follow from an appropriate expansion of the integral∫

Ij

e−itkE(eitSN )dt.

We need the following simple result, which for readers’ convenience is
formulated as a lemma.

Lemma 4.1. There exists ε̄ > 0 so that for each n ≥ 1 with qn(m) ≤ ε̄
we have |φn(tj)| ≥ 1

2
. In fact, we can take ε̄ = 1

4m
.
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Proof. Recall that tj = 2πl/m. The lemma follows since for any ran-
dom variable X we have |E(eitjX)| =∣∣∣∣∣∣eitjs(m,X) −

∑
u6≡s(m,X) mod m

(
eitjs(m,X) − eitju

)
P (X ≡ u mod m)

∣∣∣∣∣∣
≥ 1− 2mq(m,X)

where s(m,X) is the most likely value of X mod m and q(m,X) is the
second largest value among P (X ≡ u mod m), u = 0, 1, 2, ...,m − 1.
Therefore, we can take ε̄ = 1

4m
. �

Next, set ε̄ = 1
8K

and let N0 = N0(N, tj, ε̄) be the number of all

n’s between 1 to N so that qn(m) > ε̄. Then N0 ≤ R lnVN
ε̄

because
MN(m) ≤ R lnVN . By permuting the indexes n = 1, 2, ..., N if neces-
sary we can assume that qn(m) is non increasing. Let N0 be the largest
number such that qN0 ≥ ε̄. Decompose

(4.2) ΦN(t) = ΦN0(t)ΦN0,N(t)

where ΦN0,N(t) =
N∏

n=N0+1

φn(t).

Lemma 4.2. If the length δ of Ij is small enough then for any t =
tj + h ∈ Ij and N ≥ 1 we have

ΦN0,N(t) = ΦN0,N(tj)ΦN0,N(h)ΨN0,N(h)

where

ΨN0,N(h) = exp

[
O(MN(m))

∞∑
u=1

(O(1))uhu

]
.

Proof. Denote

µn = E(Xn), X̄n = Xn − µn, φ̄n(t) = E(eitX̄n).

Let jn(m) be the most likely residue mod m for Xn. Decompose

X̄n = sn + Yn + Zn

where Zn ∈ mZ, sn = jn(m)− µn, so that P(Yn 6= 0) ≤ mqn(m). Then
for t = tj + h,

(4.3) φ̄n(t) = eitjsnE
(
eitjYneihX̄n

)
= φ̄n(tj)ψn(h)

where

ψn(h) =

(
1 +

ihE(eitjY X̄n)− h2

2
E(eitjY (X̄n)2) + . . .

E(eitjYn)

)
.
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Next, using that for any x ∈ (−1, 1) we have

1 + x = eln(1+x) = ex−x
2/2+x3/3−...

we obtain that for h close enough to 0,
(4.4)

ψn(h) = exp

 ∞∑
k=1

(−1)k+1

k

(
1

E(eitjYn)

∞∑
q=1

(ih)q

q!
E(eitjYn(X̄n)q)

)k


= exp

(
∞∑
k=1

(−1)k+1

k

∑
1≤j1,...,jk

1

(E(eitjYn))k

k∏
r=1

(ih)jr

jr!
E(eitjYn(X̄n)jr)

)

= exp

(
∞∑
u=1

(
u∑
k=1

(−1)k+1

k

∑
j1+...+jk=u

k∏
r=1

E(eitjYn(X̄n)jr)

E(eitjYn)jr!

)
(ih)u

)
.

Observe next that

E[eitjYn(X̄n)jr ] = E
[
(eitjYn − 1)

(
(X̄n)jr − E[(X̄n)jr ]

)]
+E[(X̄n)jr ]E(eitjYn)

and so with C = 2K, we have

E[eitjYn(X̄n)jr ]

E(eitjYn)
= O(qn(m))O(Cjr) + E[(X̄n)jr ].

Plugging this into (4.4) and using that for h small enough,

exp

[
∞∑
u=1

(
u∑
k=1

(−1)k+1

k

∑
j1+...+jk=u

k∏
r=1

E(X̄jr
n )

jr!

)
(ih)u

]
= E

(
eihX̄n

)
we conclude that

ψn(h) = E(eihX̄n) exp

[
∞∑
u=1

(O(1))uO(qn(m))hu

]
.

Therefore,

ΦN0,N(t) = ΦN0,N(tj)ΦN0,N(h)ΨN0,N(h)

where ΨN0,N(h) = exp

[
O(MN(m))

∞∑
u=1

(O(1))uhu

]
. �

Remark 4.3. We will see in §4.2 that the coefficients of the polynomi-
als appearing in Theorem 2.1 depend on the coefficients of the power
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series ΨN0,N(h) (see, in particular, (4.22)). The first term in this series

is ih
N∑

n=N0+1

an,j, where

(4.5) an,j =
E[(eitjYn − 1)X̄n]

E(eitjYn)
=

E(eitjXnX̄n)

E(eitjXn)

while the second term is
h2

2

N∑
n=N0+1

bn,j, where

(4.6) bn,j =
E[(eitjYn − 1)X̄n]2

E(eitjYn)2
− E[(eitjYn − 1)((X̄n)2 − V (Xn))]

E(eitjYn)

= a2
n,j −

E
(
eitjXn(X̄n)2

)
E(eitjXn)

.

In Section 9 we will use (4.5) to compute the coefficients of the poly-
nomials from Theorem 2.1 in the case r = 2, and (4.6) is one of the
main ingredients for the computation in the case r = 3 (which will not
be explicitly discussed in this manuscript).

The next step in the proof of Theorem 2.1 is the following.

Lemma 4.4. For t = tj + h ∈ Ij we can decompose

(4.7) ΦN0(t) = ΦN0(tj + h) =
L∑
l=0

Φ
(l)
N0

(tj)

l!
hl +O

(
(h lnVN)L+1

)
.

Proof. The lemma follows from the observation that the derivatives of

ΦN0 satisfy |Φ(k)
N0

(t)| ≤ O(Nk
0 ) ≤ (C lnVN)k. �

4.2. Completing the proof. Recall (4.1) and consider a resonant
interval Ij which does not contain 0 such that MN(m) ≤ R lnσN . Set
Uj = [−uj, vj] = Ij − tj. Let N0 be as described below Lemma 4.1.
Denote

(4.8) SN0,N = SN − SN0 , S0 = 0,

VN0,N = Var(SN − SN0) = VN − VN0 and σN0,N =
√
VN0,N .

Then

(4.9) VN0,N = VN +O(lnVN) = VN(1 + o(1)).

Denote hN0,N = h/σN0,N . By (3.1), if |hN,N0 | is small enough then

(4.10) E(eihN0,N
SN0,N ) =
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eihN0,N
E(SN0,N

)e−h
2/2

(
1 +

r∑
k=1

Ak,N0,N(h)

σkN0,N

+
hr+1

σr+1
N0,N

O(1)

)
where Ak,N0,N are polynomials with bounded coefficients (the degree

of Ak,N0,N depends only on k). Let us now evaluate

∫
Ij

e−itkE(eitSN )dt.

By Lemma 4.2,

(4.11)

∫
Ij

e−itkΦN(t)dt =

e−itjkΦN0,N(tj)

∫
Uj

e−ihkΦN0(tj + h)ΦN0,N(h)ΨN0,N(h) dh.

Therefore, it is enough to expand the integral on the RHS of (4.11).
Fix a large positive integer L and plug (4.7) into (4.11). Note that for
N is large enough, h0 small enough and |h| ≤ h0, Proposition 3.2 and
(4.9) show that there exist positive constants c0, c such that

(4.12) |ΦN0,N(h)| = |E(eihSN0,N )| ≤ e−c0(VN−VN0
)h2 ≤ e−cVNh

2

.

Thus, the contribution coming from the term O
(
(h lnVN)L+1

)
in the

right hand side of (4.7) is at most of order

V Rδ
N (lnVn)L+1

∫ ∞
−∞

hL+1e−cVNh
2

dh

where δ is the diameter of Ij. Changing variables x = σNh, where σN =√
VN we get that the latter term is of order (lnVn)L+1σ

−(L+1−2Rδ)
N and so

when L is large enough we get that this term is o(σ−r−1
N ) (alternatively,

we can take L = r and δ to be sufficiently small). This means that it
is enough to expand each integral of the form

(4.13)

∫
Uj

e−ihkhlΦN0,N(h)ΨN0,N(h)dh

where l = 0, 1, ..., L (after changing variables the above integral is di-
vided by σl+1

N0,N
). Next, Lemma 4.2 shows that for any d ∈ Z we have

(4.14) ΨN0,N(h) = 1 +
d∑

u=1

Cw,Nh
u + hd+1O(1 +MN(m)d+1)|VN |O(|h|),

where Cw,N = Cw,N,tj are O(Mu
N(m)) = O((lnVN)u). Note that, with

an,j and bn,j defined in Remark 4.3, we have

(4.15) C1,N = i
N∑

n=N0+1

an,j
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and

C2,N =
1

2

N∑
n=N0+1

bn,j −
1

2

(
N∑

n=N0+1

an,j

)2

.

Take d large enough and plug (4.14) into (4.13). Using (4.12), we
get again that the contribution of the term

hd+1O(1 +MN(m)d+1)|VN |O(|h|)hlΦN0,N(h)

to the above integral is o(σ−rN ). Thus, it is enough to expand each term
of the form ∫

Uj

e−ihkhqΦN0,N(h)dh

where 0 ≤ q ≤ L+ d. Using (4.10) and making the change of variables
h→ h/σN0,N it is enough to expand
(4.16)∫ ∞
−∞

e−ih(k−E[SN0,N
])/σN0,Nhqe−h

2/2

(
1 +

r∑
w=1

Aw,N0,N(h)

σwN0,N

+
hr+1

σr+1
N0,N

O(1)

)
dh

σN0,N

.

This is achieved by using that (it)qe−t
2/2 is the Fourier transform of

the q-th derivative of n(t) = 1√
2π
e−t

2/2 and that for any real a,

(4.17)

∫ ∞
−∞

e−iatn̂(q)(t)dt = n(q)(a) =
1√
2π

(−1)qHq(a)e−a
2/2

where Hq(a) is the q-th Hermite polynomial.
Note that in the above expansion we get polynomials in the variable

kN0,N =
k − E[SN − SN0 ]

σN,N0

, not in the variable kN = k−E(SN )
σN

. Since

kN0,N = kNαN0,N + O(lnσN/σN), where αN0,N = σN/σN0,N = O(1),
the binomial theorem shows that such polynomials can be rewritten
as polynomials in the variable kN whose coefficients are uniformly
bounded in N . We also remark that in the above expansions we get
the exponential terms

e
−

(k−aN0,N
)2

2(VN−VN0
) where aN0,N = E[SN − SN0 ]

and not e−(k−aN )2/2VN (as claimed in Theorem 2.1). In order to address

this fix some ε < 1/2. Note that for |k − aN0,N | ≥ V
1
2

+ε

N we have

e
−

(k−aN0,N
)2

2(VN−VN0
) = o(e−cV

2ε
N ) and e

−
(k−aN0,N

)2

2VN = o(e−cV
2ε
N ) for some c > 0.
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Since both terms are o(σ−sN ) for any s, it is enough to explain how to

replace e
−

(k−aN0,N
)2

2(VN−VN0
) with e

− (k−aN )2

2VN when |k − aN0,N | ≤ V
1
2

+ε

N (in which

case |k − aN | = O(V
1
2

+ε

N )). For such k’s we can write

(4.18) exp

[
−(k − aN0,N)2

2(VN − VN0)

]
=

exp

[
−(k − aN0,N)2

2VN

]
exp

[
−(k − aN0,N)2VN0

2VN(VN − VN0)

]
.

