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Abstract. We show that a smooth compact Riemannian manifold of dimension ≥ 2 admits

a Bernoulli diffeomorphism with nonzero Lyapunov exponents.

Introduction

In this paper we prove the following theorem that provides an affirmative solution of
the problem posed in [BFK].

Main Theorem. Given a compact smooth Riemannian manifold K 6= S1 there exists a
C∞ diffeomorphism f of K such that

(1) f preserves the Riemannian volume m on K;
(2) f has nonzero Lyapunov exponents at m-almost every point x ∈ K;
(3) f is a Bernoulli diffeomorphism.

For surface diffeomorphisms this theorem was proved by A. Katok in [K]. In [B], for
any compact smooth Riemannian manifold K of dimension ≥ 5, M. Brin constructed a
C∞ Bernoulli diffeomorphism which preserves the Riemannian volume and has all but one
Lyapunov exponents nonzero. Thus, combining the results of [B, BFK, K] one obtains
that any manifold K admits a diffeomorphism with ` zero exponents, where

` =











0, if dimK = 2

2, if dimK = 4

1, otherwise

In this paper we show how to perturb the diffeomorphism to remove zero exponents. Let us
review some main ingredients in the construction of hyperbolic Bernoulli diffeomorphisms.
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(1) Let f be a diffeomorphism of K preserving a smooth volume m and let TK = E⊕F
be the splitting of TK into two invariant subbundles. We say that F dominates E
(and write E < F ) if there exists θ < 1 such that

max
v∈E,‖v‖=1

‖df(v)‖ ≤ θ min
v∈F,‖v‖=1

‖df(v)‖.

If f admits a dominated splitting then so does any diffeomorphism which is suffi-
ciently close to f . Shub and Wilkinson [SW] has shown that if TK = E1⊕E2 ⊕E3

where E1 < E2 < E3 then the function

f →

∫

log det (df |E2)(x) dm(x)

is not locally constant (see also [D]).
(2) If for any sufficiently small perturbation of f the subspace E2 does not admit

further splitting then using results of Manẽ [M1] (see also [M2]) and Bochi [Bo]
one can approximate f by a diffeomorphism g such that all Lyapunov exponents
of g along E2 are close to each other. We will use this observation in the case
dimK = 4.

(3) The results in (1) and (2) can be used for constructing non-uniformly hyperbolic
systems on manifolds carrying diffeomorphisms with dominated decomposition.
However, not every manifold has this property. On the other hand, results in [B,
BFK] allow one to construct on any manifold a diffeomorphism which is partially
hyperbolic away from a singularity set. In this paper we extend results in (1) and
(2) above to such diffeomorphisms with singular splitting.

(4) The above results allow us to construct systems having non-zero exponents on a
set of positive measure. We then establish local ergodicity using the approach of
[P] (see also [BP, BV] for detailed exposition and extensions of this approach).

(5) Finally, we use some ideas from [BrP] concerning transitivity of foliations to pass
from local to global ergodicity.

The structure of the paper is the following. We begin with case dimK ≥ 5 since in
the multi-dimensional case there is more room to perturb and so the proof is simpler.
Then we describe modifications needed if dimK = 3 or 4. In Sections I-III we review
constructions of Katok [K] and Brin [B2] and establish some additional properties of the
corresponding diffeomorphisms which are used in our analysis. In Section IV we explain
how to get rid of zero Lyapunov exponent while in Section V we establish some crucial
properties of our perturbation including transitivity and absolute continuity. In Section VI
we observe the Bernoulli property of our diffeomorphism and thus complete the proof in the
case dimK ≥ 5. We then proceed in Section VII with modifications needed in dimensions
three and four. Section VIII reviews Mane’s work on discontinuity of Lyapunov exponents
needed in the four dimensional case.

Finally, let us mention that open sets of hyperbolic Bernoulli diffeomorphisms on some
manifolds are constructed in [ABV, BV, D, SW].
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Preliminaries and Notations. In this paper we deal with various partially (uniformly
and non-uniformly) hyperbolic diffeomorphisms and we adopt the following notations (see
[BP] for details). A diffeomorphism F of a compact smooth Riemannian manifold K is
called nonuniformly partially hyperbolic on a set X ⊂ K if for every x ∈ X the tangent
space at x admits an invariant splitting

TxK = EsF (x) ⊕EcF (x) ⊕EuF (x) (0.1)

into stable, central, and unstable subspaces. This means that there exist numbers 0 < λs <
λc1 ≤ 1 ≤ λc2 < λu and Borel functions C(x) > 0 and K(x) > 0, x ∈ X such that

(1) for n > 0,
‖dxF

nv‖ ≤ C(x)(λs)neεn‖v‖, v ∈ Es(x),

‖dxF
−nv‖ ≤ C(x)(λu)−ne−εn‖v‖, v ∈ Eu(x),

C(x)−1(λc1)
ne−εn‖v‖ ≤ ‖dxF

nv‖ ≤ C(x)(λc2)
neεn‖v‖, v ∈ Ec(x);

(2)

∠(Es(x), Eu(x)) ≥ K(x), ∠(Es(x), Ec(x)) ≥ K(x), ∠(Eu(x), Ec(x)) ≥ K(x);

(3) for m ∈ Z,

C(Fm(x)) ≤ C(x)eε|m|, K(Fm(x)) ≥ K(x)e−ε|m|.

Throughout the paper we deal with the case

λc2 − λc1 ≤ ε

for sufficiently small ε > 0. We denote by

χ(x, v) = lim
n→∞

1

n
log ‖dFnv‖ (0.2)

the Lyapunov exponent of v at x and by χiF (x) the values of the Lyapunov exponents at x.
We also adopt the notation χcF (x) for the Lyapunov exponent along the central direction
in the case it is one-dimensional and χc1(x, F ) ≥ χc2(x, F ) for the two Lyapunov exponents
along the central direction in the case it is two-dimensional (only these two cases will be
considered). Given ε > 0, set

Λ+(x, F, ε) =
∑

χi
F

(x)>ε

χiF (x), Λ−(x, F, ε) =
∑

χi
F

(x)<ε

χiF (x). (0.3)

Denote by V sF (x) and V uF (x) the local stable and unstable manifolds at x. They can be
characterized as follows: there is a neighborhood U(x) of the point x such that for any
n > 0,

V uF (x) = {y ∈ U(x) : d(F−n(x), F−n(y)) ≤ C(x)(λu)−ne−εn d(x, y)},

V sF (x) = {y ∈ U(x) : d(F n(x), Fn(y) ≤ C(x)(λs)neεn d(x, y)}.
(0.4)
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Finally, we define the global stable and unstable manifolds at x by

Wu
F (x) =

⋃

n≥0

Fn(V uF (F−n(x))),

W s
F (x) =

⋃

n≥0

F−n(V sF (Fn(x))).
(0.5)

Given a subset X ⊂ K we call two points p, q ∈ K accessible via X, if there are points
z0 = p, z1, . . . , z`−1, z` = q, zi ∈ X such that zi ∈ V αF (zi−1) for i = 1, . . . , ` and α ∈ {s, u}.
The collection of points z0, z1, . . . , z` is called the path connecting p and q and is denoted by
[p, q]F = [z0, z1, . . . , z`]F . The diffeomorphism F is said to have the accessibility property
on X if any two points p, q ∈ X are accessible.

