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Abstract

We prove that in the space of all Cr (r ≥ 1) partially hyperbolic
diffeomorphisms, there is a C1 open and dense set of accessible dif-
feomorphisms. This settles the C1 case of a conjecture of Pugh and
Shub. The same result holds in the space of volume preserving or
symplectic partially hyperbolic diffeomorphisms.

Combining this theorem with results in [Br], [Ar] and [PugSh3],
we obtain several corollaries. The first states that in the space of
volume preserving or symplectic partially hyperbolic diffeomorphisms,
topological transitivity holds on an open and dense set. Further, on a
symplectic n-manifold (n ≤ 4) the C1-closure of the stably transitive
symplectomorphisms is precisely the closure of the partially hyperbolic
symplectomorphisms. Finally, stable ergodicity is C 1 open and dense
among the volume preserving, partially hyperbolic diffeomorphisms
satisfying the additional technical hypotheses of [PugSh3] .

Introduction

This paper is about the accessibility property of partially hyperbolic diffeo-
morphisms. We show that accessibility holds for a C1 open and dense set
in the space of all partially hyperbolic diffeomorphisms, thus settling the
C1 version of a conjecture of Pugh and Shub [PugSh1]. Partially hyper-
bolic diffeomorphisms are similar to Anosov diffeomorphisms, in that they
possess invariant hyperbolic directions, but unlike Anosov diffeomorphisms,
they can also possess invariant directions of non-hyperbolic behavior. Ac-
cessibility means that the hyperbolic directions fill up the manifold on a
macroscopic scale. Accessibility often provides enough hyperbolicity for a
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variety of chaotic properties, such as topological transitivity [Br] and ergod-
icity [PugSh3], to hold. As a consequence, we derive several density results
about stable ergodicity and stable transitivity among partially hyperbolic
diffeomorphisms.

Let M be a smooth compact, connected and boundaryless Riemannian
manifold. A diffeomorphism f : M →M is partially hyperbolic if the tangent
bundle to M splits as a Tf -invariant sum

TM = Eu ⊕ Ec ⊕ Es,

such that Tf uniformly expands all vectors in Eu and uniformly contracts all
vectors in Es, while vectors in Ec are neither contracted as strongly as any
vector in Es nor expanded as strongly as any vector in Eu. More precisely,
for each p ∈M , there exist 0 < ap < bp < 1 < Bp < Ap such that:

‖Tpf |Es‖ ≤ ap < bp ≤ m(Tpf |Ec) ≤ ‖Tpf |Ec‖ ≤ Bp < Ap ≤ m(Tpf |Eu),

where m(T ) = ‖T−1‖−1. Throughout this paper we assume that both sub-
bundles Eu and Es are nontrivial.

A more stringent condition, often called partial hyperbolicity in the liter-
ature (cf. [BrPe], [BuPuShWi]) requires that the constants ap, bp, Ap and Bp

be chosen independent of p. Since the results in this paper apply to diffeo-
morphisms satisfying the weaker condition, to avoid excessive terminology,
we will use the term partial hyperbolicity in the broader sense.

A partially hyperbolic diffeomorphism f is accessible if, for every pair of
points p, q ∈M , there is a C1 path from p to q whose tangent vector always
lies in Eu ∪Es and vanishes at most finitely many times. We say f is stably
accessible if every g sufficiently C1-close to f is accessible. We prove here the
following theorem.

Main Theorem: For any r ≥ 1, stable accessibility is C1 dense among the
Cr, partially hyperbolic diffeomorphisms of M , volume preserving or not. If
M is a symplectic manifold, then stable accessibility is C1 dense among Cr,
symplectic partially hyperbolic diffeomorphisms of M .

Related to the Main Theorem is the result of Niţică and Török [NiTö] that
stable accessibility is Cr-dense among partially hyperbolic diffeomorphisms
with 1-dimensional, integrable center bundle Ec. Other results about stable
accessibility treat more special classes of diffeomorphisms, such as time-one
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maps of Anosov flows [BuPuWi], skew products [BuWi1], certain systems
where Eu ⊕Es is integrable [ShWi], and systems whose partially hyperbolic
splitting is C1 [PugSh2].

The Main Theorem has several corollaries. The first corollary concerns
the topological transitivity of partially hyperbolic diffeomorphisms and fol-
lows immediately from a theorem of Brin [Br]. Denote by PH r(M) the set of
Cr partially hyperbolic diffeomorphisms of M . If µ and ω are, respectively,
Riemannian volume and a symplectic form on M , then set

PHr
µ(M) = {f ∈ PHr(M) | f∗(µ) = µ}, and

PHr
ω(M) = {f ∈ PHr(M) | f ∗(ω) = ω}.

Corollary 0.1 For r ≥ 1, there is a C1-open and dense set of topologically
transitive diffeomorphisms in PHr

µ(M). If M has a symplectic form ω, then
there is a C1-open and dense set of transitive diffeomorphisms in PH r

ω(M).

This corollary is false without the volume preservation assumption. Niţică
and Török have shown in [NiTö] that there is an open set of accessible non-
transitive diffeomorphisms. While it is plausible that for a C1 open and dense
set of diffeomorphisms in the space PHr(M), there are only finitely many
transitivity components, it is not a direct corollary of the Main Theorem.

M.-C. Arnaud has shown in [Ar] that ifM is a symplectic 4-manifold, then
the stably transitive diffeomorphisms in Diffrω(M) are partially hyperbolic.
(The same result has been announced by J. Xia in arbitrary dimension).
Hence there is a complete picture in dimension 4 of the stably transitive
diffeomorphisms, which we summarize in the next corollary.

Corollary 0.2 Let M be a symplectic manifold with dim(M) ≤ 4. The C1

closure of the stably transitive diffeomorphisms in Diffrω(M) coincides with
the C1 closure of the partially hyperbolic ones.

In other words, invariant tori are essentially the only obstacle for topological
transitivity in the symplectic category, at least if dim(M) ≤ 4. We conjecture
that the same is true in the volume preserving case.

Conjecture 0.3 In the space of volume preserving diffeomorphisms, the C1-
closure of the stably transitive diffeomorphims coincides with the closure of
the diffeomorphisms admitting a dominated splitting.
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For a discussion of the dominated splitting condition and some results
related to Conjecture 0.3 see [Vi]. Even though the results of this paper
could be useful in attacking this conjecture some other ideas (possibly ones
from the paper [BonDi]) are necessary to solve this problem. Here we note
only that in [BV] a volume preserving example is presented which is stably
transitive yet not partially hyperbolic. A. Tahzhibi has announced a proof
that these example are in fact stably ergodic.

Another corollary of the Main Theorem concerns ergodicity of f ∈ PH r
µ(M).

Pugh and Shub proved the following theorem:

Theorem 0.4 [PugSh3, Theorem A] Let f ∈ PH2
µ(M). If f is center

bunched, dynamically coherent, and essentially accessible, then f is ergodic.

Thus we also have the corollary:

Corollary 0.5 Among the center bunched, stably dynamically coherent dif-
feomorphisms in PH2

µ(M), stable ergodicity is C1 open and dense.

Theorem 0.4 refers to partially hyperbolic diffeomorphisms in the stronger
sense described earlier, but recently Burns and Wilkinson [BuWi2] have
shown that these results extend to the larger class of partially hyperbolic
diffeomorphisms described in this paper (satisfying additional center bunch-
ing conditions). For a description of examples of diffeomorphisms satisfying
the conditions “center bunched” and “stably dynamically coherent” see the
survey paper [BuPuShWi]. In particular, the corollary implies that there is
a C1-open neighborhood U ⊂ PH2

µ(M) of f in which stable ergodicity is
C1-open and dense, where f is the time-t map of an Anosov flow, a compact
group extension of an Anosov diffeomorphism, an ergodic automorphism of
a torus or nilmanifold, or a partially hyperbolic translation on a compact
homogeneous space.

This paper arose out of an attempt to prove the following conjecture of
Pugh and Shub.

Conjecture 0.6 [PugSh2, Conjecture 4] and [PugSh3, Conjecture 2] Stable
accessibility is Cr - dense in both PHr(M) and PHr

µ(M).

In the spirit of Theorem 0.4, Pugh and Shub also conjectured:

Conjecture 0.7 [PugSh3, Conjecture 3] A partially hyperbolic C2 volume
preserving diffeomorphism with the essential accessibility property is ergodic.
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Finally, combining Conjectures 0.6 and 0.7, they conjectured:

Conjecture 0.8 [PugSh3, Conjecture 4] Stable ergodicity is Cr - dense in
PHr

µ(M).

As with Theorem 0.4, these conjectures refer to the narrower class of
partially hyperbolic diffeomorphisms described above, but in light of the
results in [BuWi2] and this paper, it seems reasonable to extend them to the
class under consideration here.

The question of accessibility is closely related to problems in control the-
ory (see, e.g. [Lo]). In fact, analogous density theorems in control theory
initially suggested the Conjectures 0.6 and 0.7. The sole reason that the
results in control theory cannot be directly transported to this setting is that
we do not perturb the bundles Eu and Es directly, but rather the diffeo-
morphism f . We’d like to be able to say that a specific perturbation of f
has a specific effect on Eu and Es. What makes this difficult is that Es(p)
and Eu(p) are determined by the entire forward and backward orbit of p,
respectively; a perturbation will have various effects along the length of this
orbit, some desirable and others not.

