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1 Introduction.

1.1 The main result.

A classical Local Limit Theorem says that the distribution of the sum of i.i.d. ran-
dom variables considered at a small scale is approximately invariant with respect to
translations by a large1 subgroup of Rd. Several authors addressed a generalization
of this result for non-identically distributed terms (see e.g. [1, 2, 4, 5, 6, 7, 8, 9, 11]
and references therein). Here we show that a reasonable theory can be obtained if we
impose appropriate tightness assumptions on individual summands.

Consider a sum SN =
∑N
j=1Xj where Xj are independent, Rd valued random vari-

ables such that
E(Xj) = 0, (1.1)

E(|Xj |3) ≤ m3 (1.2)

and there exists a constant ε0 > 0 such that for each s ∈ Rd

E(〈Xj , s〉2) ≥ ε0|s|2. (1.3)
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1in the sense that the quotient of Rd by that subgroup is a compact group
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LLT for sums of independent random vectors

Note that in the presence of (1.2) condition (1.3) is equivalent to existence of ε1, ε2 > 0

such that for each proper affine subspace Π ⊂ Rd we have

P(d(Xj ,Π) ≤ ε1) ≤ 1− ε2. (1.4)

Let VN denote the covariance matrix

VN,l1,l2 =

N∑
j=1

E(Xj,(l1)Xj,(l2))

(here and below we denote by X(l) the l-th coordinate of vector X).
We call a closed subgroup H ⊂ Rd sufficient if there is a deterministic sequence aN

such that SN − aN mod H converges almost surely. The minimal subgroup, denoted by
H, is defined as the intersection of all sufficient subgroups.

Proposition 1.1. (a) If H is sufficient then Rd/H is compact.
(b) The minimal subgroup is sufficient.

If H is a proper subgroup of Rd we call the sequence {XN} arithmetic, otherwise it
is called nonarithmetic2.

Due to Proposition 1.1 there exists a bounded sequence aN such that SN−aN mod H
converges almost surely. Fix such a sequence and denote the limiting random variable
by S.

We refer the reader to Subsection 1.3 for examples of computation of the minimal
subgroup for d = 1.

Given a random variable Y let CY be the convolution operator

CY (g)(x) = E(g(x+ Y )).

We denote by C(Rd) (respectively Cr(Rd)) the space of continuous (respectively r
times differentiable) functions on Rd. The subscript 0 indicates that we consider only
functions of compact support in the corresponding space.

Theorem 1.2. For each g ∈ C0(Rd) for each sequence zN = O(
√
N) such that zN −aN ∈

H we have

lim
N→∞

[
E(g(SN − zN ))

uN (zN )

]
=

∫
H
CS(g)(h)dλH(h)

where λH is the Haar measure on H and uN (z) is the density of the normal random
variable with zero mean and covariance VN .

In particular, in the non-arithmetic case for each sequence zN = O(
√
N) we have

lim
N→∞

[
E(g(SN − zN ))

uN (zN )

]
=

∫
Rd

g(x)dx.

The Haar measure in the above theorem is defined as follows. H is isomorphic to the
product of Zd1 × Rd−d1 . λH is the product of the counting measure on the first factor
and the Lebesgue measure on the second factor normalized as follows. Choose a set
D so that each x ∈ Rd can be uniquely written as x = h+ θ where h ∈ H, θ ∈ D. λH is
normalized so that ∫

Rd

g(x)dx =

∫
H

∫
D

g(h+ θ)dλH(h)dλD(θ) (1.5)

where λD is the Lebesgue measure on D normalized to have total volume 1.

2Sometimes in the literature the term arithmetic is reserved to the case where H is a discrete subgroup of
Rd while the case where it has both discrete and continuous parts is called mixed but in our presentation we
will not distinguish between those two cases.
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LLT for sums of independent random vectors

1.2 One dimensional case.

If d = 1 there are several simplifications. Namely VN is a scalar and H is either R or
hZ for some h ∈ R. So Theorem 1.2 can be restated as follows.

Corollary 1.3. Either

(i) for each g ∈ C0(R) for each sequence zN such that lim
N→∞

zN√
VN

= z

lim
N→∞

[√
VNE(g(SN − zN ))

]
=
e−z

2/2

√
2π

∫ ∞
−∞

g(x)dx (1.6)

or (ii) there exists h > 0 and a bounded sequence aN such that SN−aN mod h converges
almost surely to a random variable S and for each g ∈ C0(R) for each sequence zN such

that zN = aN + kNh with kN ∈ Z and lim
N→∞

zN√
VN

= z

lim
N→∞

[√
VNE(g(SN − zN ))

]
=
he−z

2/2

√
2π

∞∑
j=−∞

CS(g)(jh).

In Section 8 we deduce the following consequence of this result.

Corollary 1.4. Let Xj be independent random variables of zero mean which are uni-
formly bounded (that is, there is K such that |Xj | ≤ K with probability one). Then either
SN converges almost surely to some random variable S in which case√

VNE(g(SN ))→
√
V (S)E(g(S)) (1.7)

or SN satisfies the conclusions of Corollary 1.3.

