
DEVIATIONS OF ERGODIC SUMS FOR TORAL TRANSLATIONS
I. CONVEX BODIES

DMITRY DOLGOPYAT AND BASSAM FAYAD

Abstract. We show the existence of a limiting distribution DC of the adequately normalized discrepancy
function of a random translation on a torus relative to a strictly convex set C. Using a correspondence
between the small divisors in the Fourier series of the discrepancy function and lattices with short vectors,
and mixing of diagonal flows on the space of lattices, we identify DC with the distribution of the level sets
of a function defined on the product of the space of lattices with an infinite dimensional torus. We apply
our results to counting lattice points in slanted cylinders and to time spent in a given ball by a random
geodesic on the flat torus.

1. Introduction

One of the surprising discoveries of dynamical systems theory is that many deterministic systems
with non-zero Lyapunov exponents satisfy the same limit theorems as the sums of independent random
variables. Much less is known for the zero exponent case where only a few examples have been analyzed
([3, 4, 11, 20]). In this paper we consider the extreme case of toral translations where the map not only
has zero exponents but is actually an isometry. In this case it is well known that ergodic sums of smooth
observables are coboundaries and hence bounded for almost all translation vectors, so we consider the
case where the observables are not smooth, namely, they are indicator functions of nice sets (another
possibility is to consider meromorphic functions, cf. [13, 26]). The case of circle rotations was studied
by Kesten [16, 17] who proved the following result

Theorem 1. Let 0 < r < 1, and let

DN(r, x, α) =
N−1∑
n=0

χ[0,r](x+ nα)−Nr.

There is a number ρ = ρ(r) such that if (x, α) is uniformly distributed on T2 then DN
ρ lnN

converges to a

standard Cauchy distribution, that is,

mes

(
(x, α) :

DN(r, x, α)

ρ lnN
≤ z

)
→ tan−1 z

π
+

1

2
.

Moreover ρ(r) ≡ ρ0 is independent of r if r 6∈ Q and it has a non-trivial dependence on r if r ∈ Q.

Our goal is to extend this result to higher dimensions. An immediate question is what kind of sets
one wants to consider in the definition of discrepancies. There are two natural counterparts to intervals
in higher dimension: balls and boxes. In this paper we will deal with balls and more generally with
strictly convex and analytic bodies C. Given a convex body C, we consider the family Cr of convex
bodies obtained from C by rescaling it with a ratio r > 0 (we apply to C the homothety centered at the
origin with scale r). We suppose r < r0 so that the rescaled bodies can fit inside the unit cube of Rd.
We define

(1) DC(r, α, x,N) =
N−1∑
n=0

χCr(x+ nα)−NVol(Cr)

where χC is the indicator function of the set C.
We will assume that (r, α, x) are uniformly distributed in X = [a, b] × Td × Td and denote by λ the

normalized Lebesgue measure on X. Then we will prove the following
1
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Theorem 2. Let C be a strictly convex analytic body that fits inside the unit cube of Rd.There exists a
distribution function DC(z) : R→ [0, 1] such that for any b > a > 0, we have

(2) lim
N→∞

λ{(r, α, x) ∈ [a, b]× Td × Td
∣∣∣ DC(r, α, x,N)

r
d−1
2 N

d−1
2d

≤ z} = DC(z).

The explicit form of DC will be given in Proposition 2.1 of Section 2.

Remark. The assumption that r is random in Theorem 2 is needed to suppress possible irregular
dependence of the limiting distribution on r. We know from the work of Kesten that for d = 1 the
statement becomes more complicated if r is fixed. However it is likely that for d ≥ 2 the limiting
distribution is the same for all r. (Note that the limiting distribution DC(z) is independent of the

interval where r is varying, to achieve this we need to divide the LHS of (2) by r
d−1
2 .)

Remark. The theorems in this paper are stated for r, x, α distributed according to Lebesgue measure,
but it appears clearly from the proofs that the same results hold for any measure with smooth density
with respect to Lebesgue.

Remark. It is possible to consider different scaling regimes in the discrepancy function, by replacing
r with rN−γ. For γ > 1/d, then the set of orbits of size N which visit CrN−γ at least once has small
measure if N is large. The case γ = 1/d, which is often coined as the Poisson regime, was treated by
Marklof in [19], where he showed that the number of visits to CN−1/d has a limiting distribution without
a need for normalization. (We also note that [23] obtained Poisson regime versions of our Theorems
3 and 7). We will see in Section 6.1 that for any γ < 1/d, Theorem 2 still holds with the same limit

distribution (with the normalization r
d−1
2 N

d−1
2d

(1−γd)).

Moreover, in the study of discrepancies in higher dimension it is possible to consider continuous time
translations. Namely, let

(3) DC(r, v, x, T ) =

∫ T

0

χCr(S
t
vx)dt− TVol(Cr)

where Stv denotes the translation flow on the torus Td = Rd/Zd, d ≥ 2, with constant vector field given
by the vector v = (v1, . . . , vd) ∈ Rd. We denote DC(v, x, T ) = DC(1, v, x, T ).

We suppose that v is chosen according to a smooth density p whose support is compact and does not
contain the origin. Let σ̄ denote the product of the distribution of v with the Haar measure on Td, while
σ denotes the product of the normalized Lebesgue measure on [a, b] with σ̄. In the case of dimension
d = 2, we will not need to consider a random scaling factor r of the convex body and we will have that
the distribution DC(v, x, T ) converges without any normalization to some limit.

Theorem 3. Let C be a strictly convex analytic body that fits inside the unit cube of Rd.
(a) If d = 2, there exists a two-parameter family of distribution functions D̄C,v(z) : R → [0, 1], such

that for any b > a > 0, we have

lim
T→∞

σ̄((v, x)
∣∣∣DC(v, x, T ) ≤ z) =

∫
D̄C,v(z)p(v)dv

(b) If d ≥ 4, there exists a d parameter family of distribution functions DC,v(z) : R→ [0, 1] such that
for any b > a > 0, we have

(4) lim
T→∞

σ{(r, v, x)
∣∣∣ DC(r, v, x, T )

r
d−1
2 T

d−3
2(d−1)

≤ z} =

∫
DC,v(z)p(v)dv.

The explicit forms of D̄C,v and DC,v will be given in Propositions 2.2 and 2.3 of Section 2.3
We show in Theorem 8 that in the case of balls, the limit distribution of the flow discrepancy does

not depend on the distribution of the direction of the vector field.
The case d = 3 is different and cannot be treated with the same approach we use here. In [9] we prove

that for d = 3, DC(r,v,x,T )
r lnT

converges to a Cauchy distribution as T →∞.
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Remark. We note that in Theorems 2 and 3, the same limit holds if we consider translated sets of TuCr
since this amounts to replacing x by x−u. Also our results remain valid for tori of the form Rd/L where
L is an arbitrary lattice in Rd since by a linear change of coordinates we can reduce the problem to the
case L = Zd.

Before we go to the next section where we describe the limiting distribution DC, let us observe that
the least restrictive requirement on the set seems to be that C is semialgebraic, that is it is defined by
a finite number of algebraic inequalities. This would allow a diverse collection of sets including balls,
cubes, cylinders, simplexes etc.

Conjecture 1. If C is semialgebraic then there is a sequence aN = aN(C) such that for a random
translation of a random torus DN/aN has a limiting distribution. Here

DN(x, α, L) =
N−1∑
k=0

χC(xk)−N
Vol(C)

covol(L)

where xk = x + kα mod L, L = AZd and we assume that the triple (A, x, α) ∈ GL(d,R)/SL(d,Z) ×
Td × Td has a smooth compactly supported density (with respect to the product of the Haar measures).

Note that there are two equivalent points of view. Either we fix C and change the torus Td = Rd/L or
we can fix the torus Td = Rd/Zd and change the set CA = A−1C. As before, we introduced parameters
into this problem to avoid an irregular behavior of the limiting distribution on the set C which appears
in Kesten’s result.

In a forthcoming paper [9] we verify this conjecture for boxes. In that case we get a result similar
to Kesten’s, namely that DN/ lndN converges to Cauchy distribution. We note that the study of
discrepancy for boxes has a long history, see [2] and references therein.