The key observation that permits a measure of control is that the effects
of the perturbation are greatest along the first few iterates of p. To maximize
our control over the bundles Eu and Es, we isolate regions where we need
local accessibility and localize the perturbation to these regions. Choosing
the support of the perturbation to be highly non-recurrent then minimizes
undesirable “noisy” effects of the perturbations. The trade-off is that the
desirable effects of the pertubations are necessarily quite small. Nonetheless,
with the right C1-small perturbation, the desirable effects outweigh the un-
desirable ones and we obtain accessibility. Similar perturbations are found
in [PP].

It appears that a localized C2-small perturbation cannot achieve this,
and so the techniques in this paper do not extend to the C2 setting. New
techniques would be required to prove Conjectures 0.6 and 0.7.

Here is how the proof of the Main Theorem goes. Let f ∈ PH r(M) have
partially hyperbolic splitting TM = Eu ⊕ Ec ⊕ Es. By [BrPe, HiPuSh] Eu

and Es are tangent to the leaves of continuous foliations which are denoted
Wu and Ws and are called the unstable and stable foliations respectively.
A us-path for f is a path γ : [0, 1] → M consisting of a finite number of
consecutive arcs — called legs — each of which is a curve that lies in a single
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leaf of Wu or Ws. It is easy to see that f is accessible if and only if for all
p, q ∈M , there is a us-path for f from p to q.

To prove the Main Theorem, we first find a collection of disjoint disks
in M . Each disk is approximately tangent to the center direction Ec. We
choose this collection large enough so that f is accessible, modulo these disks.
More precisely, for every p, q ∈ M , there is a finite sequence of us-paths for
f , the first path originating at p and ending in one of the disks, the last
path originating in a disk and ending at q. The intermediate paths all begin
and end in disks, each path beginning in the disk where the previous path
ends. We then perturb f in a small neighborhood of these disks. We can
arrange that if this neighborhood and the C0-size of the pertubation are both
sufficiently small, then the perturbed system will still be accessible, modulo
the same collection of disks. It is not hard to see that any additional C1-small
perturbation will preserve this property.

Under the Cr-dense assumption that the fixed points of f k are isolated,
for all k ≥ 1, we can choose these disks to be very small and their union
highly non-recurrent. This is Lemma 1.2. We show in Lemma 1.1 that it is
then possible to perturb f in a neighborhood of these disks by a C1-small
perturbation to obtain a stably accessible g. We prove stable accessibility by
showing that any two points in a given disk can be connected by a us-path
for g, and for any small perturbation of g. Since any small perturbation of g
is already accessible modulo these disks, this gives stable accessibility.

Lemma 1.1 is the only place where it is essential that the perturbation be
only C1-small. When we examine the effect of perturbing f on Eu and Es,
we find that in C1, the contribution to Eu(p) and Es(p) of the perturbation
near p is larger than the combined contributions along the rest of the orbit
of p; this is not true in C2. Therefore, a more complicated analysis, taking
into account the first several returns, is needed to establish the analogue of
our result in the C2-setting.

1 Proof of the Main Theorem

Proof: We first prove the Main Theorem in the case where f preserves a
smooth volume µ. The proof is easily modified to the non volume preserv-
ing case. In the final section we describe how to modify the proof for the
symplectic case.

Let f ∈ PHr
µ(M) and δ > 0 be given. Our goal is to find a stably acces-
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sible g ∈ Diffrµ(M) with dC1(f, g) < δ. We give some preliminary definitions
and notation.

Let P(M) be the collection of all subsets of M . We say that f is accessible
on X ∈ P (M) if, for every p, q ∈ X, there is a us-path for f from p to q. The
diffeomorphism f is accessible modulo X ⊂ P(M) if, for every p, q ∈M , there
exist X1, . . . , Xr ∈ X and us-paths for f : from p to X1, from q to Xr, and
from Xm to Xm+1, for m = 1, . . . , r−1. We say that f is uniformly accessible
modulo X if f is accessible modulo X and, further, there is a number N such
that the us-paths in the previous definition can be chosen to have length less
than N and to have fewer than N legs.

A property of a diffeomorphism f is said to hold stably if it also holds for
all g ∈ Diff1(M) sufficiently C1-close to f . Clearly if f is stably accessible
modulo {X1, . . . , Xk} and f is stably accessible on each Xi, then f is stably
accessible.

Define a function R : P(M) → N ∪ {∞} as follows. For X ∈ P(M), let
R(X) be the smallest J ∈ N ∪ {∞} satisfying:

f i(X) ∩X 6= ∅, with |i| = J + 1. (1)

Note that R(Bρ(p)) → per(p), as ρ→ 0, where we set per(p) = ∞ if p is not
periodic.

We next fix a system of local charts on M . We will on several occasions
refer to the orthogonal splitting Rn = TvR

n = Ru ⊕ Rc ⊕ Rs, where a =
dim(Ea).

Let Bn(v, ρ) denote the ball of radius ρ about v ∈ Rn with respect to the
sup norm on coordinates. More generally, we will use the notation Ba(v, ρ),
where a = u, c, s, c+ u, c+ s, or u+ s, to denote the sup-norm ball of radius
ρ about v in the affine space v + Ra.

Applying Moser’s theorem on the equivalence of volume forms [Mo] we
obtain, for any p ∈M , a C∞ map

ϕp : Bn(0, 1) →M

such that

1. ϕp(0) = p,

2. T0ϕp sends the splitting T0R
n = Ru⊕Rc⊕Rs to the splitting TpM =

Eu ⊕ Ec ⊕ Es,
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3. ϕp sends divergence-free vector fields to divergence-free vector fields.

4. p 7→ ϕp is a uniformly continuous map from M to C1(Bn(0, 1),M).
The dependence of ϕp on f is also continuous.

([Mo] gives maps satisfying 1, 3 and 4. 2 can be achived by precomposing
with a linear map.)

Since we do not assume that Ec is tangent to a foliation, we will work
with approximate center manifolds. For ρ < 1 and p ∈M , let

Vρ(p) = ϕp(B
c(0, ρ)).

We refer to Vρ(p) as a c-admissible disk with center p and radius ρ and write
r(Vρ(p)) = ρ. If D is a c-admissible disk with center p and radius ρ, then for
β ∈ (0, 1), we denote by βD the c-admissible disk with center p and radius
βρ.

A c-admissible family is a finite collection of pairwise disjoint, c-admissible
disks. If D is a c-admissible family, and β < 1, then let

βD = {βD | D ∈ D},

|D| =
⋃

D∈D

D,

r(D) = sup
D∈D

r(D), and

R(D) = R(|D|).

We have the following lemma.

Lemma 1.1 (Accessibility on central disks) Let f ∈ PH r
µ(M) and δ >

0 be given. Then there exists J > 0 with the following property.
If D is a c-admissible family with r(D) < J−1 and R(D) > J , then for

all σ > 0 and β ∈ (0, 1), there exists g ∈ Diffrµ(M) such that:

1. dC1(f, g) < δ,

2. dC0(f, g) < σ,

3. For each D ∈ D, g is stably accessible on βD.

We may assume that the fixed points of f k are isolated, for all k ≥ 1;
this property is Cr-dense in Diffrµ(M). Under this additional assumption we
have the following lemma.
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Lemma 1.2 (Accessibility modulo central disks) Let f ∈ PH r
µ(M) be

given. Assume that the fixed points of f k are isolated, for all k ≥ 1. Then
for every J > 0 there exists a c-admissible family D such that:

1. r(D) < J−1,

2. R(D) > J ,

3. f is uniformly accessible modulo 1
2
D.

Lemma 1.3 (Persistence of accessibility modulo D) There exists δ0 >
0 so that, given δ < δ0, a c-admissible family D with f uniformly accessible
modulo 1

2
D, and β ∈ (1

2
, 1), the following holds.

There exists σ > 0 such that any g satisfying

1. dC1(f, g) < δ,

2. dC0(f, g) < σ,

is accessible modulo βD (and hence g is stably accessible modulo βD, since
1. and 2. are open conditions).

The proof of the Main Theorem now follows from Lemmas 1.1, 1.2 and
1.3. Let f and δ be given. After a Cr-small perturbation, we may assume
that the fixed points of f k are isolated, for all k. We may assume that δ < δ0,
where δ0 is given by Lemma 1.3

Choose J according to Lemma 1.1. By Lemma 1.2, there exists a c-
admissible family D, with R(D) > J and r(D) < J−1, such that f is acces-
sible modulo 1

2
D.

Now fix β ∈ (1
2
, 1), and choose σ according to Lemma 1.3. Applying

Lemma 1.1 we obtain a diffeomorphism g ∈ Diffrµ(M), with dC1(f, g) < δ
and dC0(f, g) < σ, such that g is stably accessible on βD, for each D ∈ D.
By Lemma 1.3, g is also stably accessible modulo βD. Thus, g is stably
accessible.♦

The proofs of Lemmas 1.2 and 1.3 are given in the next section, and the
proof of Lemma 1.1 is given in Section 3.