1.3 Examples.

Here we provide several examples of computing the minimal subgroup, the normaliz-
ing sequence aN and the shape of local distribution S.3

They provide a good illustration of versatility of Corollary 1.4, even though the
computations in each individual example presented below could be done by hand. Namely,
all cases where H 6= R follow immediately from Kolmogorov’s Three Series Theorem.
The cases where H = R seem a little more tricky and could be most easily analyzed with
the help of Lemma 3.2.

Example 1.5. X1 has a continuous distribution and Xn for n ≥ 2 are i.i.d and P(Xn ∈
a+ hZ) = 1 where h is the maximal number with this property. Then

H = hZ, aN = Na mod h, S = X1.

Example 1.6. Xn are integer valued and |Xn| ≤ M with probability 1. According to
Corollary 1.4 there are two cases

(I)
∑
N

(XN − E(XN )) converges4. Let bN be the closest integer to E(XN ). Then

either XN = bN or |XN − E(XN )| ≥ 1/2. Therefore the case (b1) is characterized by the
condition ∑

N

(
1−max

k
P (XN = k)

)
<∞.

3The reader should keep in mind that the choices of aN and S are not unique. Namely, we can replace
(aN , S) by (aN + ãN + c,S − c) where c is an arbitrary constant and ãN is a sequence converging to 0. In
Examples 1.5–1.8 we give one possible choice.

4Note that we do not assume here that XN have zero mean since E(XN ) need not be an integer, so we can
not reduced the general case to the zero mean case by subtracting the mean.
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(II) The minimal subgroup is hZ for some h ≤ 2M. Note that the same argument as
in (b1) shows that hZ is sufficient iff∑

N

(
1−max

k
P (XN ≡ k mod h)

)
(1.8)

converges.
We now distinguish to further subcases:
(IIa) The series (1.8) converges only for h = 1. In this case S = 0 and we obtain the

classical arithmetic local limit theorem√
VNP(SN = kN )→ 1√

2π
e−z

2/2 if
kN√
VN
→ z.

(IIb) The maximal h for which the series (1.8) converges is larger than 1. In this case
H = hZ with h as above,

aN =

N∑
n=1

kn mod h, where kn = arg maxP(Xn ≡ k mod h)

and S =

∞∑
n=1

(Xn − kn) (note that due to Borel-Cantelli Lemma this sum has only finitely

many non-zero terms with probability 1).

The LLT in Example 1.6 is proven in [10] (except that our results are slightly more
precise in case (IIb). The fact that (1.2) and (1.3) are sufficient for the LLT is noted in
[12] which obtains the LLT under slightly weaker conditions than (1.2) and (1.3) (under
the assumption that XN are integer valued!).

Example 1.7. Xn = ξn + εnηn where {ξn} and {ηn} are i.i.d random variables, ξs and ηs
are independent, ξn take values±1 with probability 1

2 and ηn have continuous distribution
with finite third moment. Then either

(I)
∑
n ε

2
n converges and

H = 2Z, aN = N mod 2, S =

∞∑
n=1

εnηn

or (II)
∑
n ε

2
n diverges in which case H = R and we are in the non-arithmetic situation.

Example 1.8.

P(Xn = −1) =
1

2
+ pn, P(Xn = 1 + εn) =

1

2
− pn, where εn =

4pn
1− 2pn

(so that E(Xn) = 0). We assume that pn → 0. Then either
(I)
∑
n ε

2
n converges (which is equivalent to the convergence of

∑
n p

2
n). Then

H = 2Z, aN =

(
N +

1

2

N∑
n=1

εn

)
mod 2, S =

∞∑
n=1

εn

(
1Xn=1+εn −

1

2

)
or (II)

∑
n ε

2
n diverges in which case H = R and we are in the non-arithmetic situation.

1.4 Plan of the paper.

In Section 2 we prove Proposition 1.1. In Section 3 we show that the non-arithmetic
case is characterized by the condition that the characteristic function of SN tends to 0

everywhere except for the origin. In Section 4 we show that if the characteristic function
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is large at some point then it decays rapidly nearby. This estimate is used in Section 5 to
prove the Local Limit Theorem for test functions whose Fourier transform is compactly
supported. In Section 6 we use an approximation argument to prove the Local Limit
Theorem for continuous functions of compact support. The proof relies on an auxiliary
estimate saying that a probability to visit a cube of a unit size is O(det(V

−1/2
N )). That

estimate is established in Section 7. Finally, in Section 8 we prove Corollary 1.4.
Throughout the paper ĝ denotes the Fourier transform of a function g. Uε(A) denotes

ε-neighborhood of a set A ⊂ Rd. BR is a ball of radius R centered at the origin.

2 Minimal subgroup.

We need the following deterministic fact.