Recall that a partition ξ of a Borel subset X ⊂ K is called a foliation of X with C1

leaves if there exist continuous functions δ:X → (0,∞) and q:X → (0,∞) and an integer
k > 0 such that for each x ∈ X

(1) there exists a smooth immersed k-dimensional manifold W (x) containing x for
which ξ(x) = W (x) ∩X where ξ(x) is the element of the partition ξ containing x;
the manifold W (x) is called the (global) leaf of the foliation at x; the connected
component of the intersection W (x)∩B(x, δ(x)) that contains x is called the local
leaf at x and is denoted by V (x); the number δ(x) is called the size of V (x);

(2) there exists a continuous map φx : X ∩ B(x, q(x)) → C1(D,M) (where D ⊂ R
k

is the unit ball) such that V (y), y ∈ X ∩ B(x, q(x)) is the image of the map
φx(y):D → K.

In this paper we will only consider foliations with C1 leaves and for simplicity we will call
them foliations.

Acknowledgment. We would like to thank M. Brin, B. Fayad, A. Katok, M. Shub,
M. Viana, and A. Wilkinson for useful discussions.

I. The Katok Example

Consider the two-dimensional unit disk D2 = {(u1, u2) ∈ R
2 : u2

1 + u2
2 ≤ 1}. Any

diffeomorphism g : D2 → D2 can be written in the form g(u1, u2) = (g1(u1, u2), g2(u1, u2)).
We describe classes of functions and diffeomorphisms which are “sufficiently flat” near the
boundary ∂D2. The sequence ρ = (ρ0, ρ1, . . . ) of real-valued continuous functions on D2

is called admissible if every function ρn is non-negative and is strictly positive inside the
disk. We denote by C∞

ρ (D2) the class of functions φ ∈ C∞(D2) which satisfy the following

property: for every n ≥ 0 there exists εn > 0 such that for every (u1, u2) ∈ D2 with
u2

1 + u2
2 ≥ (1 − εn)2 we have

∣

∣

∣

∣

∂nφ(u1, u2)

∂i1u1∂i2u2

∣

∣

∣

∣

< ρn(u1, u2)

for all non-negative integers i1, i2, i1 + i2 = n. We also denote by

Diff∞
ρ (D2) = {g ∈ Diff∞(D2) : gi(u1, u2) − ui ∈ C∞

ρ (D2), i = 1, 2} .
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Proposition 1.1. (see [K]). For every admissible sequence of functions ρ on D2 there
exists a diffeomorphism g ∈ Diff∞

ρ (D2) which satisfies Statements 1 and 2 of the Main
Theorem.

We outline the proof of Proposition 1.1. Let g0 be a hyperbolic automorphism of the
2-torus T 2 which has four fixed points x1 = (0, 0), x2 = (1/2, 0), x3 = (0, 1/2), x4 =

(1/2, 1/2) (for example, the automorphism generated by the matrix

∣

∣

∣

∣

5 8
8 13

∣

∣

∣

∣

is appropri-

ate). The desired diffeomorphism g is constructed via the following commutative diagram

T 2 ϕ0−→ T 2 ϕ1−→ T 2 ϕ2−→ S2 ϕ3−→ D2

↓ g0 ↓ g1 ↓ g2 ↓ g3 ↓ g

T 2 ϕ0−→ T 2 ϕ1−→ T 2 ϕ2−→ S2 ϕ3−→ D2

where S2 is the unit sphere. The map g1 is obtained by slowing down g0 near the points
xi. Its construction depends upon a real-valued function ψ which is defined on the unit
interval [0, 1] and has the following properties:

(1.1) ψ is C∞ except for the point 0;
(1.2) ψ(0) = 0 and ψ(u) = 1 for u ≥ r where 0 < r < 1 is a number;
(1.3) ψ′(u) ≥ 0;
(1.4)

∫ 1

0

du

ψ(u)
<∞.

.

The next condition on the function ψ expresses a “very slow” rate of convergence of the

integral
∫ 1

0
du
ψ(u)

near zero. More precisely, for i = 1, 2, 3, 4 consider the disk Di
r centered

at xi of radius r and endowed with the coordinate system (s1, s2), i.e.,

Di
r = {(s1, s2) : s21 + s22 ≤ r}.

Choose numbers r0 > r1 > r > 0 such that

Di
r0

∩ Dj
r0

= ∅, i 6= j, (g0(D
i
r1

) ∪ g−1
0 (Di

r1
)) ⊂ Di

r0
, Di

r ⊂ Int (g0(D
i
r1

)).

We also set D =
⋃4
i=1 Di

r1
. Let β(u) be the inverse of the function

γ(u) =

√

∫ u

0

dτ

ψ(τ)
.

Consider the following two functions defined near the origin:

H1(s1, s2) = (logα)β

(

√

s21 + s22

)

s1s2
s21 + s22

,

5



and

H2(s1, s2) = (logα)β

(

√

s21 + s22

)

s2
√

s21 + s22
,

as well as the function H defined near ∂D2 by

H(x1, x2) = (logα)β

(

√

1 − x2
1 − x2

2

)

x2
√

x2
1 + x2

2

,

where α is the largest eigenvalue of the matrix generating g0. We assume that the function
ψ is chosen such that the following condition holds:

(1.5) for any sequence κ of admissible germs near the origin in R
2 and any sequence ρ of

admissible functions on D2 there is a sequence θ of admissible germs near 0 ∈ R
+

such that if β ∈ C∞
θ (R+, 0) then H1, H2 ∈ C∞

κ (R+, 0) and H ∈ C∞
ρ (D2).

Denote by g̃iψ the time-one map generated by the vector field vψ in Di
r0 , i = 1, 2, 3, 4

given as follows:

ṡ1 = (logα)s1ψ(s21 + s22) , ṡ2 = −(logα)s2ψ(s21 + s22) .