Since
(k − aN0,N)2VN0

2VN(VN − VN0)
= O

(
V
−(1−3ε)
N

)
, for any d1 we have

(4.19) exp

[
−(k − aN0,N)2VN0

2VN(VN − VN0)

]
=

d1∑
j=0

V j
N0

2j(VN − VN0)jj!

(
(k − aN0,N)2

σ2
N

)j
+O(V

−(d1+1)(2−3ε)
N ).

Note that (using the binomial formula) the first term on the above right
hand side is a polynomial of the variable (k−aN)/σN whose coefficients
are uniformly bounded in N .

Next we analyze the first factor in the RHS of (4.18). As before, it

is enough to consider k’s such that |k − aN | ≤ V
1
2

+ε

N for a sufficiently
small ε. We have

(4.20) exp

[
−(k − aN,N0)2

2VN

]
=

exp

[
−(k − aN)2

2VN

]
exp

[
−

2(k − aN)aN0 + a2
N0

2VN

]
.

Note that
(k−aN )aN0

+a2
N0

2VN
= kNβN0,N + θN0,N , where

βN0,N =
aN0

2σN
= O

(
lnσN
σN

)
and θN0,N =

a2
N0

2VN
= O

(
ln2 σN
VN

)
.

Approximating e
(k−aN )aN0

+a2
N0

2VN by a polynomial of a sufficiently large

degree d2 in the variable
(k−aN )aN0

+a2
N0

2VN
completes the proof of existence

of polynomials Pa,b,N claimed in the theorem (the Taylor reminder in

the last approximation is of order O
(
V
−d2( 1

2
−ε)

N

)
, so we can take d2 =

4(r + 1) assuming that ε is small enough).
Finally, let us show that the coefficients of the polynomials Pa,b,N

constructed above are uniformly bounded in N . In fact, we will show
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that for each nonzero resonant point tj = 2πl/m, the coefficients of the
polynomials coming from integration over Ij are of order

O
(
(1 +M q0

N (m))e−MN (m)
)
,

where q0 = q0(r) depends only on r.
Observe that the additional contribution to the coefficients of the

polynomials coming from the transition between the variables kN and
kN0,N is uniformly bounded in N . Hence we only need to show that
the coefficients of the (original) polynomials in the variable kN0,N are
uniformly bounded in N . The possible largeness of these coefficient
can only come from the terms Cu,N,tj , for u = 0, 1, 2, ..., d which are
of order Mu

N(m), respectively. However, the corresponding terms are

multiplied by terms of the form ΦN0,N(tj)Φ
(`)
N0

(tj) for certain `’s which
are uniformly bounded in N (see also (4.22)). We conclude that there
are constants Wj ∈ N and aj ∈ N which depend only on tj and r so
that the coefficients of the resulting polynomials are composed of a

sum of at most Wj terms of order (MN(m))ajΦN0,N(tj)Φ
(`)
N0

(tj), where
` ≤ E(r) for some E(r) ∈ N. Next, we have

(4.21) Φ
(`)
N0

(tj)ΦN0,N(tj) =

∑
n1,...,nk≤N0;
`1+···+`k=`

γ`1,...,`k

(
k∏
q=1

φ(`q)
nq (tj)

)[ ∏
n≤N, n6=nk

φn(tj)

]

where γ`1,...,`k are bounded coefficients of combinatorial nature. Using
(3.8) we see that for each n1, . . . , nk the product in the square brackets
is at most Ce−c0MN (m)+O(1) for some C, c0 > 0. Hence

|Φ(`)
N0

(tj)ΦN0,N(tj)| ≤ ĈN `
0 e
−c0MN (m), Ĉ > 0.

Now, observe that the definition of N0 gives MN(m) ≥ ε0N0, ε0 > 0.

Therefore |Φ(`)
N0

(tj)ΦN0,N(tj)| ≤ C0M
`
N(m)e−c0MN (m), and so each one

of the above coefficients is of order M `′
N(m)e−c0MN (m) for some `′ which

does not depend on N . �

Remark 4.5. The transition between the variables kN0,N and kN
changes the monomials of the polynomials Pa,b,N , a 6= 0 coming from

integration over Ij, for tj 6= 0 into monomials of the form
cNa

j1
N0
σ
j2
N0
k
j3
N

σuN

for some bounded sequence (cN), j1, j2, j3 ≥ 0 and u ∈ N. As we have
explained, the coefficients of these monomials are uniformly bounded.
Still, it seems more natural to consider such monomials as part of the
polynomial Pa,b+u,N . In this case we still get polynomials with bounded
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coefficients since aN0 and σN0 are both O(N0), N0 = O(MN(m)) and

cN contains a term of the form Φ
(`)
N0

(tj)ΦN0,N(tj).

Remark 4.6. As can be seen from the proof, the resulting expansions
might contain terms corresponding to σ−sN for s > r. Such terms can

be disregarded. For |k−aN |
σN

≤ V ε
N this follows because the coefficients of

our exapansions are O(1) and for |k−aN |
σN

≥ V ε
N this follows from (4.12).

In practice, some of the polynomials Pa,b,N with b ≤ r might have
coefficients which are o(σb−rN ) (e.g. when b+ u > r in the last remark)
so they also can be disregarded. The question when the terms Pa,b,N
may be disregarded is in the heart of the proof of Theorem 1.5 given
in the next section.

4.3. A summary. The proofs of Proposition 1.2, Theorem 1.3 and
Theorem 1.5 will be based on careful analysis of the formulas of the
polynomials from Theorem 2.1. For this purpose, it will be helpful
to summarize the main conclusions from the proof of Theorem 2.1.
Let r ≥ 1 and tj = 2πl/m be a nonzero resonant point. Then the
arguments in the proof of Theorem 2.1 yield that the contribution to
the expansion coming from tj is

(4.22) Cj(k) :=

e−itjkΦN0,N(tj)
∑
s≤r−1

(∑
u+l=s

Φ
(l)
N0

(tj)Cu,N

l!

)∫
Uj

e−ihkhsΦN0,N(h)dh

where Uj = Ij−tj, Cu,N are given by (4.14) and C0,N = 1. When tj = 0
then it is sufficient to consider only s = 0, N0 = 0 and the contribution
is just the integral ∫ δ

−δ
e−ihkΦN(h)dh

where δ is small enough. As in (4.16), changing variables we can replace
the integral corresponding to hs with

σ−s−1
N0,N

∫ ∞
−∞

e−ih(k−E[SN0,N
])/σN0,Nhse−h

2/2(4.23)

×

(
1 +

r∑
w=1

Aw,N0,N(h)

σwN0,N

+
hr+1

σr+1
N0,N

O(1)

)
dh.

After that was established, the proof was completed using (4.17) and
some estimates whose whose purpose was to make the transition be-
tween the variables kN0,N and kN .
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5. Uniqueness of trigonometric expansions.

In several proofs we will need the following result.

Lemma 5.1. Let r ≥ 1 and d ≥ 0. Set R0 = R∪{0} where R is the set
of nonzero resonant points. For any tj ∈ R0, let A0,N(tj),...,Ad,N(tj)

be sequences so that, uniformly in k such that kN =
k − E(SN)

σN
= O(1)

we have ∑
tj∈R0

e−itjk

(
d∑

m=0

kmNAm,N(tj)

)
= o(σ−rN ).

Then for all m and tj

(5.1) Am,N(tj) = o(σ−rN ).

In particular the polynomials from the definition of the (generalized)
Edgeworth expansions are unique up to terms of order o(σ−rN ).

Proof. The proof is by induction on d. Let us first set d = 0. Then, for
any k ∈ N we have

(5.2)
∑
tj∈R0

e−itjkA0,N(tj) = o(σ−rN ).

Let T be the number of nonzero resonant points, and let us relabel
them as {x1, ..., xT}. Consider the vector

AN = (A0,N(0), A0,N(x1), ..., A0,N(xT )).

Let V be the transpose of the Vandermonde matrix of the distinct
numbers αj = e−ixj , j = 0, 1, 2, ..., T where x0 := 0. Then V is invertible
and by considering k = 0, 1, 2, ..., T in (5.2) we see that (5.2) holds true
if and only if

AN = V−1o(σ−rN ) = o(σ−rN ).

Alternatively, let Q be the least common multiple of the denominators
of tj ∈ R. Let aN(p) = A0,N(2πp/Q) if 2πp/Q is a resonant point and
0 otherwise. Then for m = 0, 1, ..., Q− 1 we have

âN(m) :=

Q−1∑
p=0

aN(p)e−2πpm/Q = o(σ−rN ).

Therefore, by the inversion formula of the discrete Fourier transform,

aN(p) = Q−1

Q−1∑
m=0

âN(m)e2πimp/Q = o(σ−rN ).

Assume now that the theorem is true for some d ≥ 0 and any se-
quences functions A0,N(tj), ..., Ad,N(tj). Let A0,N(tj), ..., Ad+1,N(tj) be
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sequences so that uniformly in k such that kN :=
k − E(SN)

σN
= O(1)

we have

(5.3)
∑
tj∈R0

e−itjk

(
d+1∑
m=0

kmNAm,N(tj)

)
= o(σ−rN ).

Let us replace k with k′ = k + [σN ]Q, where Q is the least common
multiply of all the denominators of the nonzero tj’s. Then e−itjk =
e−itjk

′
. Thus,∑

tj∈R0

e−itjk

(
d+1∑
m=0

(k′mN − kmN )Am,N(tj)

)
= o(σ−rN ).

Set LN = [σN ]Q/σN ≈ Q. Then the LHS above equals

LN
∑
tj∈R0

e−itjk

(
d∑
s=0

ksNAs,N(tj)

)
where

As,N(tj) =
d+1∑

m=s+1

Am,N(tj)L
m−s−1
N .

By the induction hypothesis we get that

As,N(tj) = o(σ−rN )

for any s = 0, 1, ..., d. In particular

Ad,N(tj) = Ad+1,N(tj) = o(σ−rN ).

Substituting this into (5.3) we can disregard the last term Ad+1,N(tj).
Using the induction hypothesis with A0,N(tj), A1,N(tj), ..., Ad,N(tj) we
obtain (5.1). �

6. First order expansions

In this section we will consider the case r = 1. By (4.22) and (4.23),
we see that the contribution coming from the integral over Ij is

σ−1
N0,N

e−itjkΦN(tj)
√

2πe−k
2
N0,N

/2 + o(σ−1
N )

where kN0,N = (k − E(SN0,N))/σN0,N . Now, using the arguments at
the end of the proof of Theorem 2.1 when r = 1 we can just replace

e−k
2
N0,N

/2 with e−(k−E(SN ))2/2VN (since it is enough to consider the case
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when kN0,N and k0,N are of order V ε
N). Therefore, taking into account

that σ−1
N0,N

− σ−1
N = O(σ−2

N N0) we get that

(6.1)
√

2πP(SN = k) =1 +
∑
tj∈R

e−itjkΦN(tj)

σ−1
N e−(k−E[SN ])2/2VN + o(σ−1

N ).

Here R is the set of all nonzero resonant points tj = 2πlj/mj. In-
deed the contribution of the resonant points satisfying MN(mj) ≤
R(r,K) lnVN is analyzed in §4.2. The contribution of the other nonzero
resonant points t is o(σ−1

N ) due to (3.8) in Section 3. In particu-
lar, (3.8) implies that ΦN(t) = o(σ−1

N ) so adding the points with
MN(mj) ≥ R(r,K) lnVN only changes the sum in the RHS of (6.1)
by o(σ−1

N ).