Lemma 2.1. Let H̃, ˜̃H be closed subgroups of Rd such that Rd/H is a compact subgroup,

where H = H̃ ∩ ˜̃H. Let sN be a sequence such that both sN mod H̃ and sN mod ˜̃H

converge. Then sN mod H converges.

Proof. Let
p : Rd → Rd/H, p̃ : Rd/H → Rd/H̃, ˜̃p : Rd/H → Rd/ ˜̃H

be natural projections,

s̃ = lim
N→∞

sN mod H̃, ˜̃s = lim
N→∞

sN mod ˜̃H, S̃ = p̃−1s̃, ˜̃S = ˜̃p
−1 ˜̃s.

Note that Card(S̃ ∩ ˜̃S) ≤ 1. On the other hand for each ε > 0

p(sN ) ∈ Uε(S̃) ∩ Uε( ˜̃S)

provided that N is large enough. It follows that S̃ and ˜̃S do indeed intersect and

lim
N→∞

p(sN ) = S̃ ∩ ˜̃S. �

Proof of Proposition 1.1. (a) If Rd/H was not compact then we may assume after an
appropriate change of variables that all vectors in H have zero last coordinate. That is,
SN,(d) − aN,(d) converges almost surely. By (1.2) and (1.3) we can choose R so large that

denoting XN = XN,(d)1|XN,(d)|≤R we have V (XN ) ≥ ε0/2. Thus
∑
N

V (XN ) diverges and

so SN,(d) − aN,(d) diverges due to Kolmogorov’s Three Series Theorem.

To prove (b) let H̃, ˜̃H be sufficient subgroups such that SN − ãN mod H̃ and SN − ˜̃aN

mod ˜̃H converge. Let

b̃N = ãN − ãN−1,
˜̃
bN = ˜̃aN − ˜̃aN−1, H = H̃ ∩ ˜̃H.

We claim that Rd/H is compact. Indeed take R so large that

P(|XN | ≥ R) ≤ ε2/2

where ε2 is the constant from (1.4). By our assumptions for each δ1, δ2

P(XN ∈ b̃N + Uδ1(H̃)) ≥ 1− δ2, P(XN ∈ ˜̃
bN + Uδ1( ˜̃H)) ≥ 1− δ2

provided that N is large enough. Hence if 2δ2 + ε2/2 < 1 then

P
(
XN ∈

[(
b̃N + Uδ1(H̃)

)
∩
(

˜̃
bN + Uδ1( ˜̃H)

)
∩BR

])
> 0.
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Therefore the set
(
b̃N + Uδ1(H̃)

)
∩
(

˜̃
bN + Uδ1( ˜̃H)

)
∩BR is non empty, it contains a point

b̂N . Then

P(XN ∈ b̂N + (U2δ1(H̃) ∩ U2δ1( ˜̃H))) ≥ 1− 2δ2. (2.1)

Take δ1 so small that

(U2δ1(H̃) ∩ U2δ1( ˜̃H)) ∩B2R ⊂ Uε1(H). (2.2)

Now note that if Rd/H was not compact there would be a proper subspace L ⊃ H and
so (2.1) and (2.2) would contradict (1.4) with Π = b̂N + L.

Our next claim is that H is sufficient. Indeed pick ω̄ so that both SN (ω̄)− ãN mod H̃

and SN (ω̄)− ˜̃aN mod ˜̃H converge. Then for almost every ω both SN (ω)−SN (ω̄) mod H̃

and SN (ω) − SN (ω̄) mod ˜̃H converge. Now Lemma 2.1 tells us that SN − aN mod H

converges almost surely where aN = SN (ω̄). Hence H is sufficient.
Observe that H0 = Rd is sufficient. If it is not minimal there is a proper sufficient

subgroup H1 ⊂ H0. If H1 is minimal we are done. Otherwise there is H ′1 6⊂ H1 which is
sufficient and by the foregoing discussion H2 = (H1 ∩H ′1) is sufficient. Continuing we
obtain a chain of proper subgroups

H0 ⊃ H1 ⊃ H2 · · · ⊃ Hk ⊃ . . .

such thatHk is sufficient for each k.Note that either dim(Hk) < dim(Hk−1) or Vol(Hk−1/Hk)

is an integer greater than 1. On the other hand the proof of part (a) shows that if R is
large enough then Hk has a basis in BR for each k. Thus the chain can not be continued
indefinitely ending at some finite r. Then Hr is minimal and it is sufficient by construction.
�

3 Distinguishing between the arithmetic and non-arithmetic cases.

We start with an auxiliary estimate.

Lemma 3.1. Each random variable X can be decomposed as X = b+Y +Z where b is a
constant, Z ∈ 2πZ, |Y| ≤ 2π, E(Y) = 0, and

|E(eiX )| ≤ 1− E(Y2)

14
.

Proof. Let E(eiX ) = ρeib̄ where ρ, b̄ ∈ R. Decompose X − b̄ = Ȳ + Z where Z ∈ 2πZ and
|Ȳ| ≤ π. Then

ρ = E(ei(X−b̄)) = <(E(ei(X−b̄))) = E(cos((X − b̄))) = E(cos(Ȳ)).