One can show that g̃iψ(Di
r1) ⊂ Di

r0 and g̃iψ coincides with g0 in some neighborhood of the

boundary ∂Di
r0 . Therefore, the map

g1(x) =

{

g0(x) if x ∈ T 2 \ D,

g̃iψ(x) if x ∈ D

defines a homeomorphism of the torus T 2 which is a C∞ diffeomorphism everywhere except
for the points xi, i = 1, 2, 3, 4. The map g1 leaves invariant a smooth probability measure
dν = κ−1

0 κ dm where the density κ is a positive C∞ function except for infinities at xi. It
is defined by the formula

κ(x) =

{

ψ−1(s21(x) + s22(x)) if x ∈ D,

1 otherwise

and

κ0 =

∫

T 2

κ dm.

We summarize the properties of the map g1 in the following lemma.

Lemma 1.2. (see [K]).

(1) The map g1 is topologically conjugate to g0 via a homeomorphism ϕ0 which transfers
the stable W s

g0
(x) and unstable W u

g0
(x) (global) curves of g0 into smooth curves

which are stable W−
g1(x) and unstable W+

g1(x) curves of g1.

(2) there exist continuous families of stable cones K−
g1

(x) and unstable cones K+
g1

(x),

x ∈ T 2 \ {x1, x2, x3, x4} such that

g−1
1 (K−

g1
(x)) ⊂ K−

g1
(g−1

1 (x)), g1(K
+
g1

(x)) ⊂ K+
g1

(g1(x))
6



and the inclusions are strict on the closure of the set T 2 \ D.
(3) The Lyapunov exponents of g1 are nonzero almost everywhere with respect to the

measure ν (and indeed, with respect to any Borel invariant measure µ for which
µ({xi}) = 0, i = 1, 2, 3, 4).

For every x ∈ T 2 \ {x1, x2, x3, x4} we define the stable and unstable one-dimensional
subspaces at x by

E−
g1

(x) =
⋂

j

g−j1 (K−
g1

(gj1(x))), E+
g1

(x) =
⋂

j

gj1(K
+
g1

(g−j1 (x))).

Lemma 1.3. (see [K]).

(1) The subspaces E−
g1

(x) and E+
g1

(x) depend continuously on x.

(2) The map g1 is uniformly hyperbolic on T 2 \ D; more precisely, there is a number
λ > 1 such that for every x ∈ T 2 \ D,

‖dg1|E
−
g1

(x)‖ ≤
1

λ
, ‖dg−1

1 |E+
g1

(x)‖ ≤
1

λ
.

Once the maps ϕ1, ϕ2, and ϕ3 are constructed the maps g2, g3, and g are defined to
make the above diagram commutative. We follow [K] and describe a particular choice of
maps ϕ1, ϕ2, and ϕ3.

In a neighborhood of each point xi, i = 1, 2, 3, 4 the map ϕ1 is given by

ϕ1(s1, s2) =
1

√

κ0(s21 + s22)

(

∫ s21+s
2
2

0

du

ψ(u)

)
1
2

(s1, s2)

and it is the identity in T 2\D. Thus, it is a homeomorphism which is a C∞ diffeomorphism
except for the points xi; it carries the measure ν into the Lebesgue measure and it commutes
with the involution J(t1, t2) = (1 − t1, 1 − t2).

The map ϕ2 : T 2 → S2 is a double branched covering and is regular and C∞ everywhere
except for the points xi, i = 1, 2, 3, 4 where it branches; it commutes with the involution
J and preserves the Lebesgue measure; there is a local coordinate system (τ1, τ2) in a
neighborhood of each point pi = ϕ2(xi) such that

ϕ2(s1, s2) =

(

s21 − s22
√

s21 + s22
,

2s1s2
√

s21 + s22

)

.

In a neighborhood of the point p4 the map ϕ3 is given by

ϕ3(τ1, τ2) =

(

τ1
√

1 − τ2
1 − τ2

2
√

τ2
1 + τ2

2

,
τ2
√

1 − τ2
1 − τ2

2
√

τ2
1 + τ2

2

)

.

and it is extended to a C∞ diffeomorphism ϕ3 between S2\{p4} and Int D2 which preserves
the Lebesgue measure.

This concludes the construction of the diffeomorphism g in Proposition 1.1.
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II. Some Additional Properties of The

Diffeomorphism In The Katok’s Example

We first observe the following crucial properties of the map g1.

Proposition 2.1. There are constants γ0 > 0 and C > 0 such that for every γ0 ≥ γ > 0
one can find a point x0 ∈ T 2 \ D for which

gj1(B(x0, γ))
⋂

B(x0, γ) = ∅, −N < j < N, j 6= 0,

gj1(B(x0, γ))
⋂

D = ∅, −N < j < N,

where N = N(γ) = − log γ
logλ

− C.

Proof. Note that the statement holds true for the linear hyperbolic automorphism g0 and
the desired result now follows from Lemma 1.2. �

We now describe some additional properties of the map g.

Let U be a sufficiently small neighborhood of the singularity set Q = {q1, q2, q3} ∪ ∂D2

where qi = ϕ3(pi), i = 1, 2, 3.

Proposition 2.2.

(1) The Lyapunov exponents of g are nonzero almost everywhere with respect to the
Lebesgue measure m.

(2) There exist continuous families of stable cones K−
g (x) and unstable cones K+

g (x),

x ∈ D2 \ Q such that

g−1(K−
g (x)) ⊂ K−

g (g−1(x)), g(K+
g (x)) ⊂ K+

g (g(x))

and the inclusions are strict on the closure of the set D2 \ U .
(3) The distributions

E−
g (x) =

⋂

j

g−j(K−
g (gj(x))), E+

g (x) =
⋂

j

gj(K+
g (g−j(x)))

are one-dimensional dg-invariant and continuous on D2 \ Q; moreover, the map g
is uniformly hyperbolic on D2\U : there is a number λ > 1 such that for x ∈ D2\U ,

‖dg|E−
g (x)‖ ≤

1

λ
, ‖dg−1|E+

g (x)‖ ≤
1

λ
;

furthermore, there is an invariant set X of full measure such that for every x ∈ X,

Esg(x) = E−
g (x), Eug (x) = E+

g (x),

where Esg(x) and Eug (x) are given by (0.1).
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(4) The map g possesses two one-dimensional foliations, W−
g and W+

g , of the set D2\Q
such that

TxW
−
s (x) = Esg(x), TxW

−
u (x) = Eug (x), x ∈ D2 \ Q;

the sizes of local leaves V −
g (x) and V +

g (x) are bounded away from zero on the set

D2 \ U ; moreover, for every x ∈ X,

W s
g (x) = W−

g (x), W u
g (x) = W+

g (x),

where W s
g (x) and W u

g (x) are given by (0.5) (with F = g).

(5) There is γ0 > 0 such that for every γ0 > γ > 0 one can find a point x0 ∈ D2 \ U
such that

gj(B(x0, γ))
⋂

B(x0, γ) = ∅, −N < j < N, j 6= 0,

gj(B(x0, γ))
⋂

U = ∅, −N < j < N,

where N = N(γ) = − log γ
logλ − C and C > 0 is a constant.