We note that the fact that ergodic sums of smooth observables are almost surely coboundaries is the
starting point of perturbation theories for nearly integrable conservative systems. Namely for smooth
perturbations, adiabatic invariants diffuse very slowly (Nekhoroshev theory) and the diffusion takes place
on a set of very small measure (KAM theory). A completely different behavior emerges if we consider
piecewise smooth perturbations [7, 8, 12, 15] but non smooth perturbations are much less studied than
the smooth ones. From this point of view our paper can be regarded as a study of the diffusion speed
in the simplest skew product system

(5) In+1 = In + εA(xn), xn+1 = xn + α

where A(x) = χC(x) We hope that the results of this paper can be useful in the study of a wider class
of fully coupled perturbations such as

(6) In+1 = In + εA(xn, In), xn+1 = xn + α(In) + εβ(xn, In),

but this will be a subject of a future investigation.
Another potential application of our result is to deterministic (quasi-periodic) random walks. In this

problem (see [5] and references therein) one considers a map A : Td → Zq of zero mean and asks if the

random walk SN =
∑N−1

n=0 A(x+nα) returns to a given set K infinitely many or only finitely many time.
The first step in the study of such problems is to find a sequence aN such that SN/aN has a non trivial
limiting distribution. If such aN is found then assuming that SN is more or less uniformly distributed
in the ball of radius aN we have that P(SN ∈ K) is of order a−qN . One then expects that SN visits K
infinitely often if and only if

∑
N a
−q
N = +∞. Thus while our results are not immediately applicable to

deterministic random walks they allow to make plausible conjectures about the values of d and q for
which the walk is recurrent.

While the motivations mentioned above will be subject of future investigations, we provide in Sec-
tion 6 two, more straightforward, applications of our results. One (subsection 6.3) deals with number
theory (counting lattice points in slanted cylinders) and the other (subsection 6.5) deals with geometry
(measuring the time a random geodesics spends in a ball).
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Plan of the paper. The rest of the paper is organized as follows. In Section 2 we provide formulas for
the limiting distributions in Theorems 2 and 3. In Sections 3–5 we prove Theorem 2. The proof consists
of three parts. In Section 3 we consider the Fourier transform of the discrepancy function and show that
the main contribution comes from a small number of resonant terms. The computations here are close
to the one-dimensional computations done in [16]. In Section 4 we use the Dani correspondence ([6]) to
relate the structure of the resonances to the dynamics of homogeneous flows on the space of lattices in
Rd+1. Namely, an approach inspired by the work of Marklof (see [19, 22]) allows us to express the limiting
distribution of resonances in terms of the distribution of a certain function on the space of lattices. In
Section 5 we show that for the resonant terms the numerators and denominators are asymptotically
independent and finish the proof of Theorem 2. In Section 6, we show how the arguments of Sections 3–
5 can be modified to prove some related results such as Theorem 3(b). We also relate the discrepancy of
Kronecker sequences to lattice counting problems (Section 6.3) and study the visits of random geodesics
to balls (Section 6.5). The proof of Theorem 3(a) which is simpler than the other proofs in the paper
is given in Section 7. In the last section of the paper, Section 8, we show that the series defining the
limiting distributions in Theorems 2 and 3 converge almost surely. (A weaker statement that those series
converge in probability follows from the proofs of Theorem 2 and 3. The convergence in probability is
sufficient for our argument. However we prove almost sure convergence since it provides an additional
insight into the properties of the limiting distribution.)

2. The limit distributions

2.1. Notation. Before we give a formula for DC we introduce some notations related to the space of
lattices that will be used in the statements and in the proofs.

Let M = SL(d + 1,R)/SL(d + 1,Z). M is canonically identified with the space of unimodular
lattices of Rd+1. Given L ∈ M we denote by e1 the shortest vector in L. We then define inductively
e2, . . . , ed+1 such that for each i ∈ [2, d + 1], ei is the shortest vector in L among those having the
shortest nonzero projection on the orthocomplement of the plane generated by e1, . . . , ei−1. Clearly, the
vectors e1(L), . . . , ed+1(L) are well defined outside a set of Haar measure 0. Also, it is possible to show
by induction on d that the latter vectors generate the lattice (see [1], Lemma 49.3).

Let Z be the set of primitive vectors m ∈ Zd+1 (i.e. with mutually coprime components) and such
that if i0 is the smallest integer in [1, d+ 1] such that mi 6= 0 then mi0 > 0 (we add the latter condition
to make sure not to count −m in Z for an m ∈ Z).Let

(7) T∞ = Td+1 × TZ , T∞2 = Td+1 × TZ × TZ .

We denote elements of T∞ by (θ, b) and the elements of T∞2 by (θ, b, b′). For m ∈ Z and L ∈ M , we
denote by (m, e) the vector

∑
i≤d+1miei(L), by Xm = (Xm,1, . . . , Xm,d) its first d coordinates, and by

Zm its last coordinate. We also define Rm =
(∑

i≤dX
2
m,i

) 1
2 .

2.2. Limit distribution in the case of translations. Let C be a strictly convex body with smooth
boundary. This means that ∂C is a smooth hypersurface of Rd with strictly positive gaussian curvature,
or equivalently that ∂C is a smooth manifold isomorphic under the normal mapping to the unit sphere
Sd−1. For each vector ξ ∈ Sd−1 there exists a unique point x(ξ) ∈ ∂C at which the unit outer normal
vector is ξ. We denote by K(ξ) the gaussian curvature of ∂C at this point.

Denote

(8) Md = M × T∞ and M2,d = M × T∞2
By abusing sligtly the notation we let µ denote the Haar measures on both Md and M2,d. Consider

the following function on M2,d

(9) L′C(L, θ, b, b′) =
1

π2

∑
m∈Z

∞∑
p=1

k(p,m, θ)
sin(πpZm)

R
d+1
2

m Zmp
d+3
2
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with

(10) k(p,m, θ) = K−
1
2 (Xm/Rm) sin(2π(pbm + p(m, θ)− (d− 1)/8))

+K−
1
2 (−Xm/Rm) sin(2π(pb′m − p(m, θ)− (d− 1)/8))

For the case of symmetric bodies, we define on the space Md the function

(11) LC(L, θ, b) =

2

π2

∑
m∈Z

∞∑
p=1

K−
1
2 (Xm/Rm)

cos(2πp(m, θ)) sin(2π(pbm − (d− 1)/8)) sin(πpZm)

R
d+1
2

m Zmp
d+3
2

.

We now give the description of the distribution DC of Theorem 2

Proposition 2.1. If C is an analytic non symmetric strictly convex body in Rd, then for any z ∈ R we
have

(12) DC(z) = µ {(L, (θ, b, b′)) ∈M2,d : L′C(L, θ, b, b′) ≤ z} .

If C is symmetric then, for any z ∈ R we have

(13) DC(z) = µ {(L, (θ, b)) ∈Md : LC(L, θ, b) ≤ z} .

Remark. Note that T∞ is embedded into T∞2 as a diagonal

T∞ = {b′m = bm}

and that L′C restricted to T∞ reduces to LC. Thus the proof of Theorem 2 will consist of two parts.
First, we will see that for any analytic body the limiting distribution will be given by (12) where µ is a
product of the Haar measure on M and a Haar measure on a subtorus of T∞2 and, second, we will show
in sections 5.1 and 5.2 that the only subtori which can appear are T∞ and T∞2 .

Remark. We will see that the conclusions of Theorem 2 and of Proposition 2.1 actually hold for generic
strictly convex symmetric bodies and generic strictly convex bodies respectively with a Cν boundary
where ν = (d − 1)/2. We will explain in section 5.5 what are the conditions required of these generic
convex bodies.

2.3. Limit distribution in the case of flows. In the case of flows, we start by describing the limit
distribution in the two-dimensional situation.

Proposition 2.2. If C is analytic strictly convex body in R2 that fits inside the unit cube, then the
distribution of DC(v, x, T ) of Theorem 3 (a) converges as T →∞ to the distribution

D̄C,v(z) = Leb
{

(y, θ) ∈ T2 × T2 : Lv(y, θ) ≤ z
}

(14)

Lv(y, θ) =
∑

k∈Z2−0

cke
2πi(k,y) sin(π(k, θ))

π(k, v)
(15)

where ck are the Fourier coefficients of χC.