Using that 5 cos(x) ≤ 1− x2

14 if |x| ≤ π we get ρ < 1− E(Ȳ2)
14 ≤ 1− V (Ȳ)

14 . This proves the
result with Y = Ȳ − E(Ȳ) and b = b̄+ E(Ȳ). �

We will refer to the decomposition of Lemma 3.1 as the useful decomposition of X .
The next result will help us to distinguish between the arithmetic and non-arithmetic

cases.

Lemma 3.2. Let XN be independent random variables with zero mean. Let SN =∑N
n=1 Xn. The following are equivalent
(a) There is a sequence aN such that SN − aN mod 2π converges;

5Indeed

cos(x) ≤ 1−
x2

2
+
x4

24
= 1−

x2

2

(
1−

x2

12

)
≤ 1−

x2

2

(
1−

π2

12

)
≤ 1−

x2

2
×

1

7
.
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(b) If XN = bN +YN +ZN is a useful decomposition of XN then
∑
N V (YN ) converges;

(c)6 lim
N0→∞

lim
N→∞

∣∣∣E(ei[SN−SN0
]
)∣∣∣ = 1.

Proof. If SN − aN mod 2π converges then

lim
N0→∞

lim
N→∞

(([SN − aN ]− [SN0
− aN0

]) mod 2π) = 0

and hence

lim
N0→∞

lim
N→∞

∣∣∣E(ei[SN−SN0
]
)∣∣∣ = lim

N0→∞
lim
N→∞

∣∣∣E(ei[(SN−aN )−(SN0
−aN0

)]
)∣∣∣ = 1.

Therefore (a) implies (c).

If lim
N0→∞

lim
N→∞

∣∣∣E(ei[SN−SN0
]
)∣∣∣ = 1 then for large N0

lim
N→−∞

∣∣∣E(ei[(SN−aN )−(SN0
−aN0

)]
)∣∣∣ > 0.

Denote this limit by e−A. Combining Lemma 3.1 with the inequality 1− x ≤ e−x we get∑
N

V (YN ) ≤ 14A. (3.1)

Therefore (c) implies (b).
Finally (b) implies (a) by Kolmogorov’s Three Series Theorem. �

We now return to considering a sequence of independent random vectors Xn with
SN =

∑N
n=1Xn. Denote

φn(s) = E(ei〈s,Xn〉), ΦN (s) = E(ei〈s,SN 〉).

Corollary 3.3. (a) If H = Rd then lim
N→∞

ΦN (s) = 0 for s 6= 0.

(b) If 7 H = Zd1 +Rd−d1 then lim
N→∞

ΦN (s) = 0 unless the last d− d1 coordinates of s

are 0 and the first d1 coordinates belong to 2πZd1 .

Proof. By Lemma 3.2 if lim
N→∞

|ΦN (s)| > 0 then the group

{h : 〈h, s〉 ∈ 2πZ}

is sufficient and so 〈h, s〉 ∈ 2πZ for h ∈ H. �

4 A local estimate

One of standard proofs of the Central Limit Theorem relies on the following bound
(see e.g. [3, Section XVI.6]).

Lemma 4.1. (a) lim
N→∞

ΦN

(
V
−1/2
N u

)
− e−u

2/2 = 0 uniformly on compact sets.

(b) There are positive constants c, δ0 such that if |s| ≤ δ0 then

|ΦN (s)| ≤ e−c〈VNs,s〉.

In this section we extend this result to a neighborhood of an arbitrary point (rather
than 0). So fix an arbitrary s̄ ∈ Rd.

6In other words E(eiXN ) vanishes for at most finitely many N and if E(eiXN ) 6= 0 for N > N0 then

lim
N→∞

∣∣∣E(
ei[SN−SN0

]
)∣∣∣ > 0.

7Here and below Zd1 +Rd−d1 denotes the set of vectors whose first d1 coordinates are integers.
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Lemma 4.2. (a) Suppose that

〈XN , s̄〉 = bN + YN + ZN (4.1)

where ZN ∈ 2πZ, YN is bounded, E(YN ) = 0 and

N∑
j=1

V (Yj) ≤ ε. (4.2)

Let aN =

N∑
j=1

bj . Then for each L > 0 there exists a constant C such that for |u| ≤ L we

have ∣∣∣ΦN (s̄+ V
−1/2
N u

)
e−iaN − e−u

2/2
∣∣∣ ≤ C [√ε+

1√
N

]
.

(b) There are positive constants M, c, δ0 such that if |ΦN (s̄)| = e−AN for some s̄ ∈ Rd
then for |∆| ≤ δ0 we have

|ΦN (s̄+ ∆)| ≤ eMAN−c〈VN∆,∆〉 (4.3)

Proof. We start with (b). Let 〈XN , s̄〉 = bN + YN + ZN be a useful decomposition of
〈XN , s̄〉. Then

φj(s̄+ ∆) = eibjE(ei(Yj+Xj))

where
Xj = 〈∆, Xj〉. (4.4)

Next,

ei(Yj+Xj) = 1 + i(Yj + Xj)−
1

2

[
Y2
j + X 2

j + 2(XjYj)
]

+O
(
|Xj + Yj |3

)
.