The arguments of Section 2 become simpler if Ec(f) is integrable. In
that case, one can work with central disks instead of c-admissible ones. To
construct a family of central disks satsifying the conditions of Lemma 1.2 one
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should take a small ε > 0, choose an ε–net {pj} and let D be the union of unit
central disks centered at pj. If there are some i, j < Card(D) and n < J such
that fnD(pi)

⋂
D(pj) 6= ∅ then one can remove this intersection by arbitrary

small shift of pi in an unstable direction (this is possible even if i = j since
the periodic leaves of f are isolated by partial hyperbolicity). In case Ec

is not integrable the proof becomes significantly more complicated since one
has to work with disks which are almost tangent to Ec, but the idea remains
the same. As it is mentioned in the introduction the most difficult part of
the proof is Section 3 where the abundance of C1-perturbations is crucial.
Therefore many readers would find it helpful to skip Section 2 during the
first reading returning to it after mastering Section 3.

2 Global Accessibility

In this section we prove Lemmas 1.2 and 1.3.
Proof of Lemma 1.2: Let J be given. Let A = {p ∈ M | per(p) ≥

J+2}. Since the fixed points of f J+2 are isolated, there exist x1, . . . , xm ∈M
such that A = M \ {x1, . . . , xm}.

For ρ > 0, let Uρ(p) be the image of the ball Bn(0, ρ) under ϕp. The proof
of the following lemma is straightforward.

Lemma 2.1 If r > 0 is sufficiently small, then every p ∈
⋃
Ur(xi) can be

connected to a point in M \
⋃
Ur(xi) by a us-path with one leg.

Choose r according to this lemma, and let Ar = M \
⋃
Ur(xi). Assume r

is small enough that Ar is connected. Since Ar is compact and contained in
A, there exists ρ0 < 1/(2J) such that R(U2ρ0(q)) > J , for every q ∈ Ar.

The next lemma follows from the uniform continuity of the invariant
splitting for f , and we omit its proof.

Lemma 2.2 There exists K > 1 so that, for ρ0 sufficiently small, for all
p ∈ M , and for every q1, q2 ∈ Uρ0/K(p), there is a us-path with ≤ 2 legs from
q1 to some point in Vρ0(q2).

The next lemma is key.

Lemma 2.3 Let K > 1. If ρ0 is sufficiently small, then there exist a cover
of Ar by finitely many neighborhoods U1, . . . , Uk of the form Ui = Uρ0/K(qi),
and, for i = 1, . . . , k, points pi ∈ Ui such that

V2ρ0(pi) ∩ V2ρ0(pj) = ∅,

10



for i 6= j, and

V2ρ0(pi) ∩ f
m (V2ρ0(pj)) = ∅,

for all i, j and 0 < |m| ≤ J .

Before proving Lemma 2.3, we finish the proof of Lemma 1.2.
Let U1, . . . , Uk and p1, . . . , pk be given by Lemma 2.3. For i = 1, . . . , c,

let Di = V2ρ0(pi). Note that the collection D = {D1, . . . , Dk} satisfies con-
clusions 1. and 2. of Lemma 1.2, if ρ0 is sufficiently small.

Lemma 2.2 implies that, for every p ∈ Bi, there is a us-path with ≤ 2
legs from p to some point in 1

2
Di. It follows that, whenever Bi ∩ Bj 6= ∅,

there is a us-path with ≤ 4 legs from some point on 1
2
Di to some point in

1
2
Dj. Since Ar is connected and the balls Bi, . . . , Bk cover Ar, we obtain, for

any i, j, a sequence of disks Da0 = Di, Da1 , . . . , Dal
= Dj, such that 1

2
Dam

is connected to 1
2
Dam+1

by a us-path, for m = 0, . . . , l − 1. Then for any
p, q ∈ Ar, there are a sequence of disks Db0 , . . . , Dbs and us-paths: from p to
1
2
Db0 , from q to 1

2
Dbs, and from 1

2
Dbr to 1

2
Dbm+1

, for m = 0, . . . , s− 1. The
length and number of legs of these paths is clearly bounded. Since any point
in M \Ar =

⋃
Br(xi) can be connected to a point in Ar by a us-path with one

leg, it follows that f is uniformly accessible modulo { 1
2
D1, . . . ,

1
2
Dk}. This

proves 3., completing the proof of Lemma 1.2.♦

Proof of Lemma 2.3: We start with a simple Besicovich-type covering
lemma.

Lemma 2.4 (Covering lemma) For any C > 0 there exists an integer
N > 0 such that, for any compact set A ⊆ M , and for ρ > 0 sufficiently
small, there exist q1, . . . , qk ∈ A with the following properties, for i = 1, . . . , k:

• A ⊆ Bρ(q1) ∪ · · · ∪Bρ(qk), and

• #{j | BCρ(qi) ∩BCρ(qj) 6= ∅} ≤ N .

Proof of Lemma 2.4: On the manifold M , there exists a constant K > 0
such that for every ρ < 1 and every p ∈M , the volume of the ball Bρ(p) lies
between ρn/K and Kρn. Let N = (4C + 2)nK2; this is an upper bound on
the number of disjoint balls of radius ρ/2 that can fit inside a ball of radius
(2C + 1)ρ.

Let A and ρ be given. Let Sρ ⊂ M be a maximal ρ-separated subset of A.
Such a set exists by compactness of A. We claim that Sρ is also ρ-spanning.
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If not, then there exists x ∈ A such that d(x, y) > ρ, for all y ∈ A. But
this contradicts maximality of Sρ. Hence, if q1, . . . , qk are the elements of Sρ,
then

A ⊆ Bρ(q1) ∪ · · · ∪Bρ(qk).

For p ∈ Sρ, let N(p) be the set of q ∈ Sρ such that

BCρ(p) ∩BCρ(q) 6= ∅.

For each q ∈ N(p), the distance from p to q is less than 2Cρ, and so the ball
Bρ/2(q) is contained in B(2C+1)ρ(p). Since Sρ is ρ-separated, the balls Bρ/2(q)
and Bρ/2(q

′) are disjoint, for distinct q, q′ ∈ N(p). The cardinality of N(p) is
thus bounded by N , which completes the proof.♦

The sets Uρ(p) are uniformly comparable to round balls Bρ(p), and the
maps {fm, |m| ≤ J} distort distances by a bounded factor. Thus Lemma 2.4
implies the following.

Corollary 2.5 (Strengthened covering lemma) Let C, J > 0 be given.
There exists an integer N > 0 such that, for any compact set A ⊆ M , and
for any ρ > 0, there exist q1, . . . , qk ∈ A with the following properties, for
i = 1, . . . , k:

• A ⊆ Uρ(q1) ∪ · · · ∪ Uρ(qk), and

• #{j | UCρ(qi) ∩ f
m (UCρ(qj)) 6= ∅, for some |m| < J} ≤ N .

We now return to the proof of Lemma 2.3. To simplify notation, let
ρ1 = ρ0/K and let ρ2 = 4ρ0, where ρ0 is defined after the statement of
Lemma 2.1. Thus ρ1 < ρ0 < ρ2 In this notation, we have that R(Uρ2(p)) > J ,
for all p in Ar.

For p ∈ M and ρ > 0, let Tρ(p) be the connected component of p in
ϕp(B

u+s(0, ρ)). For d(p, q) small enough, the maps ϕ−1
q ϕp distort the Eu-

clidean structure by a factor ≤ 1.5. Assume that ρ2 is small enough that
this distortion bound holds whenever p, q ∈ Uρ2(z), for any z. From this we
obtain that for all p ∈M and all q ∈ Tρ1(p),

V2ρ0(q) ⊂ Uρ1+3ρ0(p) ⊂ Uρ2(p). (2)

We now apply Corollary 2.5 with C = 4K, A = Ar, and ρ = ρ1. By
Corollary 2.5, there exists N > 0 and q1, . . . , qk ∈ Ar such that
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• Ar = Uρ1(q1) ∪ · · · ∪ Uρ1(qk), and

• #{j | Uρ2(qi) ∩ f
m (Uρ2(qj)) 6= ∅, for some |m| < J} ≤ N .

For i = 1, . . . k, let Ui = Uρ1(qi). The neighborhoods U1, . . . , Uk cover Ar.
We choose p1, . . . pk inductively. Let p1 = q1. Since V2ρ0(p1) ⊂ Uρ2(p1),

and R(Uρ2(p1)) > J , we have that

V2ρ0(p1) ∩ f
m(V2ρ0(p1)) = ∅,

for 0 < |m| ≤ J .
Fix i > 1, and suppose that the points p1, . . . , pi−1 have already been

chosen. We want to choose pi so that

V2ρ0(pi) ∩ f
m(V2ρ0(pi)) = ∅,

for 0 < |m| ≤ J , and

V2ρ0(pi) ∩ f
m(V2ρ0(pj)) = ∅,

for 0 ≤ |m| ≤ J and j < i. The first of these two properties is satisfied if
we choose pi so that V2ρ0(pi) ⊆ Uρ2(qi). By (2), this is turn will hold if we
choose pi ∈ Tρ1(qi).