The case d = 3 is completely distinct and will be dealt with in [9]. The limit distribution in the case
d ≥ 4 is as follows.

Proposition 2.3. If d ≥ 4 and C is analytic symmetric strictly convex body in Rd that fits inside the
unit cube, then the distribution DC,v(z) of Theorem 3 (b) is given by

(16) DC,v(z) = µ {(L, (θ, b)) ∈Md : Lv(L, θ, b) ≤ z}
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where

(17) Lv(L, θ, b) =

2

π2

∑
m∈Z

∞∑
p=1

K−
1
2 (Xm/Rm)

cos(2πp(m, θ)) sin(2π(pbm − (d− 1)/8)) sin(πpρZm)

p
d+3
2 ρQ

d+1
2

m Zm

.

Here we write v = ρ(α1, . . . , αd−1, 1), Xm,s and Rm are defined as in Section 2.1 with (L, θ, b) ∈ Md

instead of (L, θ, b) ∈Md+1 and

Q2
m = R2

m +

(
d−1∑
s=1

αsXm,s

)2

.

In the case of non-symmetric strictly convex body, the same statement holds except that the limiting
distribution is given by

(18) L′v(L, θ, b) =
2

π2

∑
m∈Z

∞∑
p=1

k(p,m, θ)
sin(πpρZm)

p
d+3
2 ρQ

d+1
2

m Zm

.

where k(p,m, θ) is given by (10).

3. Non-resonant terms

In this section we study Fourier transform of the discrepancy function and show that the main
contribution comes from a small number of resonant harmonics.

In all the sequel we fix ε > 0 arbitrarily small. We will use the notation C for constants that may
vary from one line to the other but that do not depend on anything but the dimension d.

3.1. We shall use the asymptotic formula for the Fourier coefficients of the indicator function χC of a
smooth strictly convex body C obtained in [14].

For any vector t ∈ Rd define P (t) = supx∈∂C(t, x). The main result of [14] is that if C is of class Cν

where ν = d−1
2

then

(19) (2πi|t|)χ̂C(t) = ρ(C, t)− ρ̄(C,−t)

with

(20) ρ(C, t) = |t|−
d−1
2 K−

1
2 (t/|t|)ei2π(P (t)−(d−1)/8) +O(|t|−

d+1
2 ).

If we group the k and −k terms in the Fourier series we get

χCr(x)− Vol(Cr) = r
d−1
2

∑
k∈Zd−{0}

ck(r, x)(21)

ck(r) = dk(r, x) +O
(
|k|−

d+3
2

)
dk(r, x) =

1

2π

g(k, r, x) + g(−k, r, x)

|k|
d+1
2

g(k, r, x) = K−
1
2 (k/|k|) sin (2π(rP (k)− (d− 1)/8 + (k, x)))
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which in the case of a symmetric body becomes

χCr(x)− Vol(Cr) = r
d−1
2

∑
k∈Zd−{0}

ck(r) cos(2π(k, x))(22)

ck(r) = dk(r) +O
(
|k|−

d+3
2

)
dk(r) =

1

π

g(k, r)

|k|
d+1
2

g(k, r) = K−
1
2 (k/|k|) sin(2π(rP (k)− (d− 1)/8)).

3.2. Throughout Section 3, to simplify the notations in our manipulations of the Fourier series of the
characterisitc functions of the sets included in Cr, we will assume the shape is symmetric and use
therefore the formula (22). We will see in Section 5 what are the necessary changes to be made in the
case of a non symmetric body.

From now on we will use the notation, for k = (k1, . . . , kd) and α = (α1, . . . , αd), {k, α} := (k, α)+kd+1

where kd+1 is the unique integer such that −1
2
< (k, α) + kd+1 ≤ 1

2
. To evaluate DC(r, α, x,N) =∑N−1

n=0 χCr(T
n
αx) − NVol(Cr), we sum up term by term in the Fourier expansion (22) of χCr . Thus,

introduce the notation

(23) f(r, α, x,N, k) =

ck(r)
cos(2π(k, x) + π(N − 1){k, α}) sin(πN{k, α})

N
d−1
2d sin(π{k, α})

so that we are interested in the distribution of

(24) ∆(r, α, x,N) =
∑

k∈Zd−{0}

f(r, α, x,N, k)

3.3. Given a set S, for functions h defined on T2d × S, we denote by ‖h‖2 the supremum of the L2

norms ‖h(·, s)‖ over all s ∈ S. Let

(25) ∆̄(r, α, x,N) =
∑

k∈Zd−{0} : 0<|k|2<N
2
d
ε

f(r, α, x,N, k).

Lemma 3.1. We have

(26) ‖∆− ∆̄‖2 ≤ Cε1/4

Proof. We have that ∫
Td

(
sin(πN(k, α))

sin(π(k, α))

)2

dα ≤ N.

Since |dr(k)| = O(|k|− d+1
2 ) we get that

‖∆− ∆̄‖2

2 ≤ CN
1

N
d−1
d

∑
|k|2≥N

2
d
ε

1

|k|d+1
≤ C
√
ε. �

3.4. Let

S(N,α) =

{
k ∈ Zd − {0} : 0 < |k|2 < N

2
d

ε
; |k|

d+1
2 |{k, α}| < 1

ε
d
4N

d−1
2d

}

(27) ∆̃(r, α, x,N) =
∑

k∈S(N,α)

f(r, α, x,N, k).

We have
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Lemma 3.2.

(28) ‖∆− ∆̃‖2 ≤ Cε1/8

Proof. By (26) it is sufficient to show that ‖∆̄− ∆̃‖2

2 ≤ Cε1/4. We have

(29) ‖∆̄− ∆̃‖2

2 ≤
C

N
d−1
d

∑
|k|2<N

2
d
ε

Ak

with

(30) Ak =

∫
Td

c2
k

{k, α}2
χ
|k|

d+1
2 |{k,α}|≥ 1

ε
d
4 N

d−1
2d

dα

For p ≥ 1 we define

(31) B(k, p) =

{
α ∈ Td :

p

ε
d
4N

d−1
2d

≤ |k|
d+1
2 |{k, α}| ≤ p+ 1

ε
d
4N

d−1
2d

}
.

Then

(32) |B(k, p)| ≤ 1

|k|(d+1)/2εd/4N
d−1
2d

.

Thus

(33) Ak ≤
∑
p≥1

εd/4c2
k|k|(d+1)/2N

d−1
2d

p2
≤ Cεd/4N

d−1
2d c2

k|k|(d+1)/2.

Summing over k and using (22) we get that

(34)
∑

|k|2<N
2
d
ε

Ak ≤ Cε1/4N
d−1
d

and the claim follows. �

3.5. Let

Ŝ(N,α) =

{
k ∈ Zd − {0} : ε

d+4
d−1N

2
d < |k|2 < N

2
d

ε
; |k|

d+1
2 |{k, α}| < 1

ε
d
4N

d−1
2d

}
.

Define

(35) ∆̂(r, α, x,N) =
∑

k∈Ŝ(N,α)

f(r, α, x,N, k).

Let

(36) Ek,N =

{
α ∈ Td : |k|

d+1
2 |{k, α}| < 1

ε
d
4N

d−1
2d

}
and

(37) EN =
⋃

|k|2<ε
d+4
d−1N

2
d

Ek,N .

We have that |EN | ≤ Cε. On the other hand, since ∆̂(r, α, x,N) = ∆̃(r, α, x,N) for α /∈ EN we have
from (28)

(38) ‖∆− ∆̂‖L2((Td−EN )×Td) ≤ Cε1/8.
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3.6. We can now get rid of the error terms in the Fourier expansion of the characteristic functions of
the convex sets. Introduce

f̌(r, α, x,N, k) = dk(r)
cos(2π(k, x) + π(N − 1){k, α}) sin(πN{k, α})

N
d−1
2d sin(π{k, α})

and let

(39) ∆̌(r, α, x,N) =
∑

k∈Ŝ(N,α)

f̌(r, α, x,N, k).

Since |ck − dk| = O(|k|−(d+3)/2)

(40) ‖∆̌− ∆̂‖
2

2 ≤
∑

ε
d+4
d−1N

2
d<|k|2<N

2
d
ε

C

|k|d+3

N

N
d−1
d

= O
(
N−

2
d

)
.

Hence we can replace ∆̂ with ∆̌.