Note that
|Xj + Yj |3 ≤ 8 max

(
|Xj |3, |Yj |3

)
= O

(
|∆|3|Xj |3 + |Yj |3

)
.

Thus (1.2) gives

E
(
ei(Yj+Xj)

)
= 1− 1

2

[
E(X 2

j ) + 2E(XjYj)
]

+O
(
∆3 + E(Y2

j )
)
. (4.5)

Denoting pj = − 1
2

[
E(X 2

j ) + 2E(XjYj)
]

and writing the remainder term as Pj+iQj where
(Pj ,Qj) = O

(
∆3 + E(Y2

j )
)

are real we get∣∣∣E(ei(Yj+Xj)
)∣∣∣ =

√
1 + 2pj + 2Pj + 2pjPj + p2

j + P2
j +Q2

j = 1 + pj +O(p2
j + Pj +Q2

j )

= 1− 1

2

[
E(X 2

j ) + 2E(XjYj)
]

+O(∆3 + E(Y2
j )),

where the last step uses that p2
j = O(∆3 + E(Y2

j )).

Next, the inequality
ln(1 + x) ≤ x (4.6)

gives

ln
∣∣∣E(ei(Yj+Xj)

)∣∣∣ ≤ −1

2

[
E(X 2

j ) + 2E(XjYj)
]

+O
(
∆3 + E(Y2

j )
)
.

Therefore

ln |ΦN (s̄+ ∆)| ≤ −
N∑
j=1

[
1

2

[
E(X 2

j ) + 2E(XjYj)
]

+O
(
∆3 + E(Y2

j )
)]
.
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Denoting VN =
∑N
j=1E(X 2

j ),WN =
∑N
j=1E(Y2

j ) and using Cauchy-Schwartz inequality
and the fact that |∆|2N = O(VN ), due to (1.3), we get

ln |ΦN (s̄+ ∆)| ≤ −VN
2

+O
(
|∆|VN +WN +

√
WNVN

)
.

Since for each R √
WNVN ≤

1

2

[
VN
R

+RWN

]
we see that for small ∆ we have

ln |ΦN (s̄+ ∆)| ≤ −VN
4

+O (WN ) . (4.7)

Next, Lemma 3.1 tells us that
WN ≤ 14AN (4.8)

so (4.3) follows from (4.7).
To prove part (a) we use (4.5) where YN is from (4.1) and XN is given by (4.4). The

fact that YN was a part of a useful decomposition was used in part (b) only to get (4.8).
Here we have a stronger bound (4.2) by the assumptions of part (a). In particular, (4.2)
implies that E(Y2

j ) ≤ ε so all terms in (4.5) are small. Accordingly we can use the Taylor
expansion of ln(1 + x) to conclude that

lnφj(s̄+ ∆)− ibj = −
E(X 2

j )

2
+O

(
E(XjYj) + |∆|3 + E(Y2

j )
)
.

Hence

ln ΦN (s+ ∆)− iaN +
VN
2

= O

 N∑
j=1

E(XjYj)

+O
(
N∆3

)
+O

 N∑
j=1

E(Y2
j )

 .

Using (4.2) to estimate the third term, Cauchy-Schwartz to estimate the first term and
the fact that |∆|2N = O(VN ) to estimate the second term we get

ln ΦN (s̄+ ∆)− iaN = −VN
2

+O
(
|∆|VN + ε+

√
εVN

)
as stated. �

Corollary 4.3. Suppose that

〈XN , s̄〉 = bN + YN + ZN

where ZN ∈ 2πZ, YN is bounded, E(YN ) = 0 and
∑
N YN converges to S̃ almost surely.

Then
lim
N→∞

ΦN

(
s̄+ V

−1/2
N u

)
e−iaN = e−u

2/2E
(
eiS̃
)

uniformly on compact sets.

Proof. Given ε > 0 let N̄ be such that

∞∑
N=N̄+1

V (YN ) ≤ ε and
∣∣∣E(ei∑N̄

j=1 Yj

)
− E

(
eiS̃
)∣∣∣ ≤ ε.

Then ΦN

(
s̄+ V

−1/2
N u

)
e−iaN =

[
ΦN̄

(
s̄+ V

−1/2
N u

)
e−iaN̄

]
E

(
e
i
[
(s̄+V

−1/2
N u)(SN−SN̄ )−(aN−aN̄ )

])
:= Φ′N̄,N (s̄, u)Φ′′N̄,N (s̄, u)
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Note that Φ′
N̄,N

(s̄, u) depends on N only through the term V
−1/2
N u so

lim
N→∞

Φ′N̄,N (s̄, u) = E
(
ei

∑N̄
j=1 Yj

)
= E

(
eiS̃
)

+O(ε).