Hence, we would like to find pi ∈ Tρ1(qi) such that

V2ρ0(pi) ∩ f
m(V2ρ0(pj)) = ∅, (3)

for 0 ≤ |m| ≤ J and j < i. The neighborhood Uρ2(qi) meets at most N sets
of the form fm (Uρ2(qj)), for m between −J and J . Thus, #Ji ≤ N , where
Ji is the collection of all (j,m) with j < i, |m| < J , and

Uρ2(qi) ∩ f
m(Uρ2(qj)) 6= ∅.

For q ∈M and |m| ≤ J , let V m
ρ (q) be the connected component of fm(q)

in Uρ(f
m(q)) ∩ fm(V1(q)). There exists C0 ≥ 1 such that, for all p, q ∈M ,

• V m
C0ρ2

(q) ⊇ fm(V2ρ0(q)), and

• if Uρ2(p) ∩ fm(Uρ2(q)) 6= ∅, and ρ0 is sufficiently small, then V m
C0ρ2

(q)
intersects TC0ρ1(p) in exactly one point.
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(It is not hard to see that C0 can be chosen to depend only on J , on the
Riemannian structure, and on ‖Tf |Ec‖.) For (j,m) ∈ Ji, let p′j,m be the
point of intersection of V m

C0ρ2(pj) and TC0ρ1(qi):

{p′j,m} = V m
C0ρ2(pj) ∩ TC0ρ1(qi).

Consider the collection of these points

Pi = {p′j,m | (j,m) ∈ Ji} ⊂ TC0ρ1(qi).

The points in ϕ−1
qi

(Pi) lie on Bu+s(0, C0ρ1) ⊂ Rn. By elementary Euclidean
geometry, there exists C1 > 0 such that, for any ρ > 0, and any finite
collection of points Q ⊂ Bu+s(0, C0ρ), there is a point v ∈ Bu+s(0, C0ρ)
whose distance to the points in Q is at least ρ/(C1#Q).

Applying this fact to the points in ϕ−1
q1 (Pi), we find that there exists a

point pi ∈ Tρ1(qi) ⊂ Ui, such that, for all p ∈ Pi,

‖ϕ−1
qi

(pi) − ϕ−1
qi

(p)‖ ≥ ρ1/(C1#Pi) ≥ ρ1/(C1N). (4)

We claim that if ρ0 is sufficiently small, then pi satisfies (3); that is, for
all j < i and |m| ≤ J ,

V2ρ0(pi) ∩ f
m (V2ρ0(pj)) = ∅.

Clearly the claim is true for those (m, j) such that Uρ2(qi)∩f
m (Uρ2(qj)) = ∅,

so suppose that (m, j) ∈ Ji. We show that

V2ρ0(pi) ∩ V
m
C0ρ2

(pj) = ∅,

which clearly implies the result.
We shall view everything in Rn. Under the map ϕ−1

pi
, the sets V2ρ0(pi)

and V m
C0ρ2

(pj) lift, respectively, to Bc(0, 2ρ0) and a set we’ll call W . We show
that Bc(0, 2ρ0) and W are disjoint, for ρ0 sufficiently small.

The set V m
C0ρ2(pj) is a C1 disk, tangent at fm(pj) to Ec(fm(pj)). Thus

W is a C1 disk, tangent at a point w1 ∈ W to the uniformly continuous
distribution Tϕ−1

pi
(Ec). Furthermore, the distribution Tϕ−1

pi
(Ec) coincides at

pi with Rc.
By the distortion bounds, the diameter of W is on the order of ρ2:

diam (W ) ≤ 3C0ρ2. (5)

14



Let w2 = ϕ−1
pi

(p′j,m) ∈ W . Combining the distortion bounds with (4), we
obtain that

‖w2‖ = ‖ϕ−1
pi

(pi) − ϕ−1
pi

(p′j,m)‖ ≥ 2ρ1/(3C1N). (6)

All of these statements – about the C1-smoothness of W , the continuity
of the distribution Tϕ−1

pi
Ec, etc. – hold uniformly over pi, ρ0 and |m| < J .

Thus, to summarize the preceding remarks, we have a constant C2 > 0, and
functions θ1, θ2 : R+ → R+, all independent of pi, ρ0 and m, such that W is
contained in the graph of a C1 function F : Bc(0, C2ρ0) → Ru+s, with:

1. ‖DF (x1)‖ ≤ θ1(‖x1‖), for some x1 ∈ Bc(0, C2ρ0),
(x1 corresponds to the point w1 ∈ W ),

2. ‖F (x2)‖ ≥ ρ0/C2, for some x2 ∈ Bc(0, C2ρ0),
(x2 corresponds to the point w2),

3. ‖F (y)−F (x)−DF (x)(y−x)‖ ≤ θ2(‖y−x‖), for all x, y ∈ Bc(0, C2ρ0),

4. limr→0 θ1(r) = 0, and limr→0 θ2(r)/r = 0.

We claim that if ρ0 is small enough, then ‖F (x)‖ > 0, for all x ∈
Bc(0, C2ρ0). This implies that W is disjoint from Bc(0, 2ρ0), which is the
desired result. By 3., we have that for all x ∈ Bc(0, 2ρ0),

‖F (x) − F (x1)‖ ≤ ‖DF (x1)(x− x1)‖ + θ2(‖x− x1‖)

≤ 2C2 ρ0θ1(2C2ρ0) + θ2(2C2ρ0).

By the triangle inequality,

‖F (x)‖ ≥ ‖F (x2)‖ − ‖F (x2) − F (x1)‖ − ‖F (x1) − F (x)‖

≥ ρ0/C2 − 4C2ρ0 θ1(2C2ρ0) − 2θ2(2C2ρ0).

If ρ0 is sufficiently small, then this quantity is positive.♦

Proof of Lemma 1.3: We want to pass from infinitesimal conditions
given in the definition of partial hyperbolicity to local conditions. To this
end, let

ap(r) = max
q∈Br(p)

‖Tqf |Es(q)‖,

bp(r) = min
q∈Br(p)

m(Tqf |Ec(q)),
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Bp(r) = max
q∈Br(p)

‖Tqf |Ec(q)‖,

Ap(r) = min
q∈Br(p)

m(Tqf |Eu(q)).

By continuity of Tf we can choose r0 > 0 and θ < 1 so that ap(r0) < θbp(r0)
and Ap(r0) < θBp(r0). From now on we will fix this r0 and write ap etc.
instead of ap(r0) etc.

Let F1 and F2 be two continuous foliations with C1 leaves on M . We say
that F2 is ε (C0–) close to F1 if given any p, q on the same leaf of F1 with the
leafwise distance at most 1 apart, the F2 leaf passing through p intersects
the ε ball centered at q.

It is clear that there exists ε > 0 such that g is stably accessible modulo
βD provided that Wu

g is ε close to Wu
f and Ws

g is ε close to Ws
f . So we

need to show that given ε > 0 there is σ > 0 such that the conditions
of Lemma 1.3 with this σ imply ε closeness of dynamical foliations of g to
those of f . Namely we prove that for all p, q ∈ Bs

r0/2
(f, p), the intersection

W s(g, p)
⋂
Bε(q) is non-empty. (Thus, 1 in the initial definition is replaced

by r0/2 but this is sufficient because the unit ball can be covered by a finite
number of r0/2-balls.) Let αp(n) denote

αp(n) = αpαfp . . . αfn−1p

where α is either of a, A, b, B.
Partial hyperbolicity implies that given η ∈ (θ, 1) there is a continuous

cone family Kcu around Eu ⊕ Ec such that

(a) Tf(Kcu(p)) ⊂ Kcu(fp),

(b) Kcu is uniformly transverse to Es
f , and

(c) for any v ∈ Kcu(p)
‖Tf(v)‖ > apη‖v‖.

For δ0 sufficiently small, Kcu will also satisfy (a)–(c) if f is replaced by
any g such that dC1(f, g) ≤ δ0. Let q ∈ Ws

f(p) and let dWs(p, q) ≤ r0/2. Then
d(fNp, fNq) ≤ ap(N). Let V be a topological disk of dimension dim(Eu⊕Ec)
passing through q and such that TV belongs to Kcu (for example, we could
take V = ϕq(B

u+c(0, 1))).

16



Given n we can find σ so small that dC0(f, g) < σ implies that

d(gnp, gnV ) < 2ap(n).