3.7. Observe that the sum in (39) is limited to large k and small |{k, α}|. Define

g(r, α, x,N, k) = dk(r)
cos(2π(k, x) + π(N − 1){k, α}) sin(πN{k, α})

πN
d−1
2d {k, α}

.

Thus we have to prove that

(41) lim
N→∞

λ{(α, x, r) ∈ T2d × [a, b] | ∆′(r, α, x,N) ≤ z} = D(z)

where

(42) ∆′ =
∑

k∈U(N,α)

g(r, α, x,N, k)

and U(N,α) is any subset of Zd that contains Ŝ(N,α).

4. Geometry of the space of lattices

4.1. Following [6], Section 2, we give now an interpretation of the set Ŝ(N,α), as well as the contribution

to ∆′ of each g(r, α, x,N, k) for k ∈ Ŝ(N,α), in terms of short vectors in lattices in M = SL(d +
1,R)/SL(d+ 1,Z).

Let

gT =


e−T/d 0 . . . 0

0 e−T/d 0 . . .

0 . . . e−T/d 0
0 . . . 0 eT

 , Λα =


1 0 0 . . .
0 1 0 . . .

α1 . . . αd 1

 .

Consider the lattice L(N,α) = glnNΛαZd+1. For each k = (k1, . . . , kd) ∈ Zd we associate the vector k =
(k1, . . . , kd, kd+1) ∈ Zd+1 where kd+1 = kd+1(k, α) is the unique integer such that −1

2
< (k, α)+kd+1 ≤ 1

2
.

We then denote

(43) (X1, . . . , Xd, Z) := (k1/N
1/d, . . . , kd/N

1/d, N{k, α}) = glnNΛαk

We have that k ∈ Ŝ(N,α) if and only if glnNΛαk satisfies

(44) ε
d+4
d−1 < X2

1 + . . .+X2
d <

1

ε
, |Z| < 1

(X2 + . . .+X2
d)

d+1
4 ε

d
4

.

Let ei(N,α) be the shortest vectors of L(N,α) as defined in Section 2.
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Lemma 4.1. For each ε > 0 there exists M(ε) > 0 such that if α 6∈ EN then k ∈ Ŝ(N,α) implies that

glnNΛαk = m1e1(N,α) + . . .+md+1ed+1(N,α)

for some unique (m1, . . . ,md+1) ∈ Zd+1 − (0, . . . , 0), ‖m‖ ≤M(ε).
If ε > 0 is fixed and N is sufficiently large, it also holds that if α 6∈ EN then for each ‖m‖ ≤ M(ε),

there exists a unique k ∈ Zd such that

glnNΛαk = (m, e(N,α)) = m1e1(N,α) + . . .+md+1ed+1(N,α).

We denote U(N,α, ε) the set of k ∈ Zd that correspond to the set of m ∈ Zd+1, ‖m‖ ≤M(ε).

Proof. It is clear from (44) that k ∈ Ŝ(N,α) implies that glnNΛαk is shorter than R(ε) = ε−
(d+4)(d+1)

4(d−1)
−1.

Since e1(L) . . . ed+1(L) is a basis in Rd+1 we have that the norms ||x|| and ||
∑

j xjej(L)|| are equivalent.

Accordingly for each L there exists M(L) such that ‖m1e1(L)+ . . .+md+1ed+1(L)‖ ≥ R(ε) provided that
||m|| ≥ M(L). We claim that M(L) can be chosen uniformly for L of the form L(N,α) with α 6∈ EN .
To this end it suffices to show that the set

(45) {L(N,α), α 6∈ EN}

is precompact. By definition of EN , if X2
1 + . . .+X2

d < ε
d+4
d−1 , then N |{k, α}| is large, hence |N((k, α) +

kd+1)| is a fortiori large for any kd+1 ∈ Zd. This implies that there exists δ(ε) such that if α 6∈ EN then
all vectors in L are longer than δ. Therefore the precompactness of (45) follows by Mahler compactness
criterion ([24], Corollary 10.9).

We now prove the second statement. We have that (m, e(N,α)) = glnNΛαk̄ for some unique k̄ ∈ Zd+1

and we just have to see that k̄ = k(k) for k = (k̄1, . . . , k̄d). Since for ‖m‖ ≤ M(ε) we have that
‖(m, e)‖ � N (by precompacity) we necessarily have k̄d+1 = kd+1(k, α), that is k̄ = k(k) as required. �

4.2. For m ∈ Zd+1 and α ∈ Td, we write

(46) (m, e(N,α)) = (Xm,1, . . . , Xm,d, Zm)

and define Xm = (Xm,1, . . . , Xm,d) and Rm = ‖Xm‖. Introduce

h(r, α, x,N,m) =
dr(N,m) cos(2πN1/d(Xm, x) + π(N−1)

N
Zm) sin(πZm)

R
d+1
2

m Zm

with

dr(N,m) =
1

π2
K−

1
2 (Xm/Rm) sin(2π(rN1/dP (Xm)− (d− 1)/8))

From Section 4.1 we see that for α 6∈ EN

(47)
∑

m∈Zd+1−{0},‖m‖≤M(ε)

h(r, α, x,N,m) =
∑

k∈U(N,α,ε)

g(r, α, x,N, k)

where U(N,α, ε) ⊃ S(N,α).
Therefore Section 3.7 allows to shift our attention to the distribution of

∑
m∈Zd+1−{0},‖m‖≤M(ε) h(r, α, x,N,m)

that is equivalent to the distribution of ∆′ that we are studying.
The idea now is that the variables rN1/dP (Xm) mod [1], as r is random in an interval, will behave as

uniformly distributed random variables on the circle, provided that only prime vecotrs m are considered.
We need however to account for the contribution of the multiples of the primitive vectors. Introduce

(48) q(r, α, x,N,m, p) =

dr(N,m, p) cos (2πp(m, γ(α, x,N)) + pπ(N−1)
N

Zm) sin(πpZm)

R
d+1
2

m Zmp
d+3
2
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where

(49) dr(N,m, p) =
1

π2
K−

1
2 (Xm/Rm) sin(2π(rN1/dpP (Xm)− (d− 1)/8)),

(50) γ(α, x,N) = (γ1(α, x,N), . . . , γd+1(α, x,N)),

(51) γj(α,N, x) = N1/d(ej,1(N,α)x1 + . . .+ ej,d(N,α)xd).

Recall the definition of Z in Section 2. Let Zε = {m ∈ Z : ‖m‖ ≤ M(ε)}. Summing over the
multiples of all m ∈ Zε we end up with the following

Proposition 4.2. If as α, x, r are uniformly distributed on Td × Td × [a, b], the variable

2
∞∑
p=1

∑
m∈Zε

q(r, α, x,N,m, p)

converges in distribution as N → ∞ and then ε → 0 to some law DC(z) then the limit (2) of Theorem
2 holds with the same limit law DC(z).

To proceed with the proof of Theorem 2 we thus need to see how the terms Xm, Rm, Zm, γ(α, x,N)
and rN1/dP (Xm) behave as α, x, r are random and N →∞.

4.3. Uniform distribution of long pieces of horocycles. Observe that Λα is a piece of unstable
manifold of gT . We shall use the fact that the images of unstable leaves became uniformly distributed
in M. The statement below is a special case of [23], Theorem 5.8. Related results are proven in several
papers, see, in particular [10, 18, 25].

Proposition 4.3. Denote by µ the Haar measure on M. If Φ : (Rd+1)d+1 × Rd → R is a bounded
continuous function then

(52) lim
N→∞

∫
Td

Φ (e1(L(N,α)), . . . , ed+1(L(N,α)), α) dα = ∫
M×Td

Φ(e1(L), . . . , ed+1(L), α)dµ(L)dα

5. Oscillating terms

Recall the definitions of γ and Xm given in section 4.2 (equations (46) and (50)). Recall also the
definition of the function P (t) = supx∈∂C(t, x). We denote by µd the distribution of e1(L), . . . , ed+1(L)
when L is distributed according to Haar measure on M = SL(d+ 1,R)/SL(d+ 1,Z). We denote by λd,ε
the Haar measure on Td+1 × TZε and by λ̄d,ε the Haar measure on Td+1 × TZε × TZε .

The goal of this section is to prove the following.