Corollary 6.1. The local limit theorem holds if and only if
max
t∈R
|ΦN(t)| = o(1).

Proof. It follows from (6.1) that the LLT holds true if and only if for
any k we have ∑

tj∈R

e−itjkΦN(tj) = o(1).

Now, the corollary follows from Lemma 5.1. �

Before proving Theorem 1.3 we recall a standard fact which will also
be useful in the proofs of Theorems 1.6 and 1.8.

Lemma 6.2. Let {µN} be a sequence of measures probability measures
on Z/mZ and {γN} be a positive sequence. Then µN(a) = 1

m
+O(γN)

for all a ∈ Z/mZ if and only iff µ̂N(b) = O(γN) for all b ∈ (Z/mZ)\{0}
where µ̂ is the Fourier transform of µ.

Proof. If µN(a) = 1
m

+O(γn) then

µ̂N(b) =
m−1∑
a=0

µN(a)e2πiab/m =
m−1∑
a=0

1

m
e2πiab/m +O(γN) = O(γN).

Next µ̂N(0) = 1 since µN are probabilities. Hence if µ̂N(b) = O(γN)
for all b ∈ (Z/mZ) \ {0} then

µN(a) =
1

m

m−1∑
b=0

µ̂N(b)e−2πiba/m =
1

m

[
1 +

m−1∑
b=1

µ̂N(b)e−2πiba/m

]
=

1

m
+O(γN)

as claimed. �
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Proof of Theorem 1.3. The equivalence of conditions (b) and (c) comes
from the fact that for non-resonant points the characteristic function
decays faster than any power of σN (see (3.7)).

The equivalence of (a) and (c) is due to Corollary 6.1. Finally, the
equivalence between (c) and (d) comes from Lemma 6.2. �

Remark 6.3. Theorem 1.3 can also be deduced from [7, Corollary
1.4]. Indeed the corollary says that either the LLT holds or there is an
integer h ∈ (0, 2K) and a bounded sequence {aN} such that the limit

p(j) = lim
N→∞

P(SN − aN = j mod h)

exists and moreover if k − an ≡ j mod h then

σNP(SN = k) = p(j)hg

(
k − E(SN)

σN

)
+ o

(
σ−1
N

)
.

Thus in the second case the LLT holds iff p(j) = 1
h

for all j which
is equivalent to SN being asymptotically uniformly distributed mod h
and also to the Fourier transform of p(j) regarded as the measure on
Z/(hZ) being the δ measure at 0. Thus the conditions (a), (c) and
(d) of the theorem are equivalent. Also by the results of [7, Section
2] (see also [§3.3.2][10]) if E

(
eiξSN

)
does not converge to 0 for some

non zero ξ then

(
2π

ξ

)
Z
⋂

2πZ is a lattice in R which implies that ξ

is resonant, so condition (b) of the theorem is also equivalent to the
other conditions.

Proof of Proposition 1.2. Let SN satisfy LLT. Fix m ∈ N and suppose

that
∑
n

qn(m) < ∞. Let sn be the most likely residue of Xn mod m.

Then for t = 2πl
m

we have

φn(t) = eitsn −
∑

j 6≡sn mod m

P(Xn ≡ j mod m)
(
eitsn − eitj

)
,

so that 1 ≥ |φn(t)| ≥ 1− 2mqn(m). It follows that for each ε > 0 there

is N(ε) such that

∣∣∣∣∣∣
∞∏

n=N(ε)+1

φn(t)

∣∣∣∣∣∣ > 1 − ε. Applying this for ε = 1
2

we

have

(6.2)
1

2
≤ lim inf

N→∞

∣∣ΦN(1/2),N(t)
∣∣ 6= 0.

On the other hand the LLT implies that

(6.3) lim
N→∞

ΦN(t) = 0.
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Since ΦN = ΦN(1/2)ΦN(1/2),N , (6.2) and (6.3) imply that ΦN(1/2)(t) = 0.

Since ΦN(1/2)

(
2πl

m

)
=

N(1/2)∏
n=1

φn

(
2πl

m

)
we conclude that there exists

nl ≤ N(1/2) such that φnl(
2πl
m

) = 0. Hence Y = Xn1 +Xn2 + . . . Xnm−1

satisfies E
(
e2πi(k/m)Y

)
= 0 for k = 1, . . .m − 1. By Lemma 6.2 both

Y and SN for N ≥ N(1/2) are uniformly distributed. This proves the
proposition. �

7. Characterizations of Edgeworth expansions of all
orders.

7.1. Derivatives of the non-perturbative factor. Next we prove
the following result.

Proposition 7.1. Fix r ≥ 1, and assume that MN ≤ R(r,K) lnσN
(possibly along a subsequence). Then Edgeworth expansions of order
r hold true (i.e. (1.2) holds for such N ’s) iff for each tj ∈ R and
0 ≤ ` < r (along the underlying subsequence) we have

(7.1) σr−`−1
N ΦN0,N(tj)Φ

(`)
N0

(tj) = o(1).

Proof. First, in view of (4.22) and (4.12), it is clear that the condition
(7.1) is sufficient for expansions of order r.

Let us now prove that the condition (7.1) is necessary for the expan-
sion of order r.

We will use induction on r. For r = 1 (see (6.1)) our expansions read

P(SN = k) = σ−1
N e−k

2
N/2

1 +
∑
tj∈R

e−itjkΦN(tj)

+ o(σ−1
N ).

Therefore if

P(SN = k) = σ−1
N e−k

2
N/2PN(kN) + o(σ−1

N )

for some polynomial PN then Lemma 5.1 tells us that, in particular
ΦN(tj) = o(1) for each tj ∈ R.

Let us assume now that the necessity part in Proposition 7.1 holds
for r′ = r − 1 and prove that it holds for r. We will use the following
lemma.

Lemma 7.2. Assume that for some tj ∈ R,

(7.2) σr−2−l
N ΦN0,N(tj)Φ

(l)
N0

(tj) = o(1), l = 0, 1, ..., r − 2.
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Then, up to an o(σ−rN ) error term, the contribution of tj to the gener-
alized Edgeworh expansions of order r is

(7.3) e−itjke−k
2
N/2

(
ΦN0(tj)

σN
+

r∑
q=2

HN,q(kN)

σqN

)
with

(7.4) HN,q(x) = HN,q(x; tj) =

HN,q,1(x) +HN,q,2(x) +HN,q,3(x) +HN,q,4(x)

where

HN,q,1(x) =
(i)q−1Hq−1(x)ΦN0,N(tj)Φ

(q−1)
N0

(tj)

(q − 1)!
,

HN,q,2(x) =
(i)q−1Hq−1(x)ΦN0,N(tj)Φ

(q−2)
N0

(tj)C1,N,tj

(q − 2)!
,

HN,q,3(x) =
aN0(i)q−2H ′q−2(x)ΦN0,N(tj)Φ

(q−2)
N0

(tj)

(q − 2)!
,

HN,q,4(x) = −
xaN0(i)q−2Hq−2(x)ΦN0,N(tj)Φ

(q−2)
N0

(tj)

(q − 2)!
,

and Hq are Hermite polynomials.
Here C1,N,tj is given by (4.15) when MN(m) ≤ R(K, r) lnσN , and

C1,N,tj = 0 when MN(m) > R(K, r) lnσN . (Note that in either case
C1,N,tj = O(MN(m)) = O(lnσN)).

As a consequence, when the Edgeworth expansions of order r hold
true and (7.2) holds, then uniformly in k so that kN = O(1) we have

(7.5)
ΦN(tj)

σN
+

r∑
q=2

HN,q(kN ; tj)

σqN
= o(σ−rN ).

The proof of the lemma will be given in §7.2 after we finish the proof
of Proposition 7.1.

By the induction hypothesis the condition (7.2) holds true. Let us
prove now that for ` = 0, 1, 2, ..., r − 1 and tj ∈ R we have

ΦN0,N(tj)Φ
(`)
N0

(tj) = o(σ−r+1+`
N ).

Let us write

ΦN(tj)

σN
+

r∑
q=2

HN,q(kN)

σqN
=

r−1∑
m=0

kmNAm,N(tj).

Applying Lemmas 5.1 and 7.2 we get that

Am,N(tj) = o(σ−rN )
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for each 0 ≤ m ≤ r − 1 and tj ∈ R.
Fix tj ∈ R. Using Lemma 7.2 and the fact that the Hermite polyno-

mials Hu have the same parity as u and that their leading coefficient
is 1 we have

Ar−1,N(tj) = σ−rN (i)r−2

(
iΦN0,N(tj)Φ

(r−1)
N0

(tj)/(r − 1)(7.6)

+ΦN0,N(tj)Φ
(r−2)
N0

(tj)(iC1,N − aN0)

)
= o(σ−rN )

and

Ar−2,N(tj) = σ−r+1
N (i)r−3

(
iΦN0,N(tj)Φ

(r−2)
N0

(tj)/(r − 2)(7.7)

+ΦN0,N(tj)Φ
(r−3)
N0

(tj)(iC1,N − aN0)

)
= o(σ−rN ).

Since ΦN0,N(tj)Φ
(r−3)
N0

(tj) = o(σ−1
N ), (7.7) yields

ΦN0,N(tj)Φ
(r−2)
N0

(tj) = o(σ−1
N lnσN).

Plugging this into (7.6) we get

ΦN0,N(tj)Φ
(r−1)
N0

(tj) = o(1).

Therefore we can just disregard Hr,N(kN ; tj) since its coefficients are of
order o(σ−rN ). Since the term Hr,N(kN ; tj) no longer appears, repeating
the above arguments with r − 1 in place of r we have

Ar−3,N(tj) = σ−r+2
N (i)r−4

(
iΦN0,N(tj)Φ

(r−3)
N0

(tj)/(r − 3)

+ΦN0,N(tj)Φ
(r−4)
N0

(tj)(iC1,N − aN0)

)
= o(σ−rN ).

Since ΦN0,N(tj)Φ
(r−4)
N0

(tj) = o(σ−2
N ), the above asymptotic equality

yields that

ΦN0,N(tj)Φ
(r−3)
N0

(tj) = o(σ−2
N lnσN).

Plugging this into (7.7) we get

ΦN0,N(tj)Φ
(r−2)
N0

(tj) = o(σ−1
N ).

Hence, we can disregard also the term Hr−1,N(kN ; tj). Proceeding this

way we get that ΦN0,N(tj)Φ
(`)
N0

(tj) = o(σ`+1−r
N ) for any 0 ≤ ` < r. �
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Before proving Lemma 7.2, let us state the following result, which is
a consequence of Proposition 7.1 and (3.8).

Corollary 7.3. Suppose that for each nonzero resonant point t we
have inf

n
|φn(t)| > 0. Then for any r, the sequence SN obeys Edgeworth

expansions of order r if and only if ΦN(t) = o(σ1−r
N ) for each nonzero

resonant point t.