On the other hand Lemma 4.2(a) (applied to
∑N
j=N̄+1Xj) gives∣∣∣Φ′′N̄,N (s̄, u)− e−u

2/2
∣∣∣ = O

(√
ε+

(
N − N̄

)−1/2
)
.

Since ε can be chosen arbitrary small the result follows. �

5 Observables with compact Fourier transform.

Here we prove that formulas of Theorem 1.2 are valid if ĝ is continuous and has
compact support. So we suppose that supp(ĝ) ∈ [−K,K]d for some K.

5.1 Non-arithmetic case.

Assume first, that lim
N→0

ΦN (s) = 0 for all s 6= 0. By Corollary 3.3 this happens, in

particular, in the non arithmetic case. Note that since |ΦN | is monotone in N the
convergence is uniform on [−K,K]d\(−δ0, δ0)d for each δ0 > 0. We select δ0 so that the
conditions of Lemma 4.1(b) and 4.2(b) are satisfied. Divide [−K,K]d into boxes {Ij} of
side δ1 where δ1 ≤ δ0/2d so that I0 is the box centered at 0. Then

E(g(SN − zN )) =
1

(2π)d

∫
[−K,K]d

ĝ(−s)e−i〈s,zN 〉ΦN (s)ds

=
1

(2π)d

∑
j

∫
Ij

ĝ(−s)e−i〈s,zN 〉ΦN (s)ds.

We claim that the main contribution comes from∫
I0

ĝ(−s)e−i〈s,zN 〉ΦN (s)ds = J̄L,N + ¯̄JL,N

where J̄L denotes the integral over the set

QL := {s : V
1/2
N s ∈ [−L,L]d}

and ¯̄JL,N denotes the integral over I0 −QL. Making the change of variables V 1/2
N s = u

we get by Lemma 4.1(a)

det(V
1/2
N )J̄L,N =

∫
[−L,L]d

ĝ
(
−V −1/2

N u
)
e−i〈V

−1/2
N u,zN 〉ΦN

(
V
−1/2
N u

)
du

= ĝ(0)

[∫
[−L,L]d

e−u
2/2−i〈u,z̄N 〉du

]
(1 + oN→∞(1))

= ĝ(0)e−z̄
2
N/2

[
(2π)d/2 + oL→∞(1) + oN→∞(1)

]

where
z̄N = V

−1/2
N zN . (5.1)

On the other hand, by Lemma 4.1(b)

det(V
1/2
N ) ¯̄JL,N ≤ Const

∫
Rd−[−L,L]d

e−cu
2

du = oL→∞(1).
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Since this holds for all L we can let L→∞ to conclude that

lim
N→∞

ez̄
2
N/2 det(V

1/2
N )

∫
I0

ĝ(−s)ΦN (s)ds = (2π)d/2ĝ(0) = (2π)d/2
∫
Rd

g(x)dx.

It remains to show that the contributions of Ij with j 6= 0 are smaller.

Lemma 5.1. If I be a cube of size δ1 such that ΦN (s) converges to 0 on I. Then

lim
N→∞

det
(
V

1/2
N

)∫
I

|ΦN (s)|ds = 0.

Proof. Let

e−AN = max
I
|ΦN (s)| and s̄N = arg max

I
|ΦN (s)|.

Split

∫
I

|ΦN (s)|ds = J̄N + ¯̄JN where J̄N denotes the integral over the set

QN := {c〈VN∆,∆〉 < 2MAN} where ∆ = s− s̄N .

and ¯̄JN denotes the integral over I − QN . Since QN is contained in a ball or radius

O
(√

AN/N
)

we have

det(V
1/2
N )J̄N = O

(
(AN )d/2e−AN

)
→ 0

since AN →∞ as N →∞. On the other hand, by Lemma 4.2(b)

| ¯̄JN | ≤ Const

∫
c〈VN∆,∆〉≥2MAN,j

e−c〈VN∆,∆〉d∆

≤ Const

Nd/2

∫ ∞
|u|>c̄

√
AN

e−cu
2

du = O

(
A
d−1/2
N

Nd/2
e−cAN

)
.

Combining the estimates for J̄N and ¯̄JN we obtain the lemma. �

Lemma 5.1 shows that the main contribution to E(g(SN )) comes from I0 so that

ez̄
2
N/2 det

(
V

1/2
N

)
E(g(SN − zN ))→

(√
2π

2π

)d
ĝ(0) =

1

(2π)d/2

∫
Rd

g(x)dx

as claimed.

5.2 Arithmetic case.

Next, we consider the arithmetic case. Let H be the minimal subgroup. After a linear
change of variables we can assume that8 H = Zd1 +Rd−d1 . Let XN = bN +YN +ZN be the
decomposition of XN such that XN,(l) = bN,(l) + YN,(l) + ZN,(l) is a useful decomposition

for l ≤ d1 and bN,(l) = YN,(l) = 0 for l > d1. Let S̃N = (SN − aN ) mod H. Due to Lemma
3.2 we may (and will) assume that aN is chosen so that

S̃N =

N∑
j=1

Yj mod H.