Proposition 5.1. If α, x, r are distributed with smooth densities on Td×Td×[a, b], the random variables

(53) e1(N,α), . . . , ed+1(N,α), {γj}d+1
j=1, {Am}m∈Zε

with Am = N
1
dP (Xm)r, converge in distribution as N → ∞ to µd × λd,ε. In the non symmetric case,

the distribution of the random variables

(54) e1(N,α), . . . , ed+1(N,α), {γj}d+1
j=1, {Am}m∈Zε , {Ām}m∈Zε

where Ām = N
1
dP (−Xm)r, converge in distribution as N →∞ to µd × λ̄d,ε.

We will prove Proposition 5.1 in Section 5.3. We will first prove in Section 5.2 that form1, . . . ,mK ∈ Z,
the {P (Xmi)}Ki=1 are typically independent over Q and in the non symmetric case we want to prove that
for m1, . . . ,mK ∈ Z, the {P (Xmi)}Ki=1 and {P (−Xmi)}Ki=1 are typically independent over Q. The precise
statements to which this section is devoted are enclosed in equations (66) and (67) at the end of Section
5.2. We will first need two auxiliary lemmas about the function P that we include in the next section.
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5.1. For any L ∈ GL(d,R) viewed as a linear invertible map of Rd, we define fL : R → R as fL(δ) =

(P ◦ L)(1, δ, 0, . . . , 0). We also denote f̃L(δ) = (P ◦ L)(−1,−δ, 0, . . . , 0).

Lemma 5.2. If C is real analytic we have that for any L ∈ GL(d,R), fL is real analytic and not equal
to a polynomial.

Proof. We have that fL(δ) =
√

1 + δ2(P ◦ L)
(

1√
1+δ2

, δ√
1+δ2

, 0, . . . , 0
)

. Suppose fL is a polynomial.

Observe that (P ◦ L)
(

1√
1+δ2

, δ√
1+δ2

, 0, . . . , 0
)

is bounded so that fL can only be of degree at most 1.

Since fL is strictly positive and not constant this leads to a contradiction. �

We will need the following lemma for the non symmetric case.

Lemma 5.3. The following alternative holds. Either

(i) There exists L ∈ GL(d,R) and δ, δ′ ∈ R such that

(55)
f

(2)
L (δ)

f
(2)
L (δ′)

6= f̃
(2)
L (δ)

f̃
(2)
L (δ′)

or
(ii) C has a center of symmetry.

Proof. Suppose that (i) does not hold. Let L = Id. We have that f (2) = cf̃ (2) for some constant c. In
other words

(56)

(
∂

∂δ

)2

P (1, δ, 0, . . . , 0) = c

(
∂

∂δ

)2

P (−1,−δ, 0, . . . , 0).

Since for x > 0 we have P (x, y, 0, . . . , 0) = xP (1, y/x, 0, . . . , 0) it follows that

(57) ∂2
yP (x, y, 0, . . . , 0) = c∂2

yP (−x,−y, 0, . . . , 0)

for x > 0. Since C is analytic, this equality in fact holds identically. In particular

(58) ∂2
yP (−x,−y, 0, . . . , 0) = c∂2

yP (x, y, 0, . . . , 0)

so that c = ±1. Rewriting the last equation as

(59) ∂2
y [P (−x,−y, 0, . . . , 0)− cP (x, y, 0, . . . , 0)] = 0

we conclude that

(60) P (x, y, 0, . . . , 0)− cP (−x,−y, 0, . . . , 0) = a(x) + b(x)y

Assuming that 0 ∈ C we have that both P (x, y, 0, . . . , 0) and P (−x,−y, 0, . . . , 0) are positive. This
implies that c = 1. Indeed substituting x = y = 0 we see that a(0) = 0 and if c were equal to −1 we
would get

(61) P (0, y, 0, . . . , 0) + P (0,−y, 0, . . . , 0) = b(0)y.

Since the RHS can not be positive for all y we get a contradiction proving that c is actually equal to 1.
Interchanging the roles of x and y, we get

P (x, y, 0, . . . , 0)− P (−x,−y, 0, . . . , 0) = ax+ by

Because the same reasoning holds for any choice of L ∈ GL(d,R) we get that the restriction of the
function P (x)− P (−x) to every plane is linear. Therefore this function is globally linear, that is, there
exists v ∈ Rd such that for every x ∈ Rd

P (x)− P (−x) = (x, v).

Note that shifting the origin to x0 replaces P (x) by P (x) + (x, x0) and P (−x) by P (−x) − (x, x0).
Therefore after shifting the origin to v/2 we get P (x) = P (−x) so that C is symmetric. �
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5.2. When C is not symmetric, we will assume WLOG that (55) holds for L = Id. For m ∈ Zd+1 define
the function pm : R2(d+1) → R : (x, y) 7→ P ((m,x), (m, y), 0, . . . , 0). We know from Lemma 5.2 that
the function f(δ) = P (1, δ, 0, . . . , 0) is not a polynomial. In case the body C is not symmetric we also
consider

f̃(δ) = P (−1,−δ, 0, . . . , 0) and p̃m = P (−(m,x),−(m, y), 0, . . . , 0).

Proposition 5.4. For any m1, . . . ,mK ∈ Z, if l1, . . . , lK are such that
∑K

i=1 lipmi ≡ 0, then li = 0 for
i = 1, . . . , K.

If C is non symmetric we have that for any m1, . . . ,mK ∈ Z, if l1, . . . , lK, l̃1, . . . , l̃K , are such that∑K
i=1 lipmi +

∑K
i=1 l̃ip̃mi ≡ 0 then li = l̃i = 0 for i = 1, . . . , K.

Proof. Assume that
∑K

i=1 lipmi ≡ 0. We fix j and show that lj = 0. Fix β ∈ Rd+1 such that (mj, β) 6= 0.

For α ∈ Rd+1 and δ, θ ∈ R we let x = α, y = δα + θβ. Then pm(x, y) = |(m,α)|f(δ + θ (m,β)
|(m,α)|) if

(m,α) > 0 and pm(x, y) = |(m,α)|f̃(δ + θ (m,β)
|(m,α)|) if (m,α) < 0.

Fix α, δ and expand the sum in powers of θ. Equating to zero the term in front of θ2 we get

(62)
K∑
i=1

hi
(mi, β)2

|(mi, α)|
= 0

where hi = lif
′′(δ) if (mi, α) > 0 and hi = lif̃

′′(δ) if (mi, α) < 0. Now since m1, . . . ,mK are primitive
vectors it is possible to choose α so that (mj, α) > 0 is arbitrary small while |(mi, α)| remain bounded
away from zero for every i 6= j. Thus, we must have that hj = 0 and since there exists δ such that
f ′′(δ) 6= 0 (because f is not a polynomial) we get lj = 0.

When
∑K

i=1 lipmi +
∑K

i=1 l̃ip̃mi ≡ 0, (62) becomes

(63)
K∑
i=1

hi
(mi, β)2

|(mi, α)|
= 0

where hi = lif
′′(δ) + l̃if̃

′′(δ) if (mi, α) > 0 and hi = lif̃
′′(δ) + l̃if

′′(δ) if (mi, α) < 0. Consider, for

example, the case where the first alternative holds. As before, we must have ljf
′′(δ) + l̃j f̃

′′(δ) = hj = 0

for any choice of δ. Since we assumed (55) holds for L = Id, this yields lj = l̃j = 0. �

As a consequence of Proposition 5.4 we have the following facts. For any l1, . . . , lK and anym1, . . . ,mK ∈
Z

(64) Leb

(
z1, . . . , zd ∈ (R(d+1))d :

k∑
i=1

liP ((mi, z1), . . . , (mi, zd)) = 0

)
= 0.

So, if we take a lattice L and denote zj = (ej,1(L), . . . , ej(L)), then P (Xm(L)) = P ((m, z1), . . . , (m, zd)),
and for any l1, . . . , lK and any m1, . . . ,mK ∈ Z

(65) µ

(
L :

k∑
i=1

liP (Xmi(L)) = 0

)
= 0

Now (52) implies that

(66) mes

(
α ∈ Td :

∣∣∣∣∣
K∑
i=1

liP (Xmi(L(N,α)))

∣∣∣∣∣ < ε

)
→ 0 as ε→ 0, N →∞.