Since gnV is uniformly transverse to Es there exists C = C(f) such that
Ws

g(g
np)

⋂
gnV contains a point z with d(gnq, z) ≤ Cap(n). Hence g−nz ∈

Ws(p) and d(q, gnz) ≤ Cηn. Thus, if n is large enough, Ws
g is ε−close to W s

f .
♦

3 Local accessibility

Proof of Lemma 1.1: Let f and δ < δ0 be given. Assume δ0 is small enough
that any g within δ0 of f in the C1-metric remains partially hyperbolic, with
constants a, b. Since our perturbations are local, it is convenient to adapt
the structures we use to a neighborhood of a point p. To each p ∈ M we
shall associate:

1. a neighborhood Up = ϕp(B
n(0, 1)),

2. a C∞ Riemann structure gp on Up with path metric dp, isometric under
ϕ−1
p to the Euclidean metric on Bc(0, 1),

3. a C∞ splitting TUp = Ẽu
p ⊕ Ẽ

c
p⊕ Ẽs

p = Tϕp(R
u⊕Rc⊕Rs), that agrees

with Eu ⊕ Ec ⊕ Es at p,

4. C∞ foliations W̃u
p , W̃

s
p , W̃

cu
p , W̃

cs
p of Up, tangent to the corresponding

subbundles of the C∞ splitting in 3.,

5. for i = 1, . . . , c, partial flows ζ it : Up → Up tangent to the leaves of W̃c,

6. partial flows τut : Up → Up and τ st : Up → Up tangent to the leaves of

W̃u, W̃s, respectively.

We describe the construction of 5. and 6. in more detail. Let {e1, . . . , ec}
be an orthonormal basis for the Rc factor in the splitting Rn = Ru⊕Rc⊕Rs.
For i = 1, . . . c, define the partial flows ζ it : B → B by

ζ it(ϕp(v)) = ϕp(v + tei).
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Similarly, fix unit vectors wu and ws tangent to the Ru and Rs factors in
the splitting Rn = Ru⊕Rc⊕Rs, and define the partial flows τut , τ

s
t : B → B,

by

τut (ϕp(v)) = ϕp(v + twu), and

τ st (ϕp(v)) = ϕp(v + tws).

Note that τut (resp. τ st ) sends W̃cs leaves (resp. W̃cu leaves) to other W̃cs

leaves, and between W̃cs leaves is the exactly the W̃u (resp. W̃s) holonomy
map. Note that, where defined, τ s−tτ

u
−tτ

s
t τ

u
t is the identity. This expresses the

fact that W̃u and W̃s are jointly integrable. In Subsection 3.2, we will use
the partial flows τu, τ s, ζ1

t , . . . , ζ
c
t to define g.

The next lemma follows directly from the uniform continuity of ϕp.

Lemma 3.1 The structures described in 1.-6. are uniform over p ∈ M and
over g sufficiently C1-close to f . For all p ∈M , the structure gp is uniformly
comparable to the original Riemann structure on Up.

Since all estimates involving the Riemann structure on M in this paper
are local, uniform over p ∈ M , any statement about the Riemann struc-
ture becomes valid for gp by introducing a multiplicative constant. We will
therefore be deliberately ambiguous in our notation, using d interchangeably
for the Riemannian metric and the local metric dp. Also, when the point is
clear from the context, we will drop the subscript p in describing the various
structures.

3.1 A criterion for stable accessibility

We describe here a condition on the foliations Wu
g , Ws

g that implies that g is
stably accessible on a c-admissible disk for f .

Let D be a c-admissible disk for f centered at p ∈ M , and let ρ = r(D).
Let m = m(c, dim(M)) be the constant given by Lemma 3.10. Suppose that
g is partially hyperbolic. We say that g is θ-accessible on D if, for each
i = 1, . . . , c, there exists a continuous map

H i : [0, 1] ×D → N(m−2)ρ(2D)

with t 7→ H i(t, q) a 4-legged us-path for g originating at q, and, for some
t0 ∈ (0, ρ/2), the condition

d(H i(1, q), ζ it0(q)) < t0θ (7)
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holds for all q ∈ D′. Here ζ i, d, etc. are the structures described in the
previous section, adapted at p.

The next lemma gives a criterion for central accessibility. A basic element
of the proof is the “quadrilateral argument” of Brin, in which 4-legged paths
are homotoped to the trivial path along 4-legged paths with endpoint in
a fixed c-admissible disk. The reader unfamiliar with this argument may
consult the survey paper [BuPuShWi] for a detailed description; the case
c = 1 is also proved there. The case c > 1 is essentially proved in [ShWi],
using an index argument.

Lemma 3.2 (Central accessibility criterion) Suppose β > 1/2. For ev-
ery β ′ ∈ (β, 1), there exist θ > 0, δ1 > 0 and ρ0 > 0 such that, for every
c-admissible disk D of radius r(D) < ρ0, if

• dC1(f, g) < δ1, and

• g is θ-accessible on β ′D,

then g is stably accessible on βD.

Proof of Lemma 3.2: Let β, β ′ be given. Choose θ < (β ′ − β)/4β ′c. By
continuity of the bundles Eu

g (p) and Ec
g(p) in (p, g), there exist δ1 > 0 and

ρ0 > 0 such that, if dC1(f, g) < δ1, if D is any c-admissible disk of radius
r(D) = ρ ≤ ρ0, and if s : [0, 1] → N(m−2)ρ(D) is any 4-legged us-path for g
with s(0), s(1) ∈ D, then

d(s(0), s(1)) ≤ ρ(β ′ − β)/4c. (8)

Let g,D be any such diffeomorphism and c-admissible disk. Suppose that
g is θ-accessible on β ′D. For i = 1, . . . c, we have maps H i satisfying (7) with
D′ = β ′D. We show g is accessible on βD. Since the existence of such H i is
a C1-open condition, this implies that g is stably accessible on βD.

By varying the lengths of the last 2 legs in the path t 7→ H i(t, q), we may
arrange that that H i(1, q) ∈ D, for all q ∈ β ′D. The reader may verify that
it is possible to do so while preserving property (7). (If necessary, the value
of θ can be reduced a little).

By a standard argument, the path t 7→ H i(t, q), for q ∈ β ′D, can be
homotoped through 4-legged us-paths originating at q to the trivial path
so that the endpoints stay in D during the homotopy. The trace of these

19



endpoints along the homotopy gives a curve in D from q to H i(1, q). More
precisely, for i = 1, . . . , c, we obtain

Ψi : [0, 1] × [0, 1] × β ′D → Nθ(D)

such that, for all s ∈ [0, 1], t 7→ Ψi(s, t, q) is a us-path for g with Ψi(s, 1, q) ∈
D, Ψi(0, t, q) = q and Ψi(1, t, q) = H i(t, q). Thus, s 7→ Ψi(s, 1, q) =: Φi

s(q) is
a curve in D, from q to H i(1, q). Every point on this curve is the endpoint
of a us-path originating at q.

By (8), we have, for q ∈ β ′D:

diam(Φi([0, 1] × {q})) < ρ(β ′ − β)/4c. (9)

For q ∈ β ′D, we then extend the definition of Φi
s(q) to values of s > 1 by

the inductive formula
Φi
t+m(q) = Φi

t(Φ
i
m(q)),

for t ∈ (0, 1] and m ∈ N. How far Φi
s(q) can be extended in s depends of

course on q. Note, however, that (7) gives, for m ∈ N,

d(Φi
m(q), ζ imt0(q)) = d(H i(1, H i(1, · · · , H i(1, q) · · ·)), ζ imt0(q))

= d(H i(1, qm−1), ζ
i
t0(q

′
m−1))

≤ d(H i(1, qm−1), ζ
i
t0
(qm−1)) + d(ζ it0(qm−1), ζ

i
t0
(q′m−1))

≤ t0(β
′ − β)/4β ′c+ d(qm−1, q

′
m−1)

· · ·

≤ mt0(β
′ − β)/4β ′c. (10)

As before, every point in the image of Φi
·(q) is the endpoint of a us-path

originating at q, although this path can have more than 4 legs.
Let q0 = ϕ(−β ′ρ/2(e1 + · · · + ec)), and define a map Z : [0, β ′ρ]c → M

by:
Z(a1, . . . , ac) = ζ1

a1 · · · ζ
c
ac

(q0).

Note that Z is a homeomorphism onto β ′D.
Next, consider the the map P : [0, ρβ ′]c → D defined by:

P (a1, · · · , ac) = Φ1
a1/t0

Φ2
a2/t0

· · · ,Φc
ac/r1t0

(q0).
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Each point in the image of P is the endpoint of a us-path for g originating
at q0. We claim that D is in the interior of its image. Since Z is a home-
omorphism onto β ′D, it suffices to show that dC0(P, Z) < d(∂βD, ∂β ′D) =
ρ(β ′ − β)/2.

If a = (a1, . . . , ac) ∈ [0, β ′ρ]c, with ai = t0(mi+si), mi ∈ N and si ∈ (0, 1],
then, by (9), and (10),

d(P (a), Z(a)) = d(Φ1
a1/t0Φ

2
a2/t0 · · ·Φ

c
ac/t0(q0), ζ

1
a1ζ

2
a2 · · · ζ

c
ac

(q0))

≤
c∑

i=1

d(Φi
ai/t0

Φi+1
ai+1/t0

· · ·Φc
ac/t0

(q0), ζ
i
a1

Φi+1
ai+1/t0

· · ·Φc
ac/t0

(q0))

≤
c∑

i=1

diam(Φ([0, 1] × {Φi+1
ai+1/t0

· · ·Φc
ac/t0(q0)}) +

c∑

i=1

d(Φi
mi

Φi+1
ai+1/t0

· · ·Φc
ac/t0

(q0), ζ
i
mit0

Φi+1
ai+1/t0

· · ·Φc
ac/t0

(q0))

≤ c(β − β ′)/4c+
c∑

i=1

mit0(β
′ − β)/4β ′c

< ρ(β ′ − β)/2,

since t0mi < ρβ ′. Then g is accessible on βD. ♦

3.2 Constructing the perturbation

Fix β ′ ∈ (β, 1). The next lemma completes the proof of Lemma 1.1.