7.2. Proof of Lemma 7.2.

Proof. First, because of (7.2), for each 0 ≤ s ≤ r−1, the terms indexed
by l < s−1 in (4.22), are of order o(σ−rN ) and so they can be disregarded.
Therefore, we need only to consider the terms indexed by l = s and
l = s− 1. For such l, using again (7.2) we can disregard all the terms
in (4.23) indexed by w ≥ 1, since the resulting terms are of order
o(σ−w−rN lnσN) = o(σ−rN ). Now, since σ−1

N0,N
−σ−1

N = O(VN0/σ
3
N) we can

replace σN0,N with σ−1
N in (4.22), as the remaining terms are of order

o(σ−r−1
N ). Therefore, using (4.17) we get the following contributions

from tj ∈ R,

e−itjk e−k
2
N0,N

/2

(
ΦN(tj)

σN
+

r∑
q=2

HN,q(kN0,N)

σqN

)
where HN,q(x) = HN,q,1(x) +HN,q,2(x) and HN,q,j, j = 1, 2 are defined
after (7.4). Note that when x = O(1) and q < r,

(7.8)
HN,q,1(x)

σqN
= o(σ−r+1

N ) and
HN,q,2(x)

σqN
= o(σ−rN lnσN).

while when q = r,

(7.9)
HN,r,1(x)

σrN
= O(σ−rN lnσN) and

HN,r,2(x)

σrN
= o(σ−rN lnσN).

Next

kN0,N = (1 + ρN0,N)kN +
aN0

σN
+ θN0,N

where ρN0,N = σN/σN0,N − 1 = O(lnσN/σ
2
N) and

θN0,N = aN0

(
1

σN0,N

− 1

σN

)
= O(ln2 σN/σ

3
N).

Hence, when |kN0,N | ≤ σεN (and so kN = O(σεN)) for some ε > 0 small
enough then for each m ≥ 1 we have

kmN0,N
= kmN +mkm−1

N aN0/σN + o(σ−1
N ).
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Therefore, (7.8) and (7.9) show that upon replacing Hq−1(kN0,N) with
Hq−1(kN) the only additional term is

aN0(i)q−1H ′q−1(kN)ΦN0,N(tj)Φ
(q−1)
N0

(tj)

(q − 1)!σq+1
N

for q = 2, 3, ..., r − 1. We thus get that the contribution of tj is

e−itjk e−k
2
N0,N

/2

(
ΦN(tj)

σN
+

r∑
q=2

CN,q(kN)

σqN

)
where

CN,q(x) = HN,q(x) +
aN0(i)q−2H ′q−2(x)ΦN0,N(tj)Φ

(q−2)
N0

(tj)

(q − 2)!
.

Note that CN,2(·) = HN,2(·). Finally, we can replace e−k
2
N0,N

/2 with

(1− kNaN0/σN)e−k
2
N/2

since all other terms in the transition between e−k
2
N0,N

/2 to e−k
2
N/2 are

of order o(σ−1
N ) (see (4.18) and (4.19)). The term −kNaN0/σN shifts

the u-th order term to the u + 1-th term, u = 1, 2, ..., r − 1 multiplied
by −kNaN0 . Next, relying on (7.8) and (7.9) we see that after multi-
plied by kNaN0/σN , the second term HN,q,2(kN) from the definition of
HN,q(kN) is of order o(σ−r−1

N ln2 σN)σqN and so this product can be dis-
regarded. Similarly, we can ignore the additional contribution coming
from multiplying the second term from the definition of CN,q(kN) by
−kNaN0/σN (since this term is of order o(σ−rN lnσN)σqN). We conclude
that, up to a term of order o(σ−rN ), the total contribution of tj is

e−itjk e−k
2
N/2

(
ΦN(tj)

σN
+

r∑
q=2

HN,q(kN ; tj)

σqN

)

where HN,q(x; tj) = CN,q(x) −
xaN0(i)q−2Hq−2(x)ΦN0,N(tj)Φ

(q−2)
N0

(tj)

(q − 2)!
which completes the proof of (7.3).

Next we prove (7.5). On the one hand, by assumption we have
Edgeworth expansions or order r, and, on the other hand, we have the
expansions from Theorem 2.1. Therefore, the difference between the
two must be o(σ−rN ). Since the usual Edgeworth expansions contain no
terms corresponding to nonzero resonant points, applying Lemma 5.1
and (7.3) we obtain (7.5). �

Note that the formulas of Lemma 7.2 together with already proven
Proposition 7.1 give the following result.
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Corollary 7.4. Suppose that E(SN) is bounded, SN admits the Edge-
worth expansion of order r − 1, and, either

(a) for some ε̄ ≤ 1/(8K) we have N0 = N0(N, tj, ε̄) = 0 for each
each nonzero resonant point tj,

or (b) ϕ := min
t∈R

inf
n
|φn(t)| > 0.

Then √
2πP(SN = k)

= e−k
2
N/2

Er(kN) +
∑
tj∈R

(
ΦN(tj)

σN
+
ikNC1,N,tjΦN(tj)

σ2
N

)
e−itjk

+o(σ−rN )

where Er(·) is the Edgeworth polynomial of order r (i.e. the contribution
of t = 0), and we recall that

iC1,N,tj = −
N∑
n=1

E(eitjXnX̄n)

E(eitjXn)
.

Proof. Part (a) holds since under the assumption that N0 = 0 all terms
HN,q,j in (7.4) except HN,2,2 vanish. Part (b) holds since in this case
the argument proceeds similarly to the proof of Theorem 2.1 if we set
N0 = 0 for any tj (since we only needed N0 to obtain a positive lower
bound on |φn(tj)| for tj ∈ R and N0 < n ≤ N). �

Remark 7.5. Observe that σ−1
N � |C1,N,tj |σ−2

N , so if the conditions

of the corollary are satisfied but |ΦN(tj)| ≤ cσ1−r
N (possibly along a

subsequence), then the leading correction to the Edgeworth expansion
comes from

e−k
2
N/2

∑
tj∈R

(
ΦN(tj)

σN

)
.

Thus Corollary 7.4 strengthens Corollary 7.3 by computing the leading
correction to the Edgeworth expansion when the expansion does not
hold.

7.3. Proof of Theorem 1.5. We will use the following.

Lemma 7.6. Let tj be a nonzero resonant point, r > 1 and suppose
that MN ≤ R lnσN , R = R(r,K) and that |E(SN)| = O(lnσN). Then
(7.1) holds for all 0 ≤ ` < r if and only if

(7.10) |Φ(`)
N (tj)| = o

(
σ−r+`+1
N

)
for all 0 ≤ ` < r.
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Proof. Let us first assume that (7.1) holds. Recall that

(7.11) ΦN(t) = ΦN0(t)ΦN0,N(t)

with

(7.12) ΦN0,N(t) = ΦN0,N(tj)ΦN0,N(h)ΨN0,N(h)

where t = tj + h and

(7.13) ΨN0,N(h) = exp

[
O(MN(m))

∞∑
u=1

(O(1))uhu

]
.

For ` = 0 the result reduces to (7.11). For larger `’s we have

(7.14) Φ
(`)
N (tj) = ΦN0,N(tj)Φ

(`)
N0

(tj) +
`−1∑
k=0

(
`

k

)
Φ

(`−k)
N0,N

(tj)Φ
(k)
N0

(tj).

Fix some k < `. Then by (7.12),

Φ
(`−k)
N0,N

(tj) = ΦN0,N(tj)
`−k∑
u=0

(
`− k
u

)
Φ

(u)
N0,N

(0)Ψ
(`−k−u)
N0,N

(0)

= O(ln`−k σN)ΦN0,N(tj)

where we have used that S̄N0,N = SN0,N − E(SN0,N) satisfies

|E[(S̄N0,N)q]| ≤ Cqσ
2q
N0,N

, (see (3.3)). Therefore

(7.15) Φ
(`−k)
N0,N

(tj)Φ
(k)
N0

(tj) = O(ln`−k σN)ΦN0,N(tj)Φ
(k)
N0

(tj).

Finally, by (7.1) we have

ΦN0,N(tj)Φ
(k)
N0

(tj) = o(σk+1−r
N )

and so, since k < `,

Φ
(`−k)
N0

(tj)Φ
(k)
N0

(tj) = o(σ`+1−r
N ).

This completes the proof that (7.10) holds.
Next, suppose that (7.10) holds for each 0 ≤ ` < r. Let use prove

by induction on ` that

(7.16) |ΦN0,NΦ
(`)
N0

(tj)| = o
(
σ−r+`+1
N

)
.

For ` = 1 this follows from (7.14). Now take ` > 1 and assume that
(7.16) holds with k in place of ` for each k < `. Then by (7.14), (7.15)
and the induction hypothesis we get that

Φ
(`)
N (tj) = ΦN0,N(tj)Φ

(`)
N0

(tj) + o(σ`+1−r
N ).
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By assumption we have Φ
(`)
N (tj) = o(σ`+1−r

N ) and hence

ΦN0,N(tj)Φ
(`)
N0

(tj) = o(σ`+1−r
N )

as claimed. �

Theorem 1.5 in the case MN ≤ R lnσN follows now by first replacing
Xn with Xn− cn, where (cn) is a bounded sequence of integers so that
E[SN − CN ] = O(1), where

(7.17) CN =
n∑
j=1

cj

(see Lemma 3.4 in [10]), and then applying Lemma 7.6 and Proposi-
tion 7.1.

It remains to consider the case when MN(m) ≥ R̄ lnσN where R̄ is
large enough. In that case, by Theorem 1.4, the Edgeworth expansion
of order r hold true, and so, after the reduction to the case when

E(SN) is bounded, it is enough to show that Φ
(`)
N (tj) = o

(
σ−r+`+1
N

)
for

all 0 ≤ ` < r. By the arguments of Lemma 7.6 it suffices to show that

for each 0 ≤ ` < r we have Φ
(`)
N0

(tj)ΦN0,N(tj) = o(σ−rN ). To this end we
write

Φ
(`)
N0

(tj)ΦN0,N(tj) =
∑

n1,...,nk≤N0;
`1+···+`k=`

γ`1,...,`k

(
k∏
q=1

φ(`q)
nq (tj)

)[ ∏
n≤N, n6=nk

φn(tj)

]

where γ`1,...,`k are bounded coefficients of combinatorial nature. Using
(3.8) we see that for each n1, . . . , nk the product in the square brackets
is at most Ce−c0MN (m)+O(1) for some C, c0 > 0. Hence

|Φ(`)
N0

(tj)ΦN0,N(tj)| ≤ ĈN `
0 e
−cMN (m).

It remains to observe that the definition of N0 gives MN(m) ≥ ε̂N0.

Therefore |Φ(`)
N0

(tj)ΦN0,N(tj)| ≤ C∗M `
N(m) e−cMN (m) = o(σ−rN ) provided

that MN ≥ R̄ lnσN for R̄ large enough. �

8. Edgeworth expansions and uniform distribution.

8.1. Proof of Theorem 1.6. In view of Proposition 7.1 with r = 2,
it is enough to show that if ΦN(tj) = o(σ−1

N ) then the SLLT implies
that

(8.1) |ΦN0,N(tj)Φ
′
N0

(tj)| = o(1)

for any non-zero resonant point tj (note that the equivalence of condi-
tions (b) and (c) of the theorem follows from Lemma 6.2).
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Denote ΦN ;k(t) =
∏

l 6=k,l≤N

φl(t).

Let us first assume that φk(tj) 6= 0 for all 1 ≤ k ≤ N . Then
φ′k(tj)ΦN ;k(tj) = φ′k(tj)ΦN(tj)/φk(tj). Let εN = lnσN

σN
. If for all 1 ≤

k ≤ N0 we have |φk(tj)| ≥ εN then

∣∣ΦN0,N(tj)Φ
′
N0

(tj)
∣∣ =

∣∣∣∣∣
N0∑
k=1

φ′k(tj)ΦN ;k(tj)

∣∣∣∣∣ ≤ |ΦN(tj)|
N0∑
k=1

|φ′k(tj)/φk(tj)|

≤ Cε−1
N N0|ΦN(tj)| ≤ C ′σN |ΦN(tj)| → 0 as N →∞

where we have used that N0 = O(lnVN). Next suppose there is at least
one 1 ≤ k ≤ N0 such that |φk(tj)| < εN . Let us pick some k = kN with
the latter property. Then for any k 6= kN , 1 ≤ k ≤ N0 we have

|φ′k(tj)ΦN ;k(tj)| ≤ C|φkN (tj)| < CεN .