Similarly, in the non symmetric case, it holds that for any l1, . . . , lK , l̃1, . . . , l̃K , and any m1, . . . ,mK ∈
Z and

(67) mes

(
α ∈ Td :

∣∣∣∣∣
K∑
i=1

liP (Xm) +
K∑
i=1

l̃iP (−Xm)

∣∣∣∣∣ < ε

)
→ 0
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as ε→ 0, N →∞.

5.3. Proof of Proposition 5.1. We consider the case when C is symmetric. The case when it is non
symmetric is similar. Take integers n1, . . . , nd+1, {lm}m∈Zε and a function Φ : (Rd+1)d+1 → R of compact
support. We need to show that as N →∞

(68)

∫∫∫
Φ(e1(N,α), . . . , ed+1(N,α)) exp

[
2πi

(
d+1∑
j=1

njγj +
∑
Zε

lmAm

)]
dxdαdr →

∫
M

Φ(e1(L), . . . ed+1(L))dµ(L)

∫
Td+1

e2πi
∑
j njγjdγ

∫
TZε

e2πi
∑
m lmAmdA,

as N →∞. In case nj ≡ 0 and lm ≡ 0 the result follows from (52).
Therefore we may assume that some nj or some lm are non-zero so that (68) reduces to

(69)

∫∫∫
Φ(e1(N,α), . . . , ed+1(N,α)) exp

[
2πi

(
d+1∑
j=1

njγj +
∑
Zε

lmAm

)]
dxdαdr → 0.

Suppose first that nj 6= 0 for at least one j. Recall the definition γj(α,N, x) = N1/d(ej,1(N,α)x1 +
. . .+ ej,d(N,α)xd). Hence the coefficient in front of x1 in

∑
j njγj equals to N1/d

∑
j njej,1.

Note that for almost every L the numbers e1,1(L), . . . , ed,1(L) are independent over Z. Hence (52)
implies that

(70) mes

(
α ∈ Td :

∣∣∣∣∣∑
j

njej,1(N,α)

∣∣∣∣∣ < 1

N
1
2d

)
→ 0

as N →∞. We thus split the LHS of (69) into two parts where I includes the integration over α with

|
∑

j njej,1| < N−
1
2d and II includes the integration over α with |

∑
j njej,1| ≥ N−

1
2d . Then

|I| ≤ Const(Φ)mes(α ∈ Td : |
∑
j

njej,1| < N−
1
2d )

so it can be made as small as we wish in view of (70). On the other hand in II we can integrate by parts
with respect to x1 and obtain the estimate

|II| ≤ Const(Φ)

N
1
2d

.

This concludes the proof in case not all nj vanish.
Similarly if not all lm vanish then we can integrate with respect to r instead of x1 using (66) instead

of (70) to obtain (77) in that case. �

5.4. Proof of Theorem 2. Combining Proposition 4.2 and Proposition 5.1 we obtain Theorem 2 and
Proposition 2.1 by letting ε→ 0.

�

5.5. Generic convex bodies. Observe that the fact that C is real analytic is used only in Section 5
to prove (65). For the rest of the argument it is enough that C is of class Cν where ν = d−1

2
so that we

can apply the results of [14] to get the asymptotics of the Fourier coefficients of χC.

Definition 4. We say that a convex body C is generic if for any K ∈ N∗, and any nonzero vectors
` = (l1, . . . lK , l̃1, . . . , l̃K) ∈ Z2K and M = (m1, . . .mK) ∈ ZK and any η > 0, there exists ε > 0 such that

(71) µ

(
L :

∣∣∣∣∣
K∑
i=1

[
liP (Xmi(L) + l̃iP (−Xmi(L))

]∣∣∣∣∣ < ε

)
< η.
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Let B(ε, η, `,M) be the set of bodies of class Cν such that (71) holds. This is clearly an open set and⋃
n∈N∗ B(1/n, η, `,M) is dense since it contains real-analytic non symmetric convex bodies. Therefore

the set of generic bodies
⋂
K∈N∗ ∩(`,M)∈Z3K

⋂
j∈Z∗

⋃
n∈N∗ B(1/n, 1/j, `,M) is generic in the Cν topology.

By the foregoing discussion we have

Corollary 5.5. Theorem 2 is valid for generic convex bodies of class Cr with r ≥ ν, and the limit
distribution is given by Proposition 2.1.

Remark. One defines in a similar way a class of generic symmetric bodies within the symmetric convex
bodies of class Cν where ν = d−1

2
for which Theorem 2 will hold with a limit distribution given by

Proposition 2.1.

6. Extensions

6.1. Small balls. The analysis given above also applies to small copies of a given convex set.

Theorem 5. Take γ < 1/d. For any C striclty convex analytic body for any b > a > 0, we have

lim
N→∞

1

b− a
λ{(r, α, x) ∈ [a, b]× Td × Td

∣∣∣DC(rN−γ, α, x,N)

r
d−1
2 N

d−1
2d

(1−γd)
≤ z} = DC(z)

where DC(z) is the same as in Theorem 2.

Proof. The proof is very similar to the proof of Theorem 2 so we only describe the necessary modifi-
cations. We consider the case of symmetric bodies, the non-symmetric case requires straightforward
modifications. We have

(72)
DC(rN

−γ, α, x,N)

r
d−1
2 N

d−1
2d

(1−γd)
=∑

k∈Zd−{0}

c∗k(r)
cos(2π(k, x) + π(N − 1){k, α}) sin(πN{k, α})

N
d−1
2d sin(π{k, α})

where c∗k(r) = N
(d−1)γ

2 ck(rN
−γ). Making the change of variables which rescales CrN−γ to a unit size we

get see that for |k| ≥ Nγ we have

(73) c∗k = d∗k(r)

(
1 +O

(
Nγ

|k|

))
where

(74) d∗k(r) =
1

π

g(k, rN−γ)

|k|
d+1
2

.

On the other hand if |k| < N−γ we have an a priori bound

(75) c∗k = O
(
N

(d−1)γ
2 Vol(CrN−γ )

)
= O

(
N
−(d+1)γ

2

)
.

Now repeating the computations of Section 3 we obtain that DC(rN−γ ,α,x,N)

r
d−1
2 N

d−1
2d

(1−γd)
is well approximated by

(76)
∑

k∈U(N,α)

d∗k(r)
cos(2π(k, x) + π(N − 1){k, α}) sin(πN{k, α})

πN
d−1
2d {k, α}

.

Note that in Section 3 we only use the bound on the absolute value of the Fourier coefficients. So the
only place where the argument has to be modified is the derivation of (34). Namely instead of using
(22) for all k we have to use (75) for |k| < N−γ and (73) for |k| ≥ N−γ. However the main contribution
comes from the terms where |k| ≥ N−γ ensuring the validity of (34).

(76) is the same as (42) except that rP (k) is replaced by rN−γP (k). The explicit form of this term was
only used in the proof of Proposition 5.1 where we have used that r|k| � 1 (namely, in sections 4.1 and
4.2 we had |k| of the order of N1/d and we wrote rP (k) = rN1/dP (k/N1/d) and we used rN1/d → ∞).
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In the present setting rP (k) is replaced by rN−γP (k) and we still have r|k|N−γ → ∞ since the main
contribution for the discrepancy comes from |k| ∼ N1/d. Hence the proof proceeds as before. �

Remark. While the limiting distributions for DC(rN−γ ,α,x,N)

r
d−1
2 N

d−1
2d

(1−γd)
are the same for all γ if we fix α and r then

for γ1 6= γ2

DC(rN
−γ1 , α, x,N)

r
d−1
2 N

d−1
2d

(1−γ1d)
6≈ DC(rN

−γ2 , α, x,N)

r
d−1
2 N

d−1
2d

(1−γ2d)
.

Namely while the small denominators will be the same in both cases the terms sin (2π(rN−γP (k)− (d− 1)/8 + (k, x)))
in the numerators will be asymptotically independent for different γs.

6.2. Parametric families of convex sets. We shall need the following extension of Theorem 2.
Assume that we have an analytic family of convex sets {Cα}α∈Td . That is, we assume that Pα(v) and
Kα(v) are analytic functions on Td × Sd−1. We assume that α is distributed according to a measure ν
which has density ψ. Let λ̄ denote the product of ν and the normalized Lebesgue measure on [a, b]×Td.