Proof. The result follows immediately from Lemmas 1.2, 1.3, 1.4, and Proposition 2.1.

Remarks. 1. A. Katok has shown that the leaves W−
g (x) and W+

g (x) depend Lipschitz

continuously over x ∈ D2 \ Q (private communication).

2. One can show that the set T 2 \ (ϕ1 ◦ ϕ2 ◦ ϕ3)
−1(X) is the union of the stable and

unstable separatrices of the fixed points x1, x2, x3, and x4.

III. The Description of Brin’s Example

We outline Brin’s construction from [B].

Given a positive integer n ≥ 5 set k = [n−3
2

] and consider the (n − 3) × (n − 3) block

diagonal matrix A = (Ai), where Ai =

∣

∣

∣

∣

2 1
1 1

∣

∣

∣

∣

for i < k and

Ak =



























∣

∣

∣

∣

2 1

1 1

∣

∣

∣

∣

if n is odd,

∣

∣

∣

∣

∣

∣

∣

2 1 1

1 1 1

0 1 2

∣

∣

∣

∣

∣

∣

∣

if n is even.

It is easy to see that detA = 1 and that A generates a volume preserving hyperbolic
automorphism of the torus T n−3. Let T t be the suspension flow over A with the roof
function

H = H0 + εH(x),
9



where H0 is a constant and the function H(x) is such that |H(x)| ≤ 1. The flow T t is an
Anosov flow on the phase space Yn−2 which is diffeomorphic to the product T n−3 × [0, 1],
where the tori T n−3 × 0 and T n−3 × 1 are identified by the action of A.

One can choose the function H(x) such that the flow T t has the accessibility property.

Consider the following skew product map R of the manifold M = D2 × Yn−2

R(z) = R(x, y) = (g(x), Tα(x)(y)), z = (x, y), (3.1)

where the diffeomorphism g is constructed in Proposition 1.1 and α : D2 → R is a non-
negative C∞ function which is equal to zero in the neighborhood U of the singularity set
Q and is strictly positive otherwise.

We define the singularity set for the map R by S = Q×Yn−2, where Q is the singularity
set of the map g (see Proposition 2.2). We also set N = (D2\U)×Yn−2 and Z = X×Yn−2,
where the sets U and X are defined in Proposition 2.2.

Proposition 3.1. The following statements hold.

(1) The map R possesses four continuous cone families K−
R (z), K−c

R (z), K+
R (z), and

K+c
R (z), z ∈ M \ S such that

R−1(K−
R (z)) ⊂ K−

R (R−1(z)), R(K+
R (z)) ⊂ K+

R (R(z)),

R−1(K−c
R (z)) ⊂ K−c

R (R−1(z)), R(K+c
R (z)) ⊂ K+c

R (R(z))
(3.2)

and inclusions are strict on the closure of the set N ; moreover, there exists µ > 1
such that for all z ∈ N ,

‖dR(v)‖ > µ‖v‖ for all v ∈ K+(z),

‖dR(v)‖ <
1

µ
‖v‖ for all v ∈ K−(z).

(3.3)

(2) For every z ∈ Z the formulae

EsR(z) =
⋂

j

R−j(K−
R (Rj(z))), EuR(z) =

⋂

j

Rj(K+
R (R−j(z)));

determine dR-invariant stable and unstable continuous distributions such that

TzM = EsR(z) ⊕ EcR(z) ⊕ EuR(z),

where EcR(z) is the one-dimensional central direction;
(3) For every z ∈ N ∩ Z,

‖dR|EsR(z)‖ ≤
1

µ
, ‖dR−1|EuR(z)‖ ≤

1

µ
.

(4) For every z = (x, y) ∈ Z,

π1E
s
R(z) = Esg(x), π1E

u
R(z) = Eug (x),

π2E
s
R(z) = EsT t(y), π2E

u
R(z) = EuT t(y),

where π1 : TzM → TxD
2 and π2 : TzM → TyY

n−2 are the natural projections.
(5)

m {x ∈ M : Rn(x) ∈ U for all n ∈ Z} = 0.
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Proof. For every z = (x, y) ∈ (U \ S) × Yn−2 we set

K−
R (z) = K−

g (x) ×Ks
T t(y), K−

R (z) = K+
g (x) ×Ku

T t(y).

Now for every z ∈ N one can find numbers n1 = n1(z) and n2 = n2(z) such that

Rn1(z), R−n2(z) ∈ (U \ S) × Yn−2.

Set
K+
R (z) = dRn2K+

R (R−n2(z)), K−
R (z) = dR−n1K−

R (Rn1).

It is not difficult to show thatK+
R (z) and K−

R (z) do not depend on the choice of numbers n1

and n2 and by Proposition 2.2 (see Statement 1), have all the desired properties. We show
that the distribution EuR(z) is continuous over z ∈ Z. Indeed, let zn ∈ Z be a sequence
of points which converges to a point z ∈ Z. By Statements 2 and 3 of Proposition 2.2,
given δ > 0, one can find a number m = m(z) such that the cone Rm(K+

R (R−m(z)))
is contained in the cone around EuR(z) of angle δ. Therefore, for all sufficiently large n
the cones Rm(K+

R (R−m(zn))) are contained in the cone around EuR(z) of angle 2δ. Since

EuR(zn) ⊂ Rm(K+
R (R−m(zn))) the continuity of the distribution EuR(z), z ∈ Z follows.

Similar arguments show the continuity of the distribution EsR(z) over z ∈ Z. Statement 3
follows from Statement 3 of Proposition 2.2 and Statement 4 is obvious. The last statement
is a consequence of Statement 1 of Lemma 1.2 and the properties of the maps ϕ1, ϕ2, and
ϕ3 (see Section 1). �

Proposition 3.2. The distributions EsR(z) and EuR(z) generate two foliations, W s
R and

Wu
R, of Z; the sizes of local leaves V s

R(z) and V uR (z) are bounded away from zero on the set
N ∩ Z.

Proof. We follow arguments in [B]. Let z = (x, y) ∈ Z. Set

W s
R(z) =

⋃

x̂∈W s
g (x)

(x̂,W s
T t(T t(x̂)(y)),

Wu
R(z) =

⋃

x̂∈Wu
g (x)

(x̂,W u
T t(T t(x̂)(y)),

where

t(x̂) =
∞
∑

n=0

(α(gn(x̂) − α(gn(x))),

t(x̂) =

∞
∑

n=0

(α(gn(x̂) − α(gn(x))).