8Here Zd1 is the set of vectors whose first d1 coordinates are integers and the last d− d1 coordinates are
zero and Rd−d1 is the set of vectors whose first d1 coordinates are zero.
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Lemma 5.1 shows that the main contribution to

det
(
V

1/2
N

)
E(g(SN − zN ))

comes from small cubes I(sm) centered at points sm where

lim
N→∞

|ΦN (sm)| > 0.

By Corollary 3.3 these points have form sm = 2πm with m ∈ Zd1 . The contribution of

m = 0 is e−z̄2
N/2

(2π)d/2 ĝ(0) as before.

For m 6= 0 note that ei〈sm,zN−aN 〉 = 1. Let ∆ = s− sm. Then

1

(2π)d

∫
I(sm)

ĝ(−s)e−i〈s,zN 〉E(ei〈s,SN 〉)ds

=
1

(2π)d

∫
I(sm)

ĝ(−s)e−i〈∆,(zN−aN )〉E(ei〈s,(SN−aN )〉)ds.

Denoting
Qm,L,N = {s : V

1/2
N ∆ ∈ [−L,L]d}

we decompose the last integral as J̄m,L,N + ¯̄Jm,L,N where J̄m,L,N is the integral over
Qm,L,N and ¯̄Jm,L,N is the integral over I(sm)−Qm,L,N . By Corollary 4.3

det
(
V

1/2
N

)
J̄j,L,N

(2π)d
=
ĝ(−sm)E

(
ei〈sm,S〉

)
+ oN→∞(1)

(2π)d

∫
[−L,L]d

e−u
2/2−i〈z̄N ,u〉du

= e−z̄
2
N/2

ĝ(−sm)E
(
ei〈sm,S〉

)
(2π)d/2

+ oN→∞,L→∞(1)

where z̄N is defined by (5.1). On the other hand by Lemma 4.2(b)

det
(
V

1/2
N

)
| ¯̄Jm,L,N | ≤ Const

∫
Rd−[−L,L]d

e−cu
2

du = oL→∞(1).

Since this holds for all L we can let L→∞ to conclude that

lim
N→∞

ez̄
2
N/2

det
(
V

1/2
N

)
(2π)d

∫
U(sj)

ĝ(−s)e−iszNE(eisSN )ds (5.2)

=
ĝ(−sm)E(ei〈sm,S〉)

(2π)d/2
=
ĈSg(−sm)

(2π)d/2
.

Note that the argument above relies on Corollary 4.3, so it only works under the
assumption that |ΦN (sm)| 6→ 0. However if ΦN (sm)→ 0 then the limit in (5.2) is zero due
to Lemma 5.1. Hence

lim
N→∞

ez̄
2
N/2 det

(
V

1/2
N

)
E(g(SN − zN )) =

∑
m∈Zd1

ĈSg (2πm)

(2π)d/2
.

Define the following function on Rd1

G(x′) =

∫
Rd−d1

(CSg)(x′, x′′)dx′′. (5.3)

Then ∑
m∈Zd1

ĈSg (2πm) =
∑

m∈Zd1

Ĝ(2πm) =
∑

m∈Zd1

G(m) =

∫
H
CS(g)(h)dλH.

Here the first equality holds since we have identified m ∈ Zd1 with (m, 0) ∈ Rd, the
second equality follows by the Poisson Summation Formula and the third equality follows
by (5.3) and (1.5). This proves Theorem 1.2 for the functions with compactly supported
Fourier transform.
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6 Proof of the Local Limit Theorem.

Here we finish the proof of Theorem 1.2.
We need the following a priori estimate proven in Section 7.

Lemma 6.1. There is a constant D such that for any cube Q of unit size

P(SN ∈ Q) ≤ D

Nd/2
.

To fix the notation we consider a non-arithmetic case, the argument in the arithmetic
case is similar.

We note that it is sufficient to prove Theorem 1.2 for g ∈ Cd+1
0 (Rd). Indeed if g ∈

C0(Rd) and supp(g) ∈ [−K,K]d then for each ε > 0 we can find g̃ ∈ Cd+1
0 (Rd) with

supp(g̃) ∈ [−(K + 1), (K + 1)]d and ||g − g̃||L∞ ≤ ε. Then

det
(
V

1/2
N

)
E(g(SN − zN )) (6.1)

= det
(
V

1/2
N

)
E(g̃(SN − zN )) + det

(
V

1/2
N

)
O(ε)P

(
SN ∈ zN + [−(K + 1),K + 1]d

)
.

The second term is O(ε) by Lemma 6.1. So if Theorem 1.2 is valid for Cd+1
0 functions

then

det
(
V

1/2
N

)
E(g(SN )− zN ) = e−z̄

2
N/2

∫
[−(K+1),K+1]d

g̃(x)dx+ oN→∞(1) +O(ε).