Theorem 6. The following limit holds.

lim
N→∞

λ̄{(r, x, α) ∈ [a, b]× Td × Td
∣∣∣DCα(r, α, x,N)

r
d−1
2 N

d−1
2d

≤ z} =

µ× ν
{

(L, (θ, b), α) ∈Md × Td : LCα(L, θ, b) ≤ z
}
.

Proof. The proof is similar to the proof of Theorem 2 so we only describe the necessary modifications.
Note that either for all α, Cα has a center of symmetry or the set of αs such that Cα has a center of
symmetry has measure 0. We consider the first case the second case is similar. We also suppose that
the centers of symmetry of all Cα are at the origin (this can be always achieved by shifting x). Now
the argument proceeds in the same way as the proof of Theorem 2 in the symmetric case except that
Proposition 5.1 has to be straightened as follows.

Proposition 6.1. The random vectors(
(e1(N,α), . . . , ed+1(N,α)), α, {γj}d+1

j=1, {N
1
dPα(Xm)r}m∈Zε

)
converge in distribution as N →∞ to µd × ν × λd,ε.

The proof of Proposition 6.1 proceeds in the same way as the proof of Proposition 5.1 except that
(68) has to be replaced by

(77)

∫∫∫
Φ(e1(N,α), . . . , ed+1(N,α))

× exp

[
2πi

(
d+1∑
j=1

njγj +
∑
Zε

lmAm

)]
ψ(α)dxdαdr →

∫
Td
ψ(α)dα

∫
M

Φ(e1(L), . . . ed+1(L))dµ(L)

×
∫
Td+1

e
∑
j njγjdγ

∫
TZε

e
∑
m lmAmdA as N →∞.

To prove (77) note that the case when nj ≡ 0 and lm ≡ 0 reduces to (52). The case when some nj 6= 0
is handled as in Proposition 5.1. Finally the case when nj ≡ 0 but some lm 6= 0 is similar to Proposition
Proposition 5.1 except that (66) now takes form

(78) mes

(
α ∈ Td :

∣∣∣∣∣
K∑
i=1

liPα(Xmi(L(N,α)))

∣∣∣∣∣ < ε

)
→ 0 as N →∞.
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To derive (78) from (66) divide Td into small cubes Cs and for each s pick αs ∈ Cs. If the size of cubes
is small enough then for α ∈ Cs the inequality∣∣∣∣∣

K∑
i=1

liPα(Xmi(L(N,α)))

∣∣∣∣∣ < ε

holds provided that ∣∣∣∣∣
K∑
i=1

liPαs(Xmi(L(N,α)))

∣∣∣∣∣ < ε

2
.

Hence (77) follows from (66). �

6.3. Counting lattice points in slanted cylinders. Given v ∈ Rd+1, r ∈ R consider the cylinder

(79) Cy,v,r,T = {z ∈ Rd+1 : |z − (y + tv)| < r for some t ∈ [0, T ]}.

Let N(y, v, rT ) be the number of Zd+1 points in Cy,v,r,T and

(80) D(y, v, r, T ) = N(y, v, r, T )− Vol(Cy,v,r,T ).

We assume that y = (x, 0) and v = (α, 1) where x, α ∈ Rd.

Theorem 7. If b is sufficiently small then

D(z) = lim
T→∞

λ̄{(r, x, α) ∈ [a, b]× Td × Td
∣∣∣D(y, v, r, T )

r
d−1
2 T

d−1
2d

≤ z}

exists. An explicit formula for D is given by (81) and (82).

Proof. We are interested in the question under which condition the point m = (m1,m2, . . . ,md, n)
belongs to Cy,v,r,T . Since edge effects contribute O(1) we may assume that 0 ≤ n ≤ T. The plane
{zd+1 = n} intersects Cy,v,r,T by an ellipsoid centered at (x + nα, n). Now elementary geometry shows
that m ∈ Cy,v,r,T iff

(α2 + 1)|xn − m̄|2 − (α, xn − m̄)2 ≤ (α2 + 1)r2

where xn = x− nα, m̄ = (m1, . . . ,md). The last condition can be restated by saying that x + nα mod
Zd belongs to rCα where

(81) Cα = {y
∣∣(α2 + 1)|y|2 − (α, y)2 ≤ (α2 + 1)}

Hence Theorem 7 follows from Theorem 6 and

�(82) D(z) = µ× ν
{

(L, (θ, b), α) ∈Md × Td : LCα(L, θ, b) ≤ z
}
.

6.4. Proof of Theorem 3(b) and Proposition 2.3. In this section we describe the proof of Theorem
3(b). We only treat the case of a symmetric convex body. In Section 6.5 we show that, in the case
of balls, the limit distribution does not depend on the distribution p of the translation vector. The
argument is very similar to the proof of Theorem 6 so we only give an outline of the proof. We have

(83) D(r, v, x, T ) =
∑

k∈Z2−0

ck
cos[2π(k, x) + π(k, Tv)] sin(π(k, Tv))

π(k, v)

where ck is given by formula (22). Similarly to Section 3 we show that it suffices to restrict our attention
to the harmonics satisfying

(84) ε <
|k|

T 1/(d−1)
< ε−1,

(85) δ < T |(k, v)| < δ−1.
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Divide the support of p onto small sets Ωj such that on each Ωj, v is almost constant. Fix one Ωj and
denote v̄ for an arbitrary choice of a point in Ωj. Changing the indices if necessary we may assume that
on Ωj, vd 6= 0 so that we can write

(86) v = ρ(α1, α2 . . . αd−1, 1), v̄ = ρ̄(ᾱ1, ᾱ2 . . . ᾱd−1, 1)

Denote M = SL(d,R)/SL(d,Z). We let

gn =


e−n/(d−1) 0 . . . 0

0 e−n/(d−1) 0 . . .

0 . . . e−n/(d−1) 0
0 . . . 0 en

 , Λα =


1 0 0 . . .
0 1 0 . . .

α1 . . . αd−1 1

 .

Consider the lattice L(T, α) = glnTΛαZd. Then

(X1, . . . , Xd−1, Z) := (k1/T
1/(d−1), . . . , kd−1/T

1/(d−1), T (k, α)) = glnTΛαk

Due to (85) we have

(87)
kd

T 1/(d−1)
≈ −

d−1∑
s=1

αsXs

and hence

(88) |k|(d+1)/2 ≈ T
d+1

2(d−1)

d−1∑
s=1

X2
s +

(
d−1∑
s=1

αsXs

)2
 d+1

4

.

The rest of the proof of Theorem 3(b) proceeds similarly to the proof of Theorem 2. Namely, on Ωj the
distribution of D(r, v, x, T ) is approximated by the following distribution

(89) DC,v̄(z) = µ {(L, (θ, b)) ∈Md : Lv̄(L, θ, b) ≤ z}
where

Lv̄(L, θ, b) =

2

π2

∑
m∈Z

∞∑
p=1

K−
1
2 (Xm/Rm)

cos(2πp(m, θ)) sin(2πpbm) sin(πpρ̄Zm)

p
d+3
2 ρ̄Q

d+1
2

m Zm

.

Here Xm,s is the s-th component of Xm, R2
m =

∑d−1
s=1 X

2
m,s, and

Q2
m = R2

m +

(
d−1∑
s=1

ᾱsXm,s

)2

.

By refining the division of the support of the distribution p into smaller and smaller sets Ωj we get that
the limiting distribution D(r, v, x, T ) is given by

∫
DC,v(z)p(v)dv. �

6.5. Random geodesics on the torus. Let γx,v(t) denote the geodesic x + vt on Td. Given y, r let
τ(r, v, x, y, T ) denote the time γx,v(t) spends inside B(y, r) for t ∈ [0, T ]. Suppose that y is fixed while
(r, v, x) are distributed according to the measure σ as in Theorem 3.