Lemma 3.3 For every δ, θ > 0, if r(D) is sufficiently small and R(D) is
sufficiently large, then there exists g ∈ Diffrµ(M) such that

1. dC1(f, g) < δ,

2. dC0(f, g) < θ

3. g is θ-accessible on β ′D, for each D ∈ D.

The proof of Lemma 1.1 now follows. Choose θ < σ satisfying the hy-
potheses of Lemma 3.2. Let g be given by Lemma 3.3. Since g is θ-accessible
on β ′D, g is stably accessible on D.♦ .
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Proof of Lemma 3.3: Let δ, θ > 0 be given. We will perturb f by com-
posing with a C∞, volume preserving diffeomorphism ψ : M → M . We
first estimate the effect of the composition ψ ◦ f on the partially hyperbolic
splitting.

Say that ψ : M →M is supported on X ⊂M if ψ = id outside of X ⊂M .
The next lemma states that if R(X) is sufficiently large, and p, q ∈ X are
sufficiently close, then for any g, with gf−1 supported on X, the subspaces
Tψ−1(Eu

g )(q) and Es
g(q) are very close to Ẽu

p (q) and Ẽs
p(q), respectively.

Lemma 3.4 (Bundle Perturbation Lemma) There exists δ0 > 0 such
that the following is true. For every γ > 0, there exists J > 0 such that, if
ψ = g ◦ f−1 is supported on a set X with R(X) > J , and dC1(ψ, id) < δ0,
then for any p, q ∈ X with d(p, q) < J−1, we have:

1. 6 q(E
s
g, Ẽ

s
p) ≤ γ, and

2. 6 q(Tψ
−1(Eu

g ), Ẽ
u
p ) ≤ γ.

Proof of Lemma 3.4: Let γ > 0 be given. Recall that the splittings
TUp = Eu ⊕ Ec ⊕ Es and TUp = Ẽu

p ⊕ Ẽc
p ⊕ Ẽs

p coincide at p.
By uniform continuity of the splitting Eu ⊕ Ec ⊕ Es, uniformity of ϕp,

and smoothness of ψ, there exists a continuous function θ1 : R+ → R+, with
θ1(0) = 0, such that, for all p, q ∈M ,

6 q(Tψ(Eu), Tψ(Ẽu
p )) ≤ θ1(d(p, q)) (11)

6 q(E
s, Ẽs

p) ≤ θ1(d(p, q)), (12)

provided dC1(ψ, id) is small enough.
Let

λ = maxp
(
max

(
ap

bp

)
,
(
Bp

Ap

))

and note that λ < 1, because f is partially hyperbolic. There exist C1, θ0 > 0
such that, for all all subspaces F u, F s with

max{ 6 (F u, Eu), 6 (F s, Es)} ≤ θ0

we have:

6 (Tf−j(F s), T f−j(Es)) ≤ C1λ
j, and

6 (Tf j(F u), T f j(Eu)) ≤ C1λ
j,
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for all j ≥ 0. The splitting Eu
g ⊕Ec

g ⊕Es
g depends continuously on g, and so

max{ 6 (Eu
g , E

u), 6 (Es
g , E

s)} ≤ θ0,

if dC1(ψ, id) (and so dC1(f, g)) is sufficiently small.
Fix positive R < R(X). If q ∈ X, then gi(q) = f i(q), for all i between 0

and R. For these q, we have

6 q(E
s
g, E

s) = 6 q(Tg
−REs

g , T f
−REs)

= 6 q(Tf
−REs

g , T f
−REs)

≤ C1λ
R.

Similarly, for q ∈ X, g−i(q) = f−iψ−1(q) = f−i+1g−1(q), for all i between
1 and R− 1, and so

6 q(E
u
g , Tψ(Eu)) = 6 q(Tg(E

u
g ), T g(E

u))

≤ C2 6 g−1(q)(E
u
g , E

u)

= C2 6 g−1(q)(Tf
R−1Eu

g , T f
R−1Eu)

≤ C1C2λ
R−1.

Combining these inequalities with (11), we have shown: there exist λ,
θ1 : R+ → R+, and C > 0 such that, for any ψ sufficiently close to the
identity and supported on X, for all R < R(X), and all q ∈ X, p ∈ M , we
have

• 6 q(E
s
g, Ẽ

s
p) ≤ C(λR + θ1(d(p, q))), and

• 6 q(Tψ
−1(Eu

g ), Ẽ
u
p ) ≤ 2 6 q(E

u
g , Tψ(Ẽu

p )) ≤ C(λR + θ1(d(p, q))).

Hence if R is sufficiently large and d(p, q) is sufficiently small, these quan-
tities are bounded by γ. ♦

We will also need the following lemma.

Lemma 3.5 There exists T > 0 such that, for ε > 0 sufficiently small, for
any p ∈ M , and for any c-admissible disk D centered at p, there are C∞,
volume preserving flows ξ1

t , . . . , ξ
c
t : Up → Up such that, for each i:
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1. ξit = id outside N2ε(D).

2. For q ∈ Nε(D),
ξit(q) = ζ iεt(q).

(hence ξit preserves the leaves of W̃c ∩Nε(D)),

3. dC1(id, ξit) < T |t|.

Proof of Lemma 3.5: Let G = ϕ−1
p (D) = Bc(0, ρ), for some ρ > 0. Fix i,

and let E be the divergence-free vector field on N2ε(G) ⊂ Rn such that, for
all v:

E(v) = εei.

Let ω be the Euclidean volume form on Rn, and let φ0 = iEω. Since E is
divergence-free, the (n − 1)-form φ0 is closed: dφ0 = diEω = div(E)ω = 0.
Since N2ε(G) is contractible, there exists an (n − 2)-form ν on N2ε(G) such
that dν = φ0. We may choose ν so that

‖ν‖ ≤ 2ε2, and ‖ν‖C1 ≤ ε.

Let σ : N2ε(G) → [0, 1] be a C∞ bump function, vanishing on a neighbor-
hood of ∂N2ε(G) and identically 1 on Nε(G), such that

‖dσ‖ ≤ 2/ε, and ‖dσ‖C1 ≤ 2/ε2.

Let φ = d(σν). Then

‖φ‖C1 = ‖dσ ∧ ν + σφ0‖C1

≤ ‖dσ‖ · ‖ν‖C1 + ‖dσ‖C1 · ‖ν‖ + ‖σ‖C1 · ‖φ0‖C1

≤ 8

Hence φ has the following properties:

• ‖φ‖C1 ≤ T , where T = 8,

• dφ = 0,

• φ = φ0 on Nε(G),

• φ = 0 on ∂N2ε(G).
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Let X be the vector field on Rn satsifying iXω = ϕ, and let Xt be the flow
generated by X. Let ξit = ϕ ◦Xt ◦ ϕ

−1. Then ξi has the desired properties.
♦

Returning to the proof of Lemma 3.3, let T be given by Lemma 3.5. Let
γ = θδ/100cT . Choose J > 0 according to Lemma 3.4.

Now suppose that D = {D1, . . . , Dk} is any c-admissible family with
R(D) > J and r(D) < J−1. Choose η < r(D) so that the η-neighborhoods
of any two c-admissible disks in D are disjoint.

To prove Lemma 3.3, it suffices to show that for any D ∈ D, there is a
C∞ volume preserving diffeomorphism ψ, supported on the η-neighborhood
Nη(D), such that

1. dC1(ψ, id) < δ,

2. dC0(ψ, id) < θ,

3. if f is any diffeomorphism with f−1f supported on Nη(|D|) \ Nη(D),
and dC1(f, f) < δ, then ψ ◦ f is θ-accessible on β ′D.

To construct the final diffeomorphism g, we proceed disk by disk, construct-
ing for each Di ∈ D a diffeomorphism ψi suppported on Nη(Di) so that
ψi ◦ψi−1 · · ·ψi ◦ f is θ- accessible on β ′Di. Then g = ψk · · ·ψ1 ◦ f will satisfy
the conclusions of Lemma 3.3.

Fix D ∈ D centered at p and choose ε < η/4c small enough to satisfy the
hypotheses of Lemma 3.5. Let the flows ξ1

t , . . . , ξ
c
t be given by Lemma 3.5.

For i = 1, . . . , c, let εi = 4iε, let Zi = τuεi(D), and let

Ni = N2ε(Zi) = τuεi(N2ε(D)).

The neighborhoods N1, . . . , Nc are pairwise disjoint. Define ψ : M →M by

ψ(q) =
{
τ s−εiτ

u
εi
τ sεiξ

i
δ/T τ

u
−εi

(q) if q ∈ Ni, for some i,
q otherwise.