Since ∣∣∣∣∣
∫

[−(K+1),K+1]d
g̃(x)dx−

∫
[−(K+1),K+1]d

g(x)dx

∣∣∣∣∣ ≤ ε(2(K + 1))d

the theorem holds for all continuous functions.
So let g ∈ Cd+1

0 (Rd). Then for each ε there is ḡ such that ̂̄g has compact support and
|g(x)− ḡ(x)| ≤ ε

1+|x|d+1 . Denoting by Qm the unit cube centered at m we get

det
(
V

1/2
N

)
|E(g(SN − zN ))− E(ḡ(SN − zN ))|

≤
∑
m∈Zd

εdet
(
V

1/2
N

)
1 + |m|d+1

P(SN − zN ∈ Qm) = O

 ∑
m∈Zd

ε

1 + |m|d+1

 = O(ε)

where the penultimate step uses Lemma 6.1. Also∫
Rd

|g(x)− ḡ(x)|dx ≤ ε
∫
Rd

dx

1 + |x|d+1
= O(ε).

Since
E(ḡ(SN − zN ))

u(zN )
→
∫
Rd

ḡ(x)dx

due to the results of Section 5, Theorem 1.2 holds on Cd+1
0 (Rd) and, hence, on C0(Rd).

7 Concentration Inequality.

The proof of Lemma 6.1 in arbitrary dimension is the same as the proof for d = 1

given in [9, Section III.1] but we reproduce the proof here for completeness.
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Proof of Lemma 6.1. It is enough to prove the claim for cubes of any fixed size ρ since
the unit cube can be covered by a finite number of cubes of size ρ. Let

g(x) =

d∏
l=1

(
1− cos(δ̂x(l))

δ̂2x2
(l)

)

where δ̂ = δ0/d and δ0 is the constant of Lemma 4.1(b). Then

ĝ(s) = (πδ̂)d
d∏
l=1

((
1−
|s(l)|
δ̂

)
1|s(l)|≤δ̂

)
.

Hence for each a

E(g(SN − a)) =

∫
Rd

ĝ(−s)ei〈s,a〉ΦN (s)ds ≤
∫

maxl |s(l)|<δ0
ĝ(s)|ΦN (s)|ds

since ĝ is real and supported inside the cube of size 2δ0. Thus (1.3) and Lemma 4.1(b)
imply that there is a constant D̂ such that

E(g(SN − a)) ≤ D̂

Nd/2

On the other hand g(0) = 1
2d so there is a constant ρ such that g(x) > 1

4d on the cube of
size ρ centered at 0. Hence if Q is a cube of size ρ centered at a then

E(g(SN − a)) ≥ P(SN ∈ Q)

4d
.

Combining the last two displays we obtain the result. �

8 Bounded random variables.

Proof of Corollary 1.4. If
∑
j V (Xj) converges then SN converges almost surely by Kol-

mogorov’s Three Series Theorem and so (1.7) holds.
Therefore we assume that

∑
j V (Xj) diverges. Fix a large A and let kn be a sequence

such that denoting Xn =
∑kn
j=kn−1+1Xj we have

1

A
≤ V (Xn) ≤ A.

Since

E(X 4
n) = (E(X 2

n))2 +

kn∑
j=kn−1+1

V (X2
j ) ≤ A2 +

kn∑
j=kn−1+1

E(X4
j ) ≤ A2 +K2A

{Xn} satisfies (1.1), (1.2) and (1.3). Accordingly
∑kn
j=1Xj satisfy the conclusions of

Corollary 1.3. Note that this holds for any sequence kN such that

1

A
≤

kn∑
j=kn−1+1

E(X2
j ) ≤ A (8.1)

for some A and all n. We claim that, in fact, the conclusions of Corollary 1.3 are
satisfied for our original sum SN . Indeed, take an arbitrary sequence satisfying (8.1).
Suppose, to fix our notation, that Skn satisfies a non-arithmetic Local Limit Theorem, the
arithmetic case is similar. We claim that (1.6) holds. Otherwise there exist sequences
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{Nl} {zl} such that zl/
√
VNl
→ z and a continuous function g of compact support such

that lim
l→∞

[√
VNl

E(g(SNl
− zl))

]
does not converge to

e−z
2/2

√
2π

∫ ∞
−∞

g(x)dx. By taking a

subsequence we can assume that

Nl∑
j=Nl−1+1

E(X2
j ) ≥ 100A.

Let nl be such that knl
≤ Nl < knl+1

. Replacing knl
by Nl we obtain a new sequence

k̃n satisfying (8.1) with A replaced by 2A. Also, let z̃n = zl if k̃n = Nl for some l and
z̃n = z

√
Vk̃n otherwise. Then

lim
l→∞

[√
Vk̃nE(g(Sk̃n − z̃n))

]
fails to exist giving a contradiction with the assumption that (1.6) fails.

Hence (1.6) holds as claimed. �
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