Theorem 8. Suppose that ρ <
√
d

2
. Then

(a) If d = 2 then the distribution of τ(r, v, x, y, T )− Vol(B(y, r))T approaches a limit as T →∞.
(b) If d ≥ 4 then

(90) lim
T→∞

σ

(
|v|

d+1
2(d−1)

r
d−1
2

(
τ(r, v, x, y, T )− Vol(B(y, r))T

T
d−3

2(d−1)

)
≤ z

)
= P(z)
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where

P(z) = µ {(L, (θ, b)) ∈Md : L(L, θ, b) ≤ z}
and

Lv(L, θ, b) =
2

π2

∑
m∈Z

∞∑
p=1

cos(2πp(m, θ)) sin(2πpbm) sin(πpZm)

p
d+3
2 R

d+1
2

m Zm

.

Proof. The existence of the limiting distribution follows immediately from Theorem 3 (with C = B(y, r)).
It remains to show that the limit does not depend on the distribution of v. Due to proposition 2.3 we
have the following expression for P(z)

P(z) =

∫
D̄v(z)p(v)dv

where

D̄v(z) = µ
{

(L, (θ, b)) ∈Md : L̄v(L, θ, b) ≤ z
}
.

Here L̄ = |v|(d+1)/2(d−1)L where Lv is the same as in (17) but specified to balls

Lv(L, θ, b) =
2

π2

∑
m∈Z

∞∑
p=1

cos(2πp(m, θ)) sin(2πpbm) sin(πpρZm)

p
d+3
2 ρQ

d+1
2

m Zm

.

Here Qm denotes

Q2
m =

d−1∑
s=1

X2
m,s +

(
d−1∑
s=1

αsXm,s

)2

and Xm,s is the s-th component of Xm. It remains to show that Dv does not in fact depend on v. We
can choose coordinates in Rd so that α1 = a, αs = 0 for s = 2 . . . d− 1. Then

Q2
m =

v2

ρ2
X2
m,1 +X2

m,2 + · · ·+X2
m,d−1.

Note that the distribution of Lv is invariant under unimodular linear transformations. Therefore we can
make the change of variables

X̄1 =
|v|
ρ

X1

|v|1/(d−1)
, X̄s =

Xs

|v|1/(d−1)
, for s = 2 . . . d− 1, Z̄ = ρZ.

Then

(91) L̄v(L, θ, b) =
2

π2

∑
m∈Z

∞∑
p=1

cos(2πp(m, θ)) sin(2πpbm) sin(πpZ̄m)

p
d+3
2 R̄

d+1
2

m Z̄m

where

R̄2
m =

d−1∑
s=1

X̄2
m,s.

Since the RHS does not depend on v the result follows. �

7. Proof of Theorem 3 (a) and Proposition 2.2

Proof. We have

(92) DC(v, x, T ) =
∑

k∈Z2−0

cke
2πi(k,y) sin(π(k, Tv))

π(k, v)
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where y = x + vT
2

and ck = O(|k|−3/2). Note that for each ε for almost all v there exists n = n(v)
such that |(k, v)| > |k|−1−ε for |k| > n. Hence if An = {v : |(k, v)| > |k|−1−ε for |k| > n}, it holds that
|Acn| → 0 as n→∞. Define

(93) Dn
+(v, x, T ) =

∑
|k|>n

cke
2πi(k,y) sin(π(k, Tv))

π(k, v)
,

(94) Dn
−(v, x, T ) =

∑
|k|≤n

cke
2πi(k,y) sin(π(k, Tv))

π(k, v)
.

Let

(95) Ak,p = {v : |(k, v)| ∈ [p|k|−1−ε, (p+ 1)|k|−1−ε]}
then |Ak,p| ≤ C|k|−2−ε and so

(96) ||Dn
+1An||2L2(σ̄) ≤ C

∑
|k|>n

∞∑
p=1

|k|ε

|k|3p2
≤ Cn−(1−ε).

Accordingly, the distribution of DC is well approximated by the distribution of Dn
− if n is large enough.

On the other hand for each fixed n the distribution of Dn
− converges to a limit as T →∞. Indeed remove

a small neighborhood of resonances and divide the remaining set into sets Ωi of small diameter. Then
on each Ωi the denominators in (92) are almost constant while πvT becomes uniformly distributed on
(R/2πZ)2. Therefore the distribution of

(97) lim
T→∞

σ̄(DC(v, x, T ) < z) =

∫
D̄C,v(z)p(v)dv

where

(98) D̄C,v(z) = Leb
{

(y, θ) ∈ T2 × T2 : Lv(y, θ) < z
}
,

�(99) Lv(y, θ) =
∑

k∈Z2−0

cke
2πi(k,y) sin(π(k, θ))

π(k, v)
.

Remark. The fact that ck are Fourier coefficients of the indicator of C is not important in the above
argument, only the rate of decay was used. Therefore the same argument gives the following statement

Proposition 7.1. If A belongs to a Sobolev space Hs for s > d
2
− 1 then∫ T

0

A(Stvx)dt− T
∫
Td
A(x)dx

converges in distribution as T →∞. The limiting distribution is given by (97)–(99) where ck are Fourier
coefficients of A.

8. Convergence of the function L

Here we prove that the series defining the limiting distributions in Propositions 2.1, 2.2, and 2.3
converge almost surely.

Proposition 8.1. The series (9), (11), (15), (17), and (18) converge almost surely.

Proof. We will prove the convergence of (11), the other series can be treated similarly. Let

(100) ξm =
∑
p

sin(πpZm) cos(2πp(θ,m)) sin(2π(pbm − d−1
8

))

R
d+1
2

m Zmp
d+3
2

K−
1
2 (Xm/Rm).
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Note that for fixed L and θ, the random variables ξm are independent, and

(101) E(ξm) = 0, Var(ξm) =
Γ(θ, Zm)

K(Xm/Rm)Rd+1
m

where

(102) Γ(θ, Z) =
∑
p

cos2(2πp(θ,m)) sin2(πpZm)

Z2
mp

d+3
.

By Kolmogorov’s three series theorem, given (L, θ), L converges for almost every b provided that

(103)
∑
m

Γ(θ, Zm)

Rd+1
m

<∞.

Therefore it suffices to show that (103) converges for almost every (L, θ).
Observe that

(104) P(Rm < s) = O
(

sd

|m|d

)
so by Borel-Cantelli Lemma for each δ0 > 0 for almost every L we have for sufficiently large m that

Rm > |m|−
1+δ0
d . Hence it is sufficient to show that

(105)
∑
m

Γ(θ, Zm)

R̄d+1
m

<∞

for almost every (L, θ) where R̄m = max(|Rm|, |m|−
1+δ0
d ). Note that if |Zm| > 1 then Γ(θ, Zm) =

O (|Zm|−2) and if |Zm| ≤ 1 then Γ(θ, Zm) = O (1) . Accordingly it suffices to show that

(106)
∑
m

1

Z̄2
mR̄

d+1
m

<∞

for almost every L where Z̄m = max(|Zm|, 1).
Next since every two norms on Rd+1 are equivalent there exist c(L) such that |Rm|2 + Z2

m ≥ c|m|2.
Denote ¯̄Zm = max(|m|1−δ0 , |Zm|), ¯̄Rm = max(|m|1−δ0 , |Rm|). Then either R̄m = ¯̄Rm or Z̄m = ¯̄Zm.
Therefore it suffices to show that for almost all L

(107)
∑
m

1

Z̄2
m

¯̄R
d+1

m

<∞

and

(108)
∑
m

1

¯̄Z
2

mR̄
d+1
m

<∞.

To prove (107) it suffices to show that

(109)
∑
m

1

Z̄2
m|m|(1−δ0)(d+1)

<∞.

Fix a compact set K in the space of lattices. Then there is a constant C = C(K) such that

(110) P(Zm ∈ [s, s+ 1] and L ∈ K) ≤ C(K)

|m|
.

Therefore

(111) E
(

1

Z̄2
m

χL∈K

)
≤ C̄(K)

|m|
.
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Now summation over m shows that the series (109) converges for almost all L ∈ K. Since K is arbitrary
(107) follows.

Likewise

(112) E

(
1

¯̄Z
2

mR̄
d+1
m

)
≤ Const

|m|2(1−δ0)
E
(

1

R̄d+1
m

)
.

Since (104) implies that

P
(
Rm ∈ [2l|m|−(1+δ0)/d, 2l+1|m|−(1+δ0)/d]

)
≤ Const2ld|m|−(1+δ0)−d

we have

(113) E
(

1

R̄d+1
m

)
≤ Const|m|(1+δ0)/d−d

and (108) follows from (112) and (113). �
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