Observe that ψ has the following properties:

• ψ preserves µ,

• ψ = id outside N1 ∪ · · · ∪Nc ⊂ Nη(D),
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• ψ preserves the leaves of W̃c outside of N1 ∪ · · · ∪ Nc and inside of
Nε(Zi), for i = 1, . . . , c.

• dC1(ψ, id) < δ.

Let f be any diffeomorphism with dC1(f, f) < δ and f−1f supported on
Nη(|D|) \Nη(D), and let g = ψ ◦ f . It remains to show that g is θ-accessible
on β ′D.

We will now examine the behavior of the holonomy maps for g along
us-paths whose corners are near the points:

τuεi(p), τ sεiτ
u
εi
(p), τu−εiτ

s
εi
τuεi(p).

In analogue with τut and τ st , which translate along leaves of W̃u, W̃s, respec-
tively, we introduce maps πut , π

s
t : Nη(β

′D) → B, which translate along Wu
g

and Ws
g leaves:

{πut (q)} = Wu
g (q) ∩ W̃cs(τut (q))

{πst (q)} = Ws
g (q) ∩ W̃cu(τ st (q)).

If dC1(f, g) is sufficiently small, these maps are well-defined for |t| ≤
εc. Notice that if we were to replace Wu

g and Ws
g with W̃u and W̃s, these

equations would instead define τut and τ st , respectively. Between W̃cs leaves,
πut is the Wu-holonomy (and similarly for πst ). Lemma 3.4 will allow us to
predict the behavior of these maps. The upshot is:

On the appropriate domains, πu ∼ ψτu and πs ∼ τ s,
where we will be precise about ∼ later.

For i = 1, . . . c, let
hi = πs−εiπ

u
−εi
πsεiπ

u
εi
.

Then hi is a homeomorphism of Nε(β
′D) onto its image. Observe that hi(q)

is the endpoint of a 4-legged us-path for g, originating at q. By construction,
these paths depend continuously on q, and so there are continuous maps

H i : [0, 1] × β ′D → Nη(D)

with t 7→ H i(t, q) a 4-legged us-path for g, such that H i(0, q) = q and
H i(1, q) = hi(q). The rest of the argument goes as follows. We will show
that πu ∼ ψτu and πs ∼ τ s, which will imply that hi ∼ τ s−εiψτ

u
−εi
τ sεiψτ

u
εi
.

Since τu and τ s are just translations, ψ = ζ it0 on τεi(D), and ψ = id on
τu−εiτ

s
εi
τεi(D), we find that hi ∼ ζ it0 , where t0 = εδ/T . The remainder of the

argument is devoted to making ∼ precise.
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Lemma 3.6 (Holonomy Perturbation Lemma) For ε and δ sufficiently
small,

dC0(hi, ζ it0) ≤ t0θ

where t0 = εδ/T , and the C0-distance is measured on β ′D.

Proof of Holonomy Perturbation Lemma 3.6: For δ sufficiently small,
there exists a neighborhood Q ⊂ Nε(β

′D) of β ′D such that, for i = 1, . . . , c,

πuεi(Q) ⊆ ψτuεi(Nε(β
′D)),

πsεiπ
u
εi
(Q) ⊆ τ sεiψτ

u
εi
(Nε(β

′D)), and

πu−εiπ
s
εi
πuεi(Q) ⊆ τu−εiτ

s
εi
ψτuεi(Nε(β

′D)).

We now show that d(hi(q), ζ it0(q)) ≤ t0θ, for all q ∈ Q and i = 1 . . . , c, which
implies the conclusion of the lemma.

From the definition of ψ, we write, for q ∈ Q,

ζ it0(q) = ξit0/ε(q)

= ξiδ/T (q)

= τ s−εiτ
u
−εi
τ sεiψτ

u
εi
(q)

= τ s−εiψτ
u
−εi
τ sεiψτ

u
εi
(q), (13)

the final equality a consequence of the fact that ψ is supported onN1∪· · ·∪Nc,
which is disjoint from πsεiπ

u
εi
(Q). On the other hand,

hi(q) = πs−εiπ
u
−εi
πsεiπ

u
εi
(q). (14)

We show that the corresponding factors in the two compositions (13) and
(14) satisfy the desired inequality. More specifically, we show that, restricted
to the appropriate domains, the distances dC0(πu±εi, ψτ

u
±εi

) and dC0(πs±εi, τ
s
±εi

)
are bounded by θt0/4.

First, consider the maps ψ ◦ τuεi and πuεi on the domain Q. Recall that,

restricted to W̃cs leaves, τuεi is the W̃u holonomy map. But ψ ◦ τuεi sends W̃cs

leaves in Q ⊂ Nε(β
′D) to W̃cs leaves: τuεi sends W̃c leaves to W̃c leaves, and ψ

preserves W̃cs leaves in τuεi(Q) ⊂ N ′
i . It follows that, restricted to W̃cs(q)∩Q,

the map ψ ◦ τuεi is the ψ(W̃u)-holonomy map to the transversal W̃cs(τuεi(q)),
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where ψ(W̃u) is the image of W̃u under ψ. Recall that πuεi restricts to the

Wu
g -holonomy map between W̃cs(q) ∩Nε(β

′D) and W̃cs(τuεi(q)).

Thus, between W̃cs leaves, we are comparing the holonomy maps for the
foliations Wu

g and ψ(W̃u). To compare the holonomies for Wu
g and ψ(W̃u),

we first apply the smooth change of coordinates p 7→ ψ−1(p) and compare
the holonomies for ψ−1(Wu

g ) and W̃u. Since dC1(ψ, id) is small, this change
of coordinates distorts distances by a factor very close to 1.

The tangent distributions to ψ−1(Wu
g ) and W̃u are Tψ−1Eu

g and Ẽu,
respectively. According to the Bundle Perturbation Lemma 3.4, the distri-
butions Tψ−1(Eu

g ) and Ẽu are close; in particular,

6 q(Tψ
−1(Eu

g ), Ẽ
u) ≤ γ = θδ/100cT, (15)

for all q ∈ Nη(D). We now apply the next elementary lemma.

Lemma 3.7 Let F be a continuous foliation of B ⊂ Up with C1, u-dimensional
leaves, transverse to Ẽs ⊕ Ẽc. Let T1 and T2 be smooth disks tangent to
Ẽs ⊕ Ẽc. Assume that both the F- and W̃u-holonomy maps between T1 and

T2 are defined, and denote them by hF and hW̃
u

, respectively. Then, for all
q ∈ T1,

d(hF(q), hW̃
u

(q)) ≤ dist(T1, T2) · sup
q∈B

6 q(TF , Ẽ
u).

The analogous statement holds for s-dimensional foliations transverse to
Ẽs ⊕ Ẽc.

Applying Lemma 3.7 to the foliation ψ−1Wu
g , and using inequality (15),

we obtain that, for any two transversals T1 ⊂ Q and T2 = τuεi(T1), and q ∈ T1,

d(hψ
−1(Wu

g )(q), hW̃
u

(q)) ≤ dist(T1, T2) · sup
q∈Nη(D)

6 q(Tψ
−1(Eu

g ), Ẽ
u)

≤ εiγ

≤ (4cε)γ

≤ (4cε)(θδ/100cT )

< θ(εδ/8T )

= θt0/8.
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But then, for all q ∈ Q,

d(πuεi(q), ψτ
u
εi
(q)) = d(ψhψ

−1(Wu
g )(q), ψhW̃

u

(q))

≤ Lip(ψ)θt0/8

≤ θt0/4.

Similarly, for q ∈ ψτuεi(Q),

d(πsεi(q), τ
s
εi
(q)) ≤ 2εi 6 (Es

g , Ẽ
s)

< θt0/4.

Combining these inequalities and using the fact that τ sεi is an isometry,
we have, for all q ∈ Q,

d(πsεiπ
u
εi
(q), τ sεiψτ

u
εi
(q)) ≤ d(πsεiπ

u
εi
(q), τ sεiπ

u
εi
(q)) + d(τ sεiπ

u
εi
(q), τ sεiψτ

u
εi
(q))

= d(πsεiπ
u
εi
(q), τ sεiπ

u
εi
(q)) + d(πuεi(q), ψτ

u
εi
(q))

< θt0/4 + θt0/4

= θt0/2.

Proceeding in this fashion, we obtain that for q ∈ Q,

d(πs−εiπ
u
−εi
πsεiπ

u
εi
(q), τ s−εiψτ

u
−εi
τ sεiψτ

u
εi
(q)) < θt0,

which completes the proof. ♦

This completes the proof of Lemma 3.3. We have now shown that for
each i, there exists

H i : [0, 1] × β ′D → Nη(D)

with t 7→ H i(t, q) a 4-legged us-path for g, such that H i(0, q) = q and

d(H i(1, q), ζ it0(q)) = d(hi(q), ζ it0(q)) < θt0,

where t0 = εδ/T . Hence, g is θ-accessible.♦ .
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3.3 The symplectic case

If f preserves a symplectic form ω, then the perturbation g can also be made
symplectic.