Therefore, ∣∣∣∣∣ ∑
k 6=kN , 1≤k≤N0

φ′k(tj)ΦN ;k(tj)

∣∣∣∣∣ ≤ C ′ ln2 σN
σN

= o(1).

It follows that

(8.2) ΦN0,N(tj)Φ
′
N0

(tj) = ΦN ;kN (tj)φ
′
kN

(tj) + o(1).

Next, in the case when φk0(tj) = 0 for some 1 ≤ k0 ≤ N0, then (8.2)
clearly holds true with kN = k0 since all the other terms vanish.

In summary, either (8.1) holds or we have (8.2). In the later case,
using (3.8) we obtain

(8.3)
∣∣E (eitjSN ;kN

)∣∣ ≤ e−c2
∑
s 6=kN ,1≤s≤N

qs(m) = e−c2MN (m)−qkN (m)

where SN ;k = SN−Xk, and c2 > 0 depends only on K. Since the SLLT
holds true, MN converges to ∞ as N → ∞. Taking into account that
0 ≤ qkN (m) ≤ 1 we get that the left hand side of (8.3) converges to 0,
proving (8.1). �

8.2. Proof of Theorem 1.8. We start with the proof of part (1).
Assume that the LLT holds true in a superstable way. Let X ′1, X

′
2, ... be

a square integrable integer-valued independent sequence which differs
from X1, X2, ... by a finite number of elements. Then there is n0 ∈ N

so that Xn = X ′n for any n > n0. Set S ′N =
N∑
n=1

X ′n, Y = S ′n0
and
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YN = Y I(|Y | < σ
1/2+ε
N ), where ε > 0 is a small constant. By the

Markov inequality we have

P(|Y | ≥ σ
1/2+ε
N ) = P(|Y |2 ≥ σ1+2ε

N ) ≤ ‖Y ‖2
L2σ−1−2ε

N = o(σ−1
N ).

Therefore, for any k ∈ N and N > n0 we have

P(S ′N = k) = P(SN ;1,2,...,n0 + YN = k) + o(σ−1
N )

= E[P(SN ;1,2,...,n0 = k − YN |X ′1, ..., X ′n0
)] + o(σ−1

N )

= E[PN :n1,...,n0(k − YN)] + o(σ−1
N )

where PN :n1,...,n0(s) = P(SN ;1,2,...,n0 = s) for any s ∈ Z. Since the
LLT holds true in a superstable way, we have, uniformly in k and the
realizations of X ′1, ..., X

′
n0

that

PN :n1,...,n0(k − YN) =
e−(k−YN−E(SN ))2/(2VN )

√
2πσN

+ o(σ−1
N ).

Therefore,

(8.4) P(S ′N = k) =

e−(k−E(SN ))2/2VN

√
2πσN

E
(
e−(k−E(SN ))YN/VN+Y 2

N/(2VN )
)

+ o(σ−1
N ).

Next, since |YN | ≤ σ
1/2+ε
N we have that ‖Y 2

N/(2VN)‖L∞ ≤ σ2ε−1
N , and

so when ε < 1/2 we have ‖Y 2
N/2VN‖L∞ = o(1). Recall that kN =

(k − E(SN))/σN . Suppose first that |kN | ≥ σεN with ε < 1/4.
Since ∣∣(k − E(SN))YN/VN

∣∣ ≤ |kN |σε− 1
2

N ,

we get that the RHS of (8.4) is o(σ−1
N ) (uniformly in such k’s).

On the other hand, if |kN | < σεN then

E
(
e−(k−E(SN ))YN/VN+Y 2

N/2VN
)

= 1 + o(1)

(uniformly in that range of k’s).
We conclude that, uniformly in k, we have

P(S ′N = k) =
e−(k−E(SN ))2/(2VN )

√
2πσN

+ o(σ−1
N ).

Lastly, since sup
N
|E(SN)−E(S ′N)|<∞ and sup

N
|Var(SN)−Var(S ′N)|<∞,

P(S ′N = k) =
e−(k−E(S′N ))2/(2V ′N )

√
2πσ′N

+ o(1/σ′N)

where V ′N = Var(S ′N) and σ′N =
√
V ′N .
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Conversely, if the SLLT holds then MN(h) → ∞ for each h ≥ 2.
Now if t is a nonzero resonant point with denominator h then (3.8)
gives

|ΦN ;jN1 ,j
N
2 ,...,j

N
sN

(t)| ≤ Ce−cMN (h)+C̄s̄, C, C̄ > 0

for any choice of jN1 , ..., j
N
sN

and s̄ with sN ≤ s̄. Since the RHS tends
to 0 as N →∞, {Xn} ∈ EeSS(1) completing the proof of part (1).

For part (2) we only need to show that (a) is equivalent to (b) as
the equivalence of (b) and (c) comes from Lemma 6.2. By replacing
again Xn with Xn − cn it is enough to prove the equivalency in the
case when E(SN) = O(1). The proof that (a) and (b) are equivalent
consists of two parts. The first part is the following statement whose
proof is a straightforward adaptation of the proof of Theorem 1.5 and
is therefore omitted.

Proposition 8.1. {Xn} ∈ SsEe(r) if and only if for each s̄, each
sequence jN1 , j

N
2 , . . . , j

N
sN

with sN ≤ s̄, each ` < r and each t ∈ R we
have

(8.5) Φ
(`)

N ;jN1 ,j
N
2 ,...,j

N
sN

(t) = o(σ`+1−r
N ).

Note that the above proposition shows that the condition
ΦN ;jN1 ,j

N
2 ,...,j

N
sN

(t) = o(σ1−r
N ) is necessary.

The second part of the argument is to show that if

ΦN ;jN1 ,j
N
2 ,...,j

N
sN

(t) = o(σ1−r
N )

holds for every finite modification of SN with sN ≤ s̄ + ` (uniformly)
then (8.5) holds for every modifications with sN ≤ s̄ so that the con-
dition ΦN ;jN1 ,j

N
2 ,...,j

N
sN

(t) = o(σ1−r
N ) is also sufficient.

To this end we introduce some notation. Fix a nonzero resonant
point t = 2πl

m
. Let Φ̌N be the characteristic function of the sum ŠN of

all Xn’s such that 1 ≤ n ≤ N , n 6∈ {jN1 , jN2 , ..., jNsN} and qn(m) ≥ ε̄. Let

Ň be the number of terms in ŠN . Denote S̃N = SN ;jN1 ,j
N
2 ,...,j

N
sN
− ŠN and

let Φ̃N(t) be the characteristic function of S̃N . Similarly to the proof
of Theorem 1.5 it suffices to show that for each ` < r∣∣∣Φ̌(`)

N Φ̃N(t)
∣∣∣ = o(σ1+`−r

N )

and, moreover, we can assume that MN(m) ≤ R̄ lnσN so that Ň =
O(lnσN). We have (cf. (4.21)) ,

Φ̌
(`)
N Φ̃N(t) =

∑
n1,...,nk;
`1+···+`k=`

k∏
w=1

γ`1,...,`kφ
(`w)
nw (tj)

∏
n 6∈{n1,n2...,nk,j

N
1 ,j

N
2 ...,j

N
sN
}

φn(tj)
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where the summation is over all tuples n1, n2, . . . , nk such that
qnw(m) ≥ ε̄. Note that the absolute value of each term in the above
sum is bounded by C|ΦN ;n1,...,nk,j1...,jNsN

(tj)| = o(σ1−r
N ). It follows that

the whole sum is

o
(
σ1−r
N Ň `

)
= o

(
σ1−r
N ln` σN

)
completing the proof. �

Remark 8.2. Lemma 6.2 and Theorem 1.5 show that the convergence
to uniform distribution on any factor Z/hZ with the speed o(σ1−r

N ) is
necessary for Edgeworth expansion of order r. This is quite intuitive.
Indeed calling Er the Edgeworth function of order r, (i.e. the contribu-
tion from zero), then it is a standard result from numerical integration
(see, for instance, [9, Lemma A.2]) that for each s ∈ N and each j ∈ Z∑

k∈Z

hEr

(
j + hk
√
σN

)
=

∫ ∞
−∞

Er(x)dx+ o
(
σ−sN
)

= 1 + o
(
σ−sN
)

where in the last inequality we have used that the non-constant Hermite
polynomials have zero mean with respect to the standard normal law
(since they are orthogonal to the constant functions). However, using
this result to show that∑

k∈Z

P(SN = j + kh) =
1

h
+ o

(
σ1−r
N

)
requires a good control on large values of k. While it appears possible to
obtain such control using the large deviations theory it seems simpler
to estimate the convergence rate towards uniform distribution from our
generalized Edgeworth expansion.

9. Second order expansions

In this section we will compute the polynomials in the general ex-
pansions in the case r = 2.

First, let us introduce some notations which depend on a resonant
point tj. Let tj = 2πlj/mj be a nonzero resonant point such that
MN(mj) ≤ R(2, K) lnVN where R(2, K) is specified in Remark 3.6.
Let Φ̌j,N be the characteristic function of the sum Šj,N of all Xn’s such
that 1 ≤ n ≤ N and qn(mj) ≥ ε̄ = 1

8K
. Note that Šj,N was previ-

ously denoted by SN0 . Let S̃N,j = SN − ŠN,j and denote by Φ̃N,j its
characteristic function. (In previous sections we denoted the same ex-
pression by SN0,N , but here we want to emphasize the dependence on

tj.) Let γN,j be the ratio between the third moment of S̃N,j − E(S̃N,j)
and its variance. Recall that by (3.3) |γN,j| ≤ C for some C. Also,
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let C1,N,tj be given by (4.15), with the indexes rearranged so that the
n’s with qn(m) ≥ ε̄ are the first N0 ones (C1,N,tj is at most of or-
der MN(m) = O(lnVN)). For the sake of convenience, when either
tj = 0 or MN(mj) ≥ R(2, K) lnVN we set C1,N,tj = 0, S̃N,j = SN
and ŠN,j = 0. In this case Φ̃N,j = Φ̃N and Φ̌N,j ≡ 1. Also denote
kN = (k − E(SN))/σN , S̄N = SN − E(SN), and γN = E(S̄3

N)/VN , (γN
is bounded).

Proposition 9.1. Uniformly in k, we have
√

2πP(SN = k) =
(

1 +
∑
tj∈R

e−itjkΦN(tj)
)
σ−1
N e−k

2
N/2(9.1)

−σ−2
N e−k

2
N/2

γNk3
N/6 +

∑
tj∈R

e−itjkΦ̃N,j(tj)PN,j(kN)


+o(σ−2

N )

where

PN,j(x) =
(
Φ̌N,j(tj)(iC1,N,tj−E(ŠN,j))+ iΦ̌′N,j(tj)

)
x+Φ̌N,j(tj)γN,jx

3/6.