(3.4)

Note that each series in (3.4) converges for every x ∈ Z. Indeed, since the point (ϕ1 ◦ϕ2 ◦
ϕ3)

−1(x) does not lie on a separatrix of any of the fixed points x1, x2, x3, and x4 the series
converges exponentially fast. The desired properties of the foliations W s

R and W u
R follow

from Propositions 2.2 and 3.1. �

Remark. We shall show below (see Proposition 5.1) that the distributions Es
R(z) and

EuR(z) as well as foliations W s
R(z) and W u

R(z) can be extended to continuous distributions
on and foliations of M\ S.

We proceed with Brin’s construction.
11



Lemma 3.3. (see [B]). There exists a smooth embedding of the manifold Yn−2 into R
n.1

We now state the main result in [B].

Proposition 3.4. Given a compact smooth Riemannian manifold K of dimension n ≥ 5
there exists a C∞ diffeomorphism h of K such that

(1) h preserves the Riemannian volume on K;
(2) for almost every z ∈ K there exists a decomposition

TzK = Esh(z) ⊕Ech(z) ⊕Euh(z)

into dh invariant stable, central, and unstable subspaces such that dimEc
h(z) = 1

and the Lyapunov exponents at the point z of a vector v ∈ TzK

χ(z, v)











< 0 if v ∈ Esh(z),

= 0 if v ∈ Ech(z),

> 0 if v ∈ Euh(z);

(3) h satisfies the essential accessibility property and is a Bernoulli diffeomorphism.

Proof. Using Lemma 3.3 one can construct a smooth embedding χ1 : K → Bn (where Bn

is the unit ball in R
n) which is a diffeomorphism except for the boundary ∂D2 × Yn−2.

Then using results in [K] one can find a smooth embedding χ2 : Bn → K which is a
diffeomorphism except for the boundary ∂Bn. Since the map R is identity on the boundary
∂D2×Yn−2 the map h = (χ1◦χ2)◦R◦(χ1◦χ2)

−1 has all the properties stated in Proposition
3.4. �

IV. The Perturbation of The Diffeomorphism in Brin’s Example

Fix a number γ > 0 and a point y0 ∈ Yn−2 and set ∆ = B(x0, γ)×B(y0, γ) (where the
point x0 is chosen in Proposition 2.2, see Statement 5).

In this section we prove the following result.

Proposition 4.1. Given ε > 0, there is a C∞ diffeomorphism P : M → M such that

(1) P preserves the Riemannian volume m;
(2) dC1(P,R) ≤ ε where the map R is defined by (3.1); moreover, P |(M \ ∆) =

R|(M\ ∆);
(3) for almost every z ∈ M there exists a decomposition

TzM = EsP (z) ⊕EcP (z) ⊕EuP (z)

into dP invariant subspaces such that dimEcP (z) = 1 and the Lyapunov exponent
at the point z of a vector v ∈ TzM

χ(z, v)

{

< 0 if v ∈ EsP (z),

> 0 if v ∈ EuP (z);

1The proof of this statement in [B] needs some minor corrections. The manifold Yn−2 is of codimension

two. Although not every codimension two manifold has trivial normal bundle Yn−2 does. This can easily
be seen from its construction. Similar observation should be made wherever triviality of the normal bundle

is used.

12



(4) the Lyapunov exponent χcP (z) in the central direction satisfies
∫

M

χcP (z) dm < 0.

Proof. Let ϕx : Yn−2 → Yn−2, x ∈ M be a family of volume preserving C∞ diffeomor-
phisms satisfying

dC1(ϕx, Id) ≤ ε, ϕx(y) = y for (x, y) ∈ M \ ∆. (4.1)

A particular choice of such a family of diffeomorphisms will be specified below (see Lemma
4.4). Set

ϕ(x, y) = (x, ϕx(y)), P = ϕ ◦R. (4.2)

It is easy to see that the map P is C∞, volume preserving, and

P |(M\ ∆) = R|(M\ ∆), dC1(P,R) ≤ ε. (4.3)

It follows from Proposition 3.1 and the first relation in (4.3) that for every z ∈ M \ S,

P−1(K−
R (z)) ⊂ K−

R (P−1(z)), P (K+
R (z)) ⊂ K+

R (P (z))

P−1(K−c
R (z)) ⊂ K−c

R (P−1(z)), P (K+c
R (z)) ⊂ K+c

R (P (z))
(4.4)

and inclusions are strict on the set M\ S. Therefore, the formulae

EsP (z) =
⋂

j

P−j(K−
R (P j(z))), EuP (z) =

⋂

j

P j(K+
R (P−j(z))) (4.5)

define subspaces at every point z ∈ Z. Clearly, these subspaces are dP -invariant. Moreover,
since the first coordinate of the point P (x, y) depends only on x (see (4.2)) we obtain that

π1E
s
P (z) = Esg(x), π1E

u
P (z) = Eug (x), (4.6)

where z = (x, y) (recall that π1 : TzM → TxD2 is the natural projection).

Remark. We shall show below (see Proposition 5.1) that for any sufficiently small gentle
perturbation P of the map R the distributions EsP and EuP can be extended to a continuous
distributions E−

P and E+
P on the set M\S (but not just the set Z). However, the property

(4.6) holds true only due to the special form of the perturbation (see (4.2)). This property
is crucial for our further study (see Proposition 5.2).

Lemma 4.2.

(1) For every sufficiently small γ > 0 and z = (x, y) ∈ Z with x ∈ B(x0, γ) we have
that

∠(EuP (z), EuR(z)) ≤ Cγ
log µ
log λ ,

∠(EsP (z), dP−1EsR(P (z))) ≤ Cγ
log µ
log λ .

(4.7)

(2) There is a number ν > 1 such that for every z ∈ N ∩ Y ,

‖dP |EsP (z)‖ ≤
1

ν
, ‖dP−1|EuP (z)‖ ≤

1

ν
. (4.8)
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Proof of the lemma. The second statement follows immediately from the first one and
Statement 3 of Proposition 3.1. We will prove the first inequality in (4.7), the proof of the
second one is similar. Consider the point

z∗ = (x∗, y∗) = R−(N−1)(P−1(z)),

where N = N(γ) is defined in Proposition 2.2 (see Statement 5). By (4.3),

d(EuP (z∗), EuR(z∗)) ≤ δ,

where d is the distance in the Grassmanian manifold and δ = δ(ε) > 0 is sufficiently small.
Since

P j(z∗) = Rj(z∗) for 0 ≤ j ≤ N − 1 (4.9)

we obtain using Statement 3 of Proposition 3.1 that

d(dRN−1EuP (z∗), dRN−1EuR(z∗)) ≤
δ

µN−1
.

Using again (4.9) we rewrite the last inequality as

d(EuP (P−1(z)), EuR(P−1(z))) ≤
δ

µN−1
≤ δµγ

log µ
log λ .