As in the proof for the volume preserving case, we begin with a local
system of C∞ charts ϕp : B2m(0, 1) → M , defined for each p ∈ M , where
2m = n. Similar to the volume preserving case, these charts can be chosen
to have the following properties:

1. ϕp(0) = p,

2. T0ϕp sends the splitting T0R
n = Ru⊕Rc⊕Rs to the splitting TpM =

Eu ⊕ Ec ⊕ Es,

3. the symplectic form ϕ∗
pω is a linear pullback of the standard symplectic

form on R2m:
ϕ∗
pω = A∗

p(
∑

dpi ∧ dqi),

for some linear map Ap on R2m,

4. p 7→ ϕp is a uniformly continuous map from M to C1(Bn(0, 1),M).
The dependence of ϕp, Ap on f is also continuous.

By Darboux’s theorem, for each p ∈ M , there exists a neighborhood
Up of p and coordinates κp : Up → R2m such that, in these coordinates, ω
takes the standard form

∑
dpi ∧ dqi. For each p, Tpκp sends the splitting

TpM = Eu(p) ⊕ Ec(p) ⊕ Es(p) to a splitting R2m = Ru
p ⊕ Rc

p ⊕ Rs
p. Let

Ap : R2m → R2m be a linear map that sends B2m(0, 1) into κp(Up) and sends
the trivial splitting R2m = Ru ⊕ Rc ⊕ Rs to R2m = Ru

p ⊕ Rc
p ⊕ Rs

p, chosen
to depend continuously on p, f . Then ϕp = κ−1

p ◦Ap satisfies properties 1.-4.
With this modification, the proof of the Main Theorem in the symplectic

case proceeds exactly as in the volume preserving one, replacing “µ” by “ω”,
until the proof on Lemma 3.3. Since we will modify slightly the statement
and proof of this lemma, we restate it here in the symplectic case.

Lemma 3.8 For every δ, θ > 0, if r(D) is sufficiently small and R(D) is
sufficiently large, then there exists g ∈ Diffrω(M) such that

1. dC1(f, g) < δ,

2. dC0(f, g) < θ, and
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3. each D ∈ D is covered by c-admissible disks βV1, . . . , βVk such that g
is θ-accessible on Vi, for each i.

Remark: If θ and δ are sufficiently small, then any g ∈ Diffrω(M) satisfying
conditions 1.- 3. in Lemma 3.8 is stably accessible on D; for then Lemma 3.2
implies that g is stably accessible on each βVi, which implies stabe accessi-
bility on their union, which contains D.

Proof of Lemma 3.8. Let D be a c-admissible family. Using Lemma 3.10
below, we will cover each D ∈ D with c-disks βV1, . . . , βVk. The lemma
associates to each i an open set (a union of balls) N(D, i) ⊂ Nη(D); for
different i, these sets are disjoint. We will then perturb inside of N(D, i) to
obtain θ-accessibility on Vi.

Similar to the volume preserving case, we will need to show that if r(D)
is sufficiently small and R(D) is sufficiently large, then for each D ∈ D and
each c-disk Vi in the cover of D, there is a symplectic C∞ diffeomorphism ψ,
supported on N(D, i), with

(a) dC1(ψ, id) < δ,

(b) dC0(ψ, id) < θ,

(c) if f is any diffeomorphism with f−1f supported on Nη(|D|) \ N(D, i)
and dC1(f, f) < δ, then ψ ◦ f is θ-accessible on Vi.

Each perturbation ψ is supported on a union of balls (as opposed to a
tubular neighborhood); this allows for symplectic perturbations. The next
lemma replaces Lemma 3.5 for the symplectic case.

Lemma 3.9 There exists T > 0 such that, for ε > 0 sufficiently small, for
each p ∈M and q ∈ B1/2(p), there are C∞, symplectic flows ξit = ξi,qt : M →
M , i = 1, . . . , c, such that, for each i:

1. ξit = id outside B2ε(q)

2. For x ∈ Bε(q),
ξit(x) = ζ iεt(x).

(hence ξit preserves the leaves of W̃c ∩Bε(q)),

3. dC1(id, ξit) < T |t|.
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Here, all balls Bρ(q) are measured in the dp-metric, and all other invariant

structures W̃c, ζ i, etc. are adapted at p.

Proof of Lemma 3.9. Let p, q, i be given and let v = ϕ−1
p (q) ∈ Bn(0, 1/2).

We will explain how T is chosen later. Since constant vector fields are lo-
cally Hamiltonian with respect to ϕ∗

pω = A∗
p(

∑
dpi ∧ dqi), there exists a

Hamiltonian vector field X i, supported on Bn(v, 1/2), such that X i = ei on
Bn(v, 1/4). Since the C1-size of ϕp is uniformly controlled, there exists a
T0 > 0, independent of p, q, i, such that ‖X i‖C1 < T0. Given ε < 1/4, let

Y i(x) = εX i((x− v)/4ε).

Then Y i is Hamiltonian (if X i has Hamiltonian H, then Y i has Hamiltonian
4ε2H((x − v)/4ε)), is supported on Bn(v, 2ε), and satisfies ‖Y i‖C1 ≤ 4T0.
Furthermore, Y i = εei on Bn(v, ε). The vector field (ϕp)∗Y

i generates the
desired flow ξi. Clearly T can be chosen to depend only on T0 and other
uniform data. ♦

Next, we choose the balls. The proof of the next lemma is an elementary
exercise in Euclidean geometry.

Lemma 3.10 There exists m > 2, depending only on c and dim(M), such
that, for ε > 0 sufficiently small and all p ∈M , there exist k > 0 and points

{qi,j | i = 1, . . . , c, j = 1, . . . , k} ⊂ N(m−2)ε(D)

with the following properties:

1. there exist p1, . . . , pk ∈ D and εi,j > 0 such that τu−εi,j(qi,j) = pj,

2. the balls in the collection

{B2ε(qi,j), B2ε(τ
s
εi,j

(qi,j)), B2ε(τ
u
εi,j
τ sεi,j(qi,j)) | i = 1, . . . , c, j = 1, . . . , k}

are pairwise disjoint,

3. the balls
Bβε(p1), . . . , Bβε(pk)

cover D.
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Given δ and θ, let T be given by Lemma 3.9, let γ = θδ/100cT , and
choose J according to Lemma 3.4. Let D be any c-admissible family with
R(D) > J and r(D) < J−1. Let D ∈ D with center p. Proceeding as
in the proof of Lemma 3.3, choose ε < θ/4mc satisfying the hypotheses of
Lemma 3.9, where m is given by Lemma 3.10. Fix 1 ≤ i ≤ c, and let the
points {qi,j}, pi be given by Lemma 3.10. Let Vi = Vε(pi); by Lemma 3.10
the disks βV1, . . . , βVk cover D. Let

N(D, i) =
⋃
{B2ε(qi,j), B2ε(τ

s
εi,j

(qi,j)), B2ε(τ
u
εi,j
τ sεi,j(qi,j)) | j = 1, . . . c}.

We show that properties (a)-(c) above are satisfied for this i.

In each ball B2ε(qi,j), let ξi,jt = ξ
i,qj
t be the flow given by Lemma 3.9, with

q = qj.
Define ψ : M →M by

ψ(q) =

{
ξi,jδ/T if q ∈ B2ε(qi,j), for some j,
q otherwise.

Then ψ has the following properties:

• ψ∗ω = ω,

• ψ = id outside N(D, i),

• ψ preserves the leaves of W̃c outside of
⋃
j B2ε(qi,j) and inside of

⋃
j Bε(qi,j),

• dC1(ψ, id) < δ.

Let f be any diffeomorphism with f−1f supported on Nη(|D|) \N(D, i),
and let g = ψ ◦ f . Let It remains to show that g is θ-accessible on Vi.

By the same argument as in the proof of the Main Theorem, we obtain
that for each x ∈ Vi, there is a 4-legged us-path for g from x to a point
y ∈ N(m−2)ε(D) such that

d(y, ζ it0(x)) < θt0,

In other words, g is θ-accessible on Vi.♦
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Prépublications d’Orsay 2000-17.

[BonDi] Bonatti, C. and L. J. Diaz Persistent nonhyperbolic transitive
diffeomorphisms, Ann. of Math. 143 (1996), 357–396.

[Br] Brin, M., Topological transitivity of one class of dynamical
systems and flows of frames on manifolds of negative curva-
ture, Func. Anal. Appl. 9 (1975), 9–19.

[BrPe] Brin, M. and Ya. Pesin, Partially hyperbolic dynamical sys-
tems, Math. USSR Izvestija 8 (1974), 177–218.

[BuPuWi] Burns, K., C. Pugh and A. Wilkinson, Stable ergodicity and
Anosov flows, Topology 39 (2000), 149–159.

[BuPuShWi] Burns, K., C. Pugh, M. Shub and A. Wilkinson, Recent re-
sults about stable ergodicity, preprint.

[BuWi1] Burns, K. and A. Wilkinson, Stable ergodicity of skew prod-
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