Proof. Let tj = 2πl
m

be a resonant point with MN(m) ≤ R(2, K) lnVN .
Recall that Cj(k) are given by (4.22). First, in order to compute the
term corresponding to σ−2

N0,N
we need only to consider the case s ≤ 1

in (4.23). Using (3.2) we end up with the following contribution of the
interval containing tj,√

(2π)−1e−itjkΦ̃N,j(tj)σ
−1
N0,N

(∫ ∞
−∞

e−ih(k−E[S̃N,j ])/σN,je−h
2/2dh

+σ−1
N,j

∫ ∞
−∞

e−ih(k−E[S̃N,j ])/σN,j

(
ih3

6
E
[(
S̃N,j − E(S̃N,j)

)3
]
σ−3
N,j

)
dh

+σ−1
N,j(C1,N Φ̌N,j(tj) + Φ̌′N,j(tj))

∫ ∞
−∞

e−ih(k−E(S̃N,j))/σN,jhe−h
2/2dh

)

= e−itjkΦ̃N,j(tj)
√

(2π)−1e−k
2
N,j/2σ−1

N,j

(
Φ̌N,j(tj)+i

(
C1,N,tj Φ̌N,j(tj)+Φ̌′N,j(tj)

)
×kN,jσ−1

N,j + Φ̌N,j(tj)(k
3
N,j − 3kN,j)γN,jσ

−1
N,j/6

)
where σN,j =

√
V (S̃N,j), kN,j = (k − E(S̃N,j))/σN,j and γN,j =

E[(S̃N,j−E(S̃N,j))
3]

σ2
N,j

(which is uniformly bounded).
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As before we shall only consider the case where |kN | ≤ V ε
N with

ε = 0.01 since otherwise both the LHS and the RHS (9.1) are O(σ−rN )
for all r. Then, the last display can be rewritten as I + II where

(9.2) I =
e−itjk√
2πσN,j

e−k
2
N,j/2 ΦN(tj);

II =
e−itjk√
2πσ2

N,j

e−k
2
N,j/2×[

ΦN(tj)
(
iC1,N,tjkN,j +

γN,j
6

(
k3
N,j − 3kN,j

))
+ iΦ̌′N,j(tj)Φ̃N,j(tj)kN,j

]
.

In the region |kN | ≤ V ε
N we have

I =
e−itjk√
2πσN

e−k
2
N/2 [1− qN,jkN ] ΦN(tj) + o

(
σ−2
N

)
where

qN,j = E(ŠN,j)/σN,j = E(ŠN,j)/σN +O(lnσN/σ
3
N) = O(lnσN/σN)

while

II =
e−itjk√
2πσ2

N

e−k
2
N/2×[

ΦN(tj)

(
iC1,N,tjkN +

γN,j (k3
N − 3kN)

6

)
+ iΦ̌′N,j(tj)Φ̃N,j(tj)kN

]
+o
(
σ−2
N

)
.

This yields (9.1) withRN in place ofR, whereRN is the set on nonzero
resonant points tj = 2πl/m such that MN(m) ≤ R(2, K) lnVN . Next,
(3.8) shows that if MN(m) ≥ R(2, k) lnVN then

sup
t∈Ij
|ΦN(t)| ≤ e−c0MN (m) = o(σ−2

N )

and so the contribution of Ij to the right hand side of (9.1) is o(σ−2
N ).

Finally, the contribution coming from tj = 0 is

e−k
2
N/2
(
σ−1
N + σ−2

N γ3
Nk

3
N/6

)
and the proof of the proposition is complete. �

Remark 9.2. Suppose that MN(m) ≥ R(2, K) lnVN and let N0 is the
number of n’s between 1 to N so that qn(m) ≥ 1

8K
. Then using (3.8)

we also have

|Φ̌′N,j(tj)Φ̃N,j(tj)| ≤
∑

n∈Bε̄(m)

|E[Xne
itjXn ]| · |ΦN ;n(tj)|

≤ CN0(N, tj, ε̄)e
−c0MN (m) ≤ C ′MN(m)e−c0MN (m),
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where
BN,ε̄(m) = {1 ≤ n ≤ N : qn(m) > ε̄}.

Since MN(m) ≥ R(2, K) lnVN , for any 0 < c1 < c0, when N is large
enough we have

MN(m)e−c0MN (m) ≤ C1e
−c1MN (m) = o(σ−2

N ).

Similarly, |E(ŠN,j)ΦN(tj)| = o(σ−2
N ) and

C1,N,tjΦN(tj) = O(MN(m))ΦN(tj) = o(σ−2
N ).

Therefore we get (9.1) when S̃N,j and ŠN,j are defined in the same way
as in the case MN(m) ≤ R(2, K) lnVN .

Under additional assumptions the order 2 expansion can be simpli-
fied.

Corollary 9.3. If SN satisfies SLLT then

√
2πP(SN = k) =

e−k
2
N/2

σN

1 +
∑
tj∈R

e−itjkΦN(tj)−
γNk

3
N

6σN

+ o(σ−2
N ).

Proof. The estimates of §8.1 together with (3.8) show that if SN satis-
fies the SLLT then for all j

(1 +MN(m))Φ̃N,j(tj)Φ̌N,j(tj) = o(1) and Φ̃N,j(tj)Φ̌
′
N,j(tj) = o(1).

Thus all terms in the second line of (9.1) except the first one make a
negligible contribution, and so they could be omitted. �

Next, assume that SN satisfies the LLT but not SLLT. According to
Proposition 1.2, in this case there existsm such thatMN(m) is bounded
and for k = 1, . . . ,m− 1 there exists n = n(k) such that φn(k/m) = 0.
Let Rs denote the set of nonzero resonant points tj = 2πk

m
so that

MN(m) is bounded and φ`j(tj) = 0 for unique `j.

Corollary 9.4. Uniformly in k, we have
√

2πP(SN = k) =
(

1 +
∑
tj∈R

e−itjkΦN(tj)
)
σ−1
N e−k

2
N/2

−σ−2
N e−k

2
N/2

γNk3
N/6 +

∑
tj∈Rs

ie−itjkΦN ;`j(tj)φ
′
`j

(tj)kN

+ o(σ−2
N ).

Proof. As in the proof of Corollary 9.3 we see that the contribution of
the terms with k/m with MN(m) → ∞ is negligible. Next, for terms
in Rs the only non-zero term in the second line in (9.1) corresponds to
ΦN ;`j(tj)φ

′
`j

(tj) while for the resonant points such that φ`(tj) = 0 for
two different `s all terms vanish. �
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10. Examples.

Example 10.1. Suppose Xn are iid integer valued with step h > 1.
That is there is s ∈ Z such that P(Xn ∈ s + hZ) = 1 and h is the
smallest number with this property. In this case [18, Theorem 4.5.4]
(see also [12, Theorem 5]) shows that there are polynomials Pb such
that

(10.1) P(SN = k) =
r∑
b=1

Pb((k − E[SN ])/σN)

σbN
g

(
k − E(SN)

σN

)
+o(σ−rN )

for all k ∈ sN + hZ. Then

h−1∑
a=0

r∑
b=1

e2πia(k−sN)/hPb((k − E[SN ])/σN)

σbN
g((k − E(SN))/σN)

provides o(σ−rN ) approximation to P(SN = k) which is valid for all
k ∈ Z.

Next let S̄N = X0 + SN where X0 is bounded and arithmetic with
step 1. Then using the identity

(10.2) P(S̄N = k) =
∑

u≡k−sN mod h

P(X0 = u)P(SN = k − u),

invoking (10.1) and expanding g

(
k − u− E(SN)

σN

)
in the Taylor series

about k−E(SN )
σN

we conclude that there are polynomials Pb,j such that
we have for k ∈ j + hZ,

P(S̄N = k) =
r∑
b=1

Pb,j((k − E[SN ])/σN)

σbN
g

(
k − E(SN)

σN

)
+ o(σ−rN ).

Again

h−1∑
a=0

h−1∑
j=0

e2πia(k−j)/h
r∑
b=1

Pb,j((k − E[SN ])/σN)

σbN
g

(
k − E(SN)

σN

)
provides the oscillatory expansion valid for all integers.

Example 10.2. Our next example is a small variation of the previ-
ous one. Fix a positive integer m. Let X ′ be a random variable such
that X ′ mod m is uniformly distributed. Then its characteristic func-
tion satisfies φX′(

2πa
m

) = 0 for a = 1, . . . ,m − 1. We also assume that

φ′X′(
2πa
m

) 6= 0 for a as above (for example one can suppose that X ′

takes the values Lm, 1, 2, . . . ,m − 1 with equal probabilities where L
is a large integer). Let X ′′ take values in mZ and have zero mean. We
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also assume that X ′′ does not take values at m0Z for a larger m0. Then
q(X ′′,m0) > 0 for any m0 6= m. Fix r ∈ N and let

Xn =

{
X ′ n ≤ r,

X ′′ n > r.

Then MN(m0) grows linearly fast in N if m0 6= m and MN(m) is
bounded in N . We claim that SN admits the Edgeworth expansion of
order r but does not admit Edgeworth expansion of order r + 1. The

first statement holds due to Theorem 1.5, since Φ
(`)
N (2πa

m
) = 0 for each

a ∈ Z and each ` < r. On the other hand, since Φ
(`)
N (2πa

m
) = 0 for any

` < r, using Lemma 7.6 we see that the conditions of Lemma 7.2 are
satisfied with r + 1 in place of r. Moreover, with tj = 2πa/m, a 6= 0
we have HN,r+1,s(x, tj) ≡ 0 for any q ≤ r + 1 and s = 2, 3, 4 while
HN,q,w(x, tj) ≡ 0 for any q ≤ r and w = 1, 2, 3, 4. Furthermore, when
N ≥ r we have

HN,r+1,1(x; tj) =
irHr(x)

(
φX′′(2πa/m)

)N−r
Φ

(r)
r (2πa/m)

r!
= (i)rHr(x)

(
Φ′X′(2πa/m)

)r
.

We conclude that

P(SN = k)

=
e−k

2
N/2

√
2π

[
Er+1(kN) +

ir

σr+1
N

m−1∑
a=1

e−2πiak/m

(
φ′X′

(
2πa

m

))r
Hr(kN)

]
+o(σ−r−1

N )

where Er+1 the Edgeworth polynomial (i.e. the contribution of 0) and
Hr(x) is the Hermite polynomial.

Observe that since the uniform distribution on Z/mZ is shift invari-
ant, SN are uniformly distributed mod m for all N ∈ N. This shows
that for r ≥ 1, one can not characterize Edgeworth expansions just in
term of the distributions of SN mod m, so the additional assumptions
in Theorems 1.6 and 1.8 are necessary.

Next, consider a more general case where for each n, Xn equals in law
to either X ′ or X ′′, however, now we assume that X ′ appears infinitely
often. In this case SN obeys Edgeworth expansions of all orders since
for large N , ΦN(t) has zeroes of order greater N at all points of the
form 2πa

m
, a = 1, . . . ,m− 1. In fact, the Edgeworth expansions hold in

the superstable way since removing a finite number of terms does not
make the order of zero to fall below r.
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Example 10.3. Let pn = min(1, θ
n
) and let Xn take value 0 with

probability pn and values ±1 with probability 1−pn
2
. In this example

the only non-zero resonant point is π = 2π × 1
2
. Then for small θ

the contributions of P1,b,N (the only non-zero a is 1) are significant
and as a result SN does not admit the ordinary Edgeworth expansion.
Increasing θ we can make SN to admit Edgeworth expansions of higher

and higher orders. Namely we get that for large n, φn(π) =
2θ

n
− 1.

Accordingly

ln(−φn(π)) = −2θ

n
+O

(
1

n2

)
.

Now the asymptotic relation

N∑
n=1

1

n
= lnN + c +O

(
1

N

)
,

where c is the Euler-Mascheroni constant, implies that that there is a
constant Γ(θ) such that

ΦN(π) =
(−1)NeΓ(θ)

N2θ
(1 +O(1/N)) .