Applying dP we obtain the desired result. �

Since the maps R and P preserve the Riemannian volume we have for every z ∈ M\S,

Λ+(z, R, ε) + Λ−(z, R, ε) + χcR(z) = Λ+(z, R, ε) + Λ−(z, R, ε) = 0,

Λ+(z, P, ε) + Λ−(z, P, ε) + χcP (z) = 0,

(see (0.3) for the definition of the terms). It follows that

∫

M

χcP (z) dm =

∫

M

Λ+(z, R, ε) dm−

∫

M

Λ+(z, P, ε) dm

+

∫

M

Λ−(z, R, ε) dm−

∫

M

Λ−(z, P, ε) dm.

(4.10)

Lemma 4.3. We have
∫

M

Λ+(z, P, ε) dm−

∫

M

Λ+(z, R, ε) dm =

∫

∆

(

log [ det(Φu)(z) ] + O
(

ε
log µ
log λ

))

dm,

∫

M

Λ−(z, P, ε) dm−

∫

M

Λ−(z, R, ε) dm = −

∫

∆

(

log [ det(Φ−1)s(z) ] + O
(

ε
log µ
log λ

))

dm,

where
Φu(z) = dϕ|EuR(z), (Φ−1)s(z) = dϕ|EsR(z). (4.11)
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Proof of the lemma. We will establish the first relation. The proof of the second one is
similar. Consider the induced maps R̃ and P̃ generated by the maps R and P respectively
on the set ∆. These maps are well-defined for almost every z ∈ ∆. Let ∆̃ be the set of
such points. By Kac’s formula

∫

M

Λ+(z, R, ε) dm =

∫

∆̃

Λ+(z, R̃, ε) dm,

∫

M

Λ+(z, P, ε) dm =

∫

∆̃

Λ+(z, P̃ , ε) dm.

It follows

∫

M

[

Λ+(z, P, ε) − Λ+(z, R, ε)
]

dm =

∫

∆̃

[

Λ+(z, P̃ , ε) − Λ+(z, R̃, ε)
]

dm.

Fix z = (x, y) ∈ ∆̃. Every vector v ∈ EuP (z) can be written in the form v = vR + w where
vR ∈ EuR(z) and w ∈ EsR(z) ⊕ EcR(z). Denote by N = N(z) the first return time of the

point z to ∆̃ under the map R. By (4.2) we have that the first return time of Z to ∆̃
under the map P is also N . Moreover, by Lemma 4.2,

dPNv = dϕdRN (vR + w) = ‖dRNvR‖dϕ

(

dRNvR
‖dRNvR‖

)

(1 + O(µ−N ))

= (1 + O(µ−N ))‖dRNvR‖

[

Φu
dRNvR
‖dRNvR‖

+ w∗

]

,

where w∗ is a vector in EsR(z) ⊕ EcR(z). Notice that

∫

∆̃

Λ+(z, P̃ , ε) dm =

∫

∆̃

log det (dP̃ |EuP (z)) dm,

∫

∆̃

Λ+(z, R̃, ε) dm =

∫

∆̃

log det (dR̃|EuR(z)) dm.

It follows that

∫

∆̃

(Λ+(z, P̃ , ε) − Λ+(z, R̃, ε)) dm

=

∫

∆̃

log
detΦu(PN |EuP (z))

det Φu(RN |EuR(z))
dm

=

∫

∆̃

(

log det Φu(RN (z)) + O(µ−N )
)

dm

=

∫

∆̃

(

log det Φu(RN (z)) + O
(

γ
log µ
log λ

))

dm.

The desired result now follows. �
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For z = (x, y) ∈ Z we set

Φ̃u(z) =
∂ϕx
∂y

|(EuR(z) ∩ TzY
n−2), (Φ̃−1)s(z) =

∂ϕx
∂y

|(EsR(z) ∩ TzY
n−2).

It follows from the definition of the map ϕ (see (4.2)) that

det Φu(z) = det Φ̃u(z), det Φs(z) = det Φ̃s(z).

Therefore, using (4.10) and Lemma 4.3 we obtain that

∫

M

χc
P̃

(z) dm =

∫

∆̃

([

log det Φ̃u(z) − log det (Φ̃−1)s(z)
]

+ O
(

γ
log µ
log λ

))

dm. (4.12)

Lemma 4.4. There is a family of diffeomorphisms ϕx : Yn−2 → Yn−2 satisfying (4.1)
and such that
∫

∆̃

[

− log det Φ̃u(z) + log det (Φ̃−1)s(z)
]

dm ≤ −Cε2γn−2 + O(ε3)γn−2 + o(1)O(γn),

where C > 0 is a constant.

Proof of the lemma. Choose a coordinate system {x, y} = {x1, x2, y1, y2, . . . , yn−2} in ∆
such that

(1) dm = dx dy;
(2) EcT t(y0) = ∂

∂y1
, EsT t(y0) = 〈 ∂

∂y2
, . . . , ∂

∂yk
〉, EuT t(y0) = 〈 ∂

∂yk+1
, . . . , ∂

∂yin−2
〉 for

some k, 2 ≤ k < n− 2;

Let ψ(t) be a C∞ function with compact support. Set τ = 1
γ2 (‖x‖2 + ‖y‖2) and define

ϕ−1
x (y) =(x, y1 cos (εψ(τ)) + y2 sin (εψ(τ)),

− y1 sin (εψ(τ)) + y2 cos (εψ(τ)), y3, . . . , yn−2).
(4.13)

Since the distributions EuR(z) and EsR(z) are continuous (see Statement 2 of Proposition
2.2) by (4.11) we find that

∫

∆̃

log det Φ̃u(z) dm = o(1)m(∆) = o(1)O(γn) (4.14)

and
∫

∆̃

log det (Φ̃−1)s(z) dm =

∫

∆̃

log det (dϕ−1
x |EsR)(z) dm

=

∫

∆̃

log det (dϕ−1
x |〈

∂

∂y2
, . . . ,

∂

∂yk
〉)(x, y) dxdy+ o(1)m(∆)

=

∫

∆̃

log det (dϕ−1
x |〈

∂

∂y2
, . . . ,

∂

∂yk
〉)(x, y) dxdy+ o(1)O(γn).

(4.15)
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It is easy to see that

det (dϕ−1
x |〈

∂

∂y2
, . . . ,

∂

∂yk
〉)(x, y) = −

2y1y2
γ2

εψ′(τ) cos(εψ(τ))

+ cos(εψ(τ))−
2y2

2

γ2
εψ′(τ) cos(εψ(τ)).

It follows that

log det (dϕ−1
x |〈

∂

∂y2
, . . . ,

∂

∂yk
〉)(x, y)

= −
2y1y2
γ2

εψ′(τ) −
2y2

1y
2
2

γ4
ε2(ψ′(τ))2

−
1

2
ε2(ψ(τ))2 −

2y2
2

γ2
ε2ψ(τ)ψ′(τ) + O(ε3).

Making the coordinate change η = y
γ we compute that

∫

∆̃

log det (dϕ−1
x |〈

∂

∂y2
, . . . ,

∂

∂yk
〉)(x, y) dxdy

=γn−2

∫

B(x0,γ)

dx

∫

Rn−2

[−2η1η2εψ(τ)′] dη

+γn−2

∫

B(x0,γ)

dx

∫

Rn−2

[−2η2
1η

2
2ε

2(ψ(τ)′)2] dη

+γn−2

∫

B(x0,γ)

dx

∫

Rn−2

[−
1

2
ε2(ψ(τ))2 − 2ε2ψ(τ)ψ(τ)′η2

2 ] dη + O(ε3)γn−2.

(4.16)

Since the function ψ has compact support the first integral in (4.16) is zero. Integrating
by parts we obtain that

∫

Rn−2

ε2ψ(τ)ψ(τ)′η2
2 dη = −

1

4

∫

Rn−2

ε2(ψ(τ))2 dη.

Hence, the third integral in (4.16) is also zero. The second integral is a strictly negative
number of order O(ε2γn−2). The desired result follows. �

Using Lemma 4.4 and (4.12) we obtain that

∫

M

χc
P̃

(z) dm = −Cε2γn−2 + O(ε3)γn−2 + o(1)O(γn) + O
(

γ
log µ
log λ

+n
)

.

In order to complete the proof of the proposition we choose the number γ so small that
γ2 ≤ ε3. �
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V. Absolute Continuity And Orbit Density of The Perturbation

In this section we establish some additional crucial properties of the diffeomorphism P
given by (4.2).

Definition. A perturbation P of the map R is called gentle if P = R on U × Yn−2.

If P is a gentle perturbation of R which is sufficiently close to R then P satisfies (3.2)
and (3.3). In what follows we assume that P has these properties. Set

E+
P (z) =

⋂

j

dP j(K+
R (P−j(z))), E−

P (z) =
⋂

j

dP−j(K−
R (P j(z))),

E+c
P (z) =

⋂

j

dP j(K+c(P−j(z))), E−c
P (z) =

⋂

j

dP−j(K−c(P j(z))),

EcP (z) = E+c
P (z)

⋂

Ec−P (z).

(5.1)

Proposition 5.1. The following statements hold:

(1) E+
P (z), E−

P (z), E+c
P (z), E−c

P (z), and EcP (z) are dP invariant distributions which
depends continuously over z ∈ M\ S;

(2) the distributions E−
P (z) and E+

P (z) are integrable and the corresponding global leaves

W−
P (z) and W+

P (z) form foliations of the set M\ S;
(3) for every z ∈ Z we have

EsP (z) = E−
P (z), EuP (z) = E+

P (z), W s
P (z) = W−

P (z), W u
P (z) = W+

P (z),

where the distributions EsP (z), EuP (z) and the foliations W s
P (z), W u

P (z) are defined
by (0.1) and (0.5) respectively; moreover, the sizes of local leaves V −

P (z) and V +
P (z)

are uniformly bounded away from zero on the set N ;
(4) the distributions and the foliations depend continuously on P .

Proof. Consider the set

M+ = {z ∈ M \ S : Pn(z) → S as n→ +∞}.

Note that

(a) for every z ∈ M \ M+ there exists a sequence of numbers nk → +∞ such that
Pnk(z) ∈ N ;

(b) for every z ∈ M+ there exists there exists a number n0 = n0(z) such that for every
n ≥ n0 if we write Pn(z) = (xn, yn) then xn = gn−n0xn0

.

It follows from (a) and (b) that E−
P (z) is a dP invariant distribution. We shall show that

it is continuous. Fix z ∈ M\S and ε > 0. Let zm be a sequence of points which converges
to z. There exists n > 0 such that dP−n(K−

R (Pn(z))) is contained in a cone around E−
P (z)

of angle ε. By (a), (b), and the continuity of the cone family K−
R one can find M > 0

such that for every m ≥M the angle of the cone dP−n(K−
R (Pn(zm))) does not exceed 2ε.

Since E−
P (zm) ⊂ dP−n(K−

R (Pn(zm))) we conclude that the Grassmanian distance between

E−
P (zm) and E−

P (z) does not exceed 3ε.
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We shall show that the distribution E−
P (z) is integrable. Fix z ∈ M \ M+. Consider

a u-admissible manifold V − at z, i.e., a local smooth submanifold passing through z and
such that TwV

− ⊂ K−
R (w) for every w ∈ V −. We have for z ∈ M+,

W−
P (z) =

⋃

ni≥0

P−nk(V −(Pnk(z))) = W s
P (z).

For z ∈ M+ the existence of the manifoldW−(z) follows from Property (a) and Proposition
2.2. The desired properties of the foliation W−

P follow from continuity of the distribution
E−(z), Lemma 4.2 (see 4.8), and Proposition 2.2. Using similar arguments one can estab-
lish the desired properties of other distributions in (5.1) and the corresponding foliations.
�

It is easy to see that the perturbation P given by (4.2) is gentle and hence, Proposition
5.1 applies. Furthermore, due the special form of the perturbation we will obtain an
additional crucial information.

For every z = (x, y) ∈ M\S we define “traces” of stable and unstable global leaves for
the maps R and P on the fiber (Yn−2)x by

W̃ s
R(y) = W s

R(z) ∩ (Yn−2)x, W̃−
P (y) = W−

P (z) ∩ (Yn−2)x

W̃u
R(y) = W u

R(z) ∩ (Yn−2)x, W̃+
P (y) = W+

P (z) ∩ (Yn−2)x.

Proposition 5.2.

(1) For every z ∈ M \ S the collections of manifolds W̃ s
R(y), W̃u

R(y), W̃−
P (y), W̃+

P (y)

form four foliations of (Yn−2)x; for x ∈ N , the sizes of local leaves Ṽ sR(y), Ṽ uR (y),

Ṽ −
P (y), Ṽ +

P (y) are uniformly bounded away from zero.
(2) Given δ > 0 there exists ε > 0 such that if dC1(P,R) ≤ ε then for every z =

(x, y) ∈ N ,

ρ(Ṽ sR(y), Ṽ −
P (y)) ≤ δ, ρ(Ṽ uR (y), Ṽ +

P (y)) ≤ δ.