Therefore SN admits the Edgeworth expansions of order r iff θ >
r − 1

4
.

Moreover, if θ ∈
(
r − 2

4
,
r − 1

4

]
, then Corollary 7.4 shows that

P(SN = k) =
e−k

2
N/2

√
2π

[
Er(kN) +

(−1)N+keΓ(θ)

N2θ+(1/2)
+O

(
1

N2θ+1

)]
where Er is the Edgeworth polynomial of order r. In particular if θ ∈
(0, 1/4) then using that

(10.3) VN = N +O(lnN) = N

(
1 +O

(
lnN

N

))
and hence

(10.4) σN =
√
N

(
1 +O

(
lnN

N

))
we conclude that

P(SN = k) =
e−k

2/(2N)

√
2π

[
1√
N

+
(−1)N+keΓ(θ)

N2θ+(1/2)
+O

(
1

N2θ+1

)]
.

Next, take pn = min
(
1, θ

n2

)
. Then the SLLT does not hold, since

the Prokhorov condition fails. Instead we have (6.1) with R = {π}.
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Namely, uniformly in k we have

√
2πP(SN = k) =

(
1 + (−1)k

N∏
u=1

(2pu − 1)

)
σ−1
N e−k

2/2VN + o(σ−1
N ).

Next, pu is summable and moreover

N∏
u=1

(2pu − 1) = (−1)NU(1 +O(1/N))

where U =
∞∏
n=1

(1− 2pu). We conclude that

(10.5)
√

2πP(SN = k) =
(
1 + (−1)k+NU

)
σ−1
N e−k

2/2VN +O
(
σ−2
N

)
uniformly in k. In this case the usual LLT holds true if and only if
U = 0 in agreement with Proposition 1.2.

In fact, in this case we have a faster rate of convergence. To see this
we consider expansions of order 2 for pn as above. We observe that
qm(2) = pn for large n. Thus

|E(eπiXn)| = 1− 2pn

and so |E(eπXn)| ≥ 1
2

when n ≥ Nθ for some minimal Nθ. Therefore,
we can take N0 = Nθ. Note also that we have Yn = Xn mod 2− 1. We
conclude that for n > N0 we have

an = an,j =
E[((−1)Yn − 1)Xn]

E[(−1)Yn ]
= 0

and so the term C1,N vanishes. Next, we observe that

γN,j =

∑N
n=N0+1 E(X3

n)∑N
n=N0+1(1− pn)

= 0.

Finally, we note that E[(−1)XnXn] = 0, and hence Φ′N0
(π) = 0. There-

fore, the second term in (9.1) vanishes and we have
√

2πP(SN = k) =
(
1 + (−1)k+NU

)
σ−1
N e−k

2/(2VN ) +O
(
σ−3
N

)
.

Taking into account (10.3) and (10.4) we obtain

√
2πP(SN = k) =

1 + (−1)k+NU√
N

e−k
2/(2N) +O

(
N−3/2

)
.

In particular, (10.5) holds with the stronger rate O
(
σ−3
N

)
.
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Example 10.4. The last example exhibited significant simplifications.
Namely, there was only one resonant point, and, in addition, the second
term vanished due to the symmetry. We now show how a similar anal-
ysis could be performed when the above simplifications are not present.
Let us assume that Xn takes the values −1, 0 and 3 with probabilities
an, bn and cn so that an + bn + cn = 1. Let us also assume that bn <

1
8

and that an, cn ≥ ρ > 0 for some constant ρ. Then

V (Xn) = 9(cn − c2
n) + 6ancn + (an − a2

n) ≥ 6ρ2

and so VN grows linearly fast in N .
Next, since we can take K = 3, the denominators m of the nonzero

resonant points can only be 2, 3, 4, 5 or 6. An easy check shows that
for m = 3, 5, 6 we have qn(m) ≥ ρ, and that for m = 2, 4 we have
qn(m) = bn. Therefore, for m = 3, 5, 6 we have MN(m) ≥ ρN , and so
we can disregard all the nonzero resonant points except for π/2, π and
3π/2. For the latter points we have

(10.6) φn

(π
2

)
= bn − i(1− bn),

(10.7) φn(π) = 2bn − 1, φn

(
3π

2

)
= bn + i(1− bn).

Hence, denoting ηn = bn(1− bn), we have∣∣∣φn (π
2

)∣∣∣2 =

∣∣∣∣φn(3π

2

)∣∣∣∣2 = 1− 2ηn,
∣∣φn(π)

∣∣2 = 1− 4ηn.

Since we suppose that ηn ≤ bn < 1
8

it follows that 1 − 4ηn ≥ 1
2
.

Then for the above three resonant points we can take N0 = 0. Now
Proposition 7.1 and a simple calculation show that for any r we get the
Edgeworth expansions of order r if and only if

N∏
n=1

(1− 2ηn) = o
(
N1−r) .

Let us focus for the moment on the case when bn = γ/n for n large
enough where γ > 0 is a constant. Rewriting (10.6), (10.7) as

(10.8)
φn
(
π
2

)
−i

= (1− bn) + ibn,
φn
(

3π
2

)
i

= (1− bn)− ibn,

−φn(π) = 1− 2bn

and, using that the condition bn <
1
8

implies that that φn(t) 6= 0 for all

n ∈ N and all t ∈
{
π
2
, π, 3π

2

}
, we conclude similarly to Example 10.3
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that there are non-zero complex numbers κ1, κ3 and a non-zero real
number κ2 such that

ΦN

(π
2

)
=

(−i)Nκ1

Nγ
eiγ lnN

(
1 +O

(
1

N

))
,

ΦN

(
3π

2

)
=
iNκ3

Nγ
e−iγ lnN

(
1 +O

(
1

N

))
,

ΦN(π) = (−1)N
κ2e

2γwN

N2γ

(
1 +O

(
1

N

))
.

It follows that SN admits Edgeworth expansion of order r iff γ > r−1
2
.

In fact if r−1
2
< γ ≤ r

2
then Corollary 7.4 shows that

P(SN = k) =
e−k

2
N/2

√
2π

[
Er(kN) +

κ1e
iγ lnN

NγσN
+
κ3e
−iγ lnN

NγσN
+O

(
N−η

) ]
where Er is the Edgeworth polynomial of order r and η=min

(
2γ, r

2

)
+ 1

2
.

To give a specific example, let us suppose that 1
2
≤ γ < 1 and that

E(Xn) = 0 which means that

(10.9) an =
3(1− bn)

4
, cn =

1− bn
4

.

Then

(10.10) VN = 3N − 3γ lnN +O(1), E(S3
N) = 6N − 6γ lnN +O(1),

so Proposition 9.1 gives
√

2πP(SN = k) =

e−k
2/6N

[
1√
3N

(
1 +

κ1i
k−Neiγ lnN + κ3i

N−ke−iγ lnN

Nγ

)
− k3

81
√

3N5

]
+O

(
N−3/2

)
Next, let us provide the second order trigonometric expansions un-

der the sole assumption that 1 − 4ηn ≥ 1
2

and an, cn ≥ ρ. As we
have mentioned, we only need to consider the nonzero resonant points
π/2, π, 3π/2 and for these points we have N0 = 0. Therefore, the term
involving the derivative in the right hand side of (9.1) vanishes. Now,
a direct calculation shows that

C1,N,π =
N∑
n=1

E(eiπXnX̄n)

E(eiπXn)
= 2

N∑
n=1

(an − 3cn)bn
2bn − 1
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and

C1,N,π/2 =
N∑
n=1

(an − 3cn)(1 + i)bn
bn − i(1− bn)

, C1,N,3π/2 =
N∑
n=1

(an − 3cn)(1− i)bn
bn + i(1− bn)

.

Note that 3cn − an = E(Xn). Set

Γ1,N =
N∏
n=1

(bn−i(1−bn)), Γ2,N =
N∏
n=1

(2bn−1), Γ3,N =
N∏
n=1

(bn+i(1−bn)).

Then Γs,N = E(e
sπi
2
SN ). We also set

Θs,N = C1,N,sπ/2Γs,N , s = 1, 2, 3

and

ΓN(k) =
3∑
j=1

e−jπik/2Γj,N , ΘN(k) =
3∑
j=1

e−jπik/2Θj,N .

Then by Proposition 9.1 and Remark 9.2, uniformly in k we have

(10.11)
√

2πP (SN = k) = σ−1
N (1 + ΓN(k)) e−k

2
N/2

−σ−2
N

(
k3
NTN

(
1 + ΓN(k)

)
+ ikNΘN(k)

)
e−k

2
N/2 + o(σ−2

N )

where TN =

N∑
n=1

E(X̄3
n)

6VN
, X̄n = Xn − E(Xn).

Let us now consider a more specific situation. Namely we suppose
that bn = γ

n3/2 for large n and that E(Xn) = 0. Then (10.9) shows that
C1,N,sπ/2 = 0. Next (10.8) gives

ΦN

(
π
2

)
(−i)N

=
N∏
n=1

[(1− bn) + ibn] =
κ̄1

∞∏
n=N+1

[(1− bn) + ibn]

= κ̄1

(
1 +

2γ(1− i)√
N

+O

(
1

N

))
where κ̄1 =

∞∏
n=1

[(1− bn) + ibn] . Likewise

ΦN

(
3π
2

)
iN

= κ̄3

(
1 +

2γ(1 + i)√
N

+O

(
1

N

))
and

ΦN (π)

(−1)N
= κ̄2

(
1 +

4γ√
N

+O

(
1

N

))
.
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Taking into account (10.10) we can reduce (10.11) to the following
expansion

√
2πP(SN = k) = e−k

2/6N

[
1√
3N

(
1 +

3∑
s=1

κ̄si
s(k−N)

)

+
1

N

(
− k̃

3
N

3
+

3∑
s=1

κ̄si
s(k−N)

(
2γ(1− i−s)√

3
− k̃3

N

3

))]
+O

(
1

N3/2

)
where k̃N = k/

√
3N .

Example 10.5. Let X ′ take value ±1 with probability 1
2
, X ′′ take val-

ues 0 and 1 with probability 1
2
, and Xδ, δ ∈ [0, 1] be the mixture of X ′

and X ′′ with weights δ and 1− δ. Thus Xδ take value −1 with proba-
bility δ

2
, the value 0 with probability 1−δ

2
and value 1 with probability

1
2
. Therefore, E(eπiX

δ
) = −δ. We suppose that X2m and X2m−1 have

the same law which we call Ym. The distribution of Ym is defined as fol-
lows. Set kj = 33j , and let Ykj have the same distribution as Xδj where

δj = 1√
kj+1

. When m 6∈ {kj} we let Ym have the distribution of X ′. It is

clear that VN grows linearly fast in N . Note also that E(eπiYm) = −δj
when m = kj for some j, and otherwise E(eπiYm) = −1. Now, take
N ∈ N such that N > 2k2, and let JN be so that 2kJN ≤ N < 2kJN+1.
Then

|ΦN(π)| ≤
JN∏
j=1

(kj+1)−1.

Since kJN ≤ N
2
< kJN+1 and kj = (kj+1)1/3 we have k−1

JN+1 ≤ 2N−1 and

kJN+1−m ≤ 23−mN−3−m for any 0 < m ≤ JN . Denote αN =

JN−1∑
j=1

3−j.

Since αN > 1/3 we get that

|ΦN(π)| ≤ 23/2N−αN = o(N−1−1/3).

Similarly, for each j1, j2 ≤ N ,

(10.12) |ΦN :j1(π)| ≤ 23/2N−1/2−αN = o(N−1/2−1/3)

and

(10.13) |ΦN :j1,j2(π)| ≤ 23/2N−αN = o(N−1/3).

Indeed, the largest possible values are obtained for j1 = 2kJN (or j1 =
2kJN+1

−1 if it is smaller than N +1) and j2 = 2kJN −1 (or j2 = 2kJN ).
Using the same estimates as in the proof of of Theorem 1.8 we conclude

from (10.12) that Φ′N(π) = o
(

1/
√
N
)

and we conclude from (10.13)
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that Φ′′N(π) = o(1). It follows from Lemma 7.6 and Proposition 7.1 that
SN satisfies an Edgeworth expansion of order 3. The same conclusion
holds if we remove a finite number of terms from the beginning of the
sequence {Xn} because the smallness of ΦN(π) comes from the terms
X2kj−1 and X2kj for arbitrary large j’s.

On the other hand

∣∣Φ2kj ;2kj ,2kj−1,2kj−1,2kj−1−1(π)
∣∣ =

j−1∏
s=2

(
3−3s

)

= 3−(3j−9)/2 =
39/2√
kj
� 1

kj
= 3−3j .

It follows that S2kj ;2kj ,2kj−1,2kj−1,2kj−1−1 does not obey the Edgeworth
expansion of order 3. Accordingly, stable Edgeworth expansions need
not be superstable if r = 3. A similar argument allows to construct
examples showing that those notions are different for all r > 2.

11. Extension for uniformly bounded integer-valued
triangular arrays

In this section we will describe our results for arrays of independent
random variables. We refer to [13], [26, 27] and [11], [35], [29] and
[10] for results for triangular arrays of inhomogeneous Markov chains.
Example where Markov arrays appear naturally include the theory of
large deviations for inhomogeneous systems (see [34, 31, 14] and refer-
ences wherein), random walks in random scenery [4, 16], and statistical
mechanics [19].

Let X
(N)
n , 1 ≤ n ≤ LN be a triangular array such that for each fixed

N , the random variables X
(N)
n are independent and integer valued.

Moreover, we assume that

K := sup
N

sup
n
‖Xn‖L∞ <∞.

For each N we set SN =

LN∑
n=1

X(N)
n . Let VN = Var(SN). We assume

that VN → ∞, so that, by Lindenberg–Feller Theorem, the sequence
(SN − E(SN))/σN obeys the CLT, where σN =

√
VN .

We say that the array X
(N)
n obeys the SLLT if for any k the LLT

holds true for any uniformly square integrable array Y
(N)
n , 1 ≤ n ≤ LN ,
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so that Y
(N)
n = X

(N)
n for all but k indexes n. Set

MN := min
2≤h≤2K

LN∑
n=1

P (Xn 6= m(N)
n (h) mod h) ≥ R lnVN

where m
(N)
n (h) is the most likely value of X

(N)
n modulo h. Observe now

that the proofs of Proposition 3.1 and Lemmas 3.3, 3.4, 4.2 and 4.4
proceed exactly the same for arrays. Therefore, all the arguments in
the proof of Theorem 2.1 proceed the same for arrays instead of a fixed
sequence Xn. That is, we have

Theorem 11.1. There ∃J = J(K) < ∞ and polynomials Pa,b,N with
degrees depending only on a and b, whose coefficients are uniformly
bounded in N such that, for any r ≥ 1 uniformly in k ∈ Z we have

P(SN = k)−
J−1∑
a=0

r∑
b=1

Pa,b,N((k − aN)/σN)

σbN
g((k−aN)/σN)e2πiak/J = o(σ−rN )

where aN = E(SN) and g(u) = 1√
2π
e−u

2/2.

Moreover, P0,1,N ≡ 1 and given K, r, there exists R = R(K, r) such
that if MN ≥ R lnVN then we can choose Pa,b,N = 0 for a 6= 0.

All the formulas for the coefficients of the polynomials Pa,b,N remain
the same in the arrays setup. In particular, we get that, uniformly in
k we have

(11.1) P(SN = k) =

(
1 +

∑
t∈R

e−itkΦN(t)

)
e−k

2
N/2σ−1

N + o(σ−1
N )

where ΦN(t) = E(eitSN ).
Next, our version for Proposition 1.2 for arrays is as follows.

Proposition 11.2. Suppose SN obeys LLT. Then for each integer h ≥
2, at least one of the following conditions occur:

either (a) lim
N→∞

LN∑
n=1

P(Xn 6= m(N)
n (h) mod h) =∞.

or (b) there exists a subsequence Nk, numbers s ∈ N and ε0 > 0
and indexes 1 ≤ jk1 , ..., j

k
sk
≤ LNk , sk ≤ s so that the distribution of

sk∑
u=1

X
(Nk)
ju

converges to uniform mod h, and the distance between the

distribution of SNk −
sk∑
q=1

X
(Nk)
jq

and the uniform distribution mod h is

at least ε0.
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Proof. First, by (11.1) and Lemma 5.1 if the LLT holds then for any
nonzero resonant point t we have lim

N→∞
|ΦN(t)| = 0. Now, if (a) does not

hold true then there is a subsequence Nk so that

LNk∑
n=1

q(X(Nk)
n , h) ≤ C,

where C is some constant. Set q(Nk)
n (h) = q

(
X(Nk)
n , h

)
. Then there

are at most 8hC n’s between 1 and LNk so that q
(Nk)
n (h) > 1

8h
. Let

us denote these n’s by n1,k, ..., nsk,k, sk ≤ 8hC. Next, for any n and a
nonzero resonant point t = 2πl/h we have

(11.2) |φ(Nk)
n (t)| ≥ 1− 2hq(Nk)

n (h) ≥ e−2γhq
(Nk)
n

where φ
(Nk)
n is the characteristic function of X

(Nk)
n and γ is such that

for θ ∈ [0, 1/4] we have 1− θ ≥ e−γθ. We thus get that

(11.3)
∏

n6∈{nu,k}

|φ(Nk)
n (t)| ≥

∏
n6∈{nu,k}

(1− 2hq(Nk)
n (h)) ≥ C0

where C0 > 0 is some constant. Therefore,

|ΦNk(t)| ≥
sk∏
u=1

|φ(Nk)
nu,k

(t)| · C0

and so we must have

(11.4) lim
k→∞

sk∏
u=1

|φ(Nk)
nu,k

(t)| = 0.

Now (b) follows from (11.3), (11.4) and Lemma 6.2. �

Using (11.1) we can now prove a version of Theorem 1.1 for arrays.

Theorem 11.3. The SLLT holds iff for each integer h > 1,

(11.5) lim
N→∞

LN∑
n=1

P(X(N)
n 6= mn mod h) =∞

where mn = m
(N)
n (h) is the most likely residue of X

(N)
n modulo h.

Proof. First, the arguments in the proof of (3.8) show that there are
constants c0, C > 0 so that for any nonzero resonant point t = 2πl/h
we have

(11.6) |ΦN(t)| ≤ Ce−c0MN (h), where MN(h) :=

LN∑
n=1

q(X(N)
n , h).
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Let us assume that (11.5) holds for all integers h > 1. Consider sN–
tuples 1 ≤ jN1 , ..., j

N
sN
≤ LN , where sN ≤ s̄ is bounded in N . Then by

applying (11.6) with S̃N = SN −
sN∑
l=1

X
(N)

jNl
we have

(11.7) lim
N→∞

|E(eitS̃N )| = 0.

Now, arguing as in the proof of Theorem 1.8(1), given a uniformly

square integrable array Y
(N)
n as in the definition of the SLLT, we still

have (11.1), even though the new array is not necessarily uniformly
bounded. Applying (11.7) we see that for any nonzero resonant point
t we have

lim
N→∞

∣∣∣∣∣E
(

exp

[
it

LN∑
n=1

Y (N)
n

])∣∣∣∣∣ = 0

and so SNY :=

LN∑
n=1

Y (N)
n satisfies the LLT.

Now let us assume that MN(h) 6→ ∞ for some 2 ≤ h ≤ 2K (it not
difficult to see that (11.5) holds for any h > 2K).

In other words after taking a subsequence we have that MNk(h) ≤ L
for some L <∞. The proof of Proposition 11.2 shows that there s <∞
such that after possibly removing terms n1,k, n2,k, . . . , nsk,k with sk ≤ s

we can obtain that q
(Nk)
n (h) ≤ 1

8h
, n 6∈ {nj,k}. In this case (11.2) shows

that for each `

|ΦNk;n1,k,...,nsk,k
(2π`/h)| ≥ e−2γL.

By Proposition 11.2, SNk;n1,k,...,nsk,k
does not satisfy the LLT. �

Next, all the other arguments in our paper proceed similarly for
arrays since they essentially rely only on the specific structure of the
polynomials from Theorem 2.1. For the sake of completeness, let us
formulate the main (remaining) results here.

Theorem 11.4. The following conditions are equivalent:
(a) SN satisfies LLT;
(b) For each ξ ∈ R \ Z, lim

N→∞
E
(
e2πiξSN

)
= 0;

(c) For each non-zero resonant point ξ, lim
N→∞

E
(
e2πiξSN

)
= 0;

(d) For each integer h the distribution of SN mod h converges to
uniform.

Theorem 11.5. For each r there is R = R(r,K) such that the Edge-
worth expansion of order r holds true if MN ≥ R lnVN . In particular,
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SN obeys Edgeworth expansions of all orders if

lim
N→∞

MN

lnVN
=∞.

Theorem 11.6. For any r ≥ 1, the Edgeworth expansion of order r
holds if and only if for any nonzero resonant point t and 0 ≤ ` < r we
have

Φ̄
(`)
N (t) = o

(
σ`+1−r
N

)
where Φ̄N(x) = E[eix(SN−E(SN ))].

Theorem 11.7. Suppose SN obeys the SLLT. Then the following are
equivalent:

(a) Edgeworth expansion of order 2 holds;
(b) |ΦN(t)| = o(σ−1

N ) for each nonzero resonant point t;
(c) For each h ≤ 2K the distribution of SN mod h is o(σ−1

N ) close to
uniform.

Next, we say that an array {X(N)
n } admits an Edgeworth expansion

of order r in a superstable way (denoted by {X(N)
n } ∈ EeSs(r)) if for

each s̄ and each sequence jN1 , j
N
2 , . . . , j

N
sN

with sN ≤ s̄ and jNi ≤ LN
there are polynomials Pb,N whose coefficients are O(1) in N and their
degrees do not depend on N so that uniformly in k ∈ Z we have that

(11.8) P(SN ;jN1 ,j
N
2 ,...,jsNN

= k) =
r∑
b=1

Pb,N(kN)

σbN
g(kN) + o(σ−rN )

and the estimates in O(1) and o(σ−rN ) are uniform in the choice of the
tuples jN1 , . . . , j

N
sN
.

Let ΦN ;j1,j2,...,js(t) be the characteristic function of SN ;j1,j2,...,js .

Theorem 11.8. (1) SN ∈ EeSs(1) (that is, SN satisfies the LLT in a
superstable way) if and if it satisfies the SLLT.

(2) For arbitrary r ≥ 1 the following conditions are equivalent:

(a) {X(N)
n } ∈ EeSs(r);

(b) For each jN1 , j
N
2 , . . . , j

N
sN

and each nonzero resonant point t we

have ΦN ;jN1 ,j
N
2 ,...,j

N
sN

(t) = o(σ1−r
N );

(c) For each jN1 , j
N
2 , . . . , j

N
sN

, and each h ≤ 2K the distribution of

SN ;jN1 ,j
N
2 ,...,j

N
sN

mod h is o(σ1−r
N ) close to uniform.
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