Proof. The result follows from Propositions 3.1, 3.2, 5.1, and Lemma 4.2. �

We now establish the absolute continuity property. Choose a point z0 ∈ N and consider
the local manifolds V +

P (z), z ∈ B(z0, r) ∩ Z for sufficiently small number r > 0. Since the
manifolds depend continuously on z ∈ N ∩ Z there is a local submanifold W passing
through z0 and transversal to V +

P (z). Set

A =
⋃

z∈B(z0,r)∩Z

V +
P (z). (5.2)

Denote by ξ the partition of A by V +
P (z), z ∈ B(z0, r)∩Z. Note that the factor space A/ξ

can be identified with W ∩ A. Finally, we denote by m+
z and mW the Lebesgue measure

on V +
P (z) and respectively on W induced be the Riemannian metric. Since the set Y has

full measure for almost every point z0 ∈ Z we have that mW (W ∩ A) = 1.
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Proposition 5.3. The foliation W+
P of the set N ∩Z is absolutely continuous: for almost

every point z ∈ N ∩ Z,

(1) the conditional measure on the element V +(z) of this partition is absolutely con-
tinuous with respect to the measure m+

z ;
(2) the factor measure on the factor space A/ξ is absolutely continuous with respect to

the measure mW .

A similar statement holds for the foliation W−
P of N ∩ Z.

Proof. If the map P were (fully) non-uniformly hyperbolic the desired result would fol-
low from Theorem 14.1 in [BP] (see Lemma 14.4). It requeres a simple and standard
modification to generalize the arguments there to partially non-uniformly hyperbolic case.
�

Our next statement establishes essential accessibility property of the map P .

Proposition 5.4. If the perturbation P is sufficiently close to R then any two points
p, q ∈ Z ∩ N are accessible.

Proof. Let p = (p1, p2) and q = (q1, q2). One can connect points p1 and q1 by a path
[x0, . . . , x`]g such that x0 = p1, x` = q1, and each point xi ∈ X. Without loss of generality
we nay assume that x1 ∈ V −

g (x0). The local stable manifold V −
P (p) intersect the fiber

(Yn−2)x0
at a single point y1 ∈ Z. Proceeding by induction we construct points y2, . . . , y`,

such that each point zi = (xi, yi) ∈ Z, i = 0, 1, . . . , y` and the path [z0, z1, . . . , z`]P connects
the points p and z`. Note also that y` ∈ (Yn−2)q1 . Fix a number r > 0 and consider the
interval [y−, y+] on the trajectory T t(q2) centered at q2 of radius r. Since the flow T t has
the accessibility property (see Section 3) for every s ∈ [y−, y+] one can find a path [y`, s]T t.
Moreover, paths corresponding to different s are homotopic to each other. By Propositions
3.2 and 5.2 and Statement 4 of Proposition 3.1, one can find a family of homotopic paths
[z`, (q1, s)]P such that s runs an interval on the trajectory T t(q2). For sufficiently small ε,
this interval contains a subinterval centered at q2 of length r − δ > 0. The desired result
follows. �

We now show that the map P is topologically transitive; indeed, we prove a stronger
statement.

Proposition 5.5. For almost every point z ∈ N the trajectory {P n(z)} is dense in N

(i.e., {Pn(z)} ⊃ N ).

Proof. Consider a maximal set E0 ⊂ N of points z for which

(5.2) z is topologically recurrent, i.e., for any r > 0 there exits n ∈ Z such that P n(z) ∈
B(z, r);

(5.3) for any w ∈ E0 the points z and w are accessible;

Lemma 5.6. m(E0) = 1.

Proof of the lemma. Since the set of topologically recurrent points has full measure the
desired result follows from Propositions 5.3 and 5.4. �
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Lemma 5.7. There exists the set E such that m(E) = 1, E satisfies (5.2) and (5.3) as
well as

(5.4) ∀z ∈ E the sets V αP (z) ∩ E, α ∈ {−,+} have full measure with respect to the
Riemannian volume on V αP (z).

Proof of the lemma. Given a set F ⊂M let
F ∗ = {z ∈ F such that F

⋂

V αP (z), α ∈ {+,−} have full measure with respect to the
Riemann volume on V αP (z)}. Define inductively En = E∗

n−1. From the absolute continuity

of W±
P we obtain using induction that m(En) = 1. Let E =

⋂∞
n=0En. Then m(E) = 1

and (5.2) and (5.3) are satisfied since E ⊂ E0. Also if z ∈ E then for each n z ∈ En+1, so
V αP (z)

⋂

En, α ∈ {+,−} have full measure. Thus V αP (z)
⋂

E has full measure. �

Choose any two points z, w ∈ E and let [z0, . . . , z`] be a path connecting them.

Lemma 5.8. Given δ > 0, there are points z′j ∈ E, j = 0, . . . , ` such that z′0 = z, and
d(zj , z

′
j) ≤ δ for j = 1, . . . , `.

Proof of the lemma. Without loss of generality we may assume that z1 ∈ V +
P (z0). If

z1 ∈ E we set z′1 = z1. Otherwise, fix 0 < δ1 ≤ δ and let z′1 ∈ E be a point such that
z′1 ∈ V +

P (z0) and d(z1, z
′
1) ≤ δ1 (such a point exists for every δ1 in view of (5.4)). If δ1 is

sufficiently small, for any 0 < δ2 ≤ δ1 one can find a point z′2 ∈ E such that z′2 ∈ V −
P (z′1)

and d(z2, z
′
2) ≤ δ2. Since the length of the path ` is uniformly bounded over z and w it

remains to use induction to complete the proof. �

We proceed with the proof of the proposition. Choose z, w ∈ E and let z′j ∈ E, j =
0, . . . , ` be points constructed in Lemma 5.8. Fix δ > 0 and numbers 0 < δ1 < · · · < δ` ≤ δ.
There is m1 > 0 such that d(Pn(z0), P

n(z′1) ≤ 1
2δ1 for every n ≥ m1. By (5.2), there is

n1 ≥ m1 for which d(Pn1(z1), z1) ≤
1
2δ1. It follows that d(P n1(z0), z

′
1) ≤ δ1.

There is m2 > 0 such that for every n ≥ m2, d(P
−n(z′1), P

−n(z′2) ≤
1
3
δ2. By (5.2), there

is n2 ≥ m2 for which d(P−n2(z′2), z
′
2) ≤

1
3δ2. It follows that d(P−n2(z′1), z

′
2) ≤

2
3δ2. Note

that if δ1 is chosen sufficiently small (depending only on n2) and n1 is chosen accordingly
then d(Pn1−n2(z0), z

′
2) ≤ δ2. Proceeding by induction we find numbers ni, i = 1, . . . , `

such that
d(Pn1−n2+···±n`(z0), z

′
`)) ≤ δ`.

This implies that for almost every point z ∈ N ∩E the orbit {P n(z)} is everywhere dense.
The desired result for almost every point z ∈ M follows from Statement 2 of Proposition
4.1 and Statement 5 of Proposition 3.1. �

VI. Proof of The Main Theorem: The Case dimK ≥ 5

Consider the set L of points for which χc(z) < 0 and hence, all values of the Lyapunov
exponent at z are nonzero. It is well-known that ergodic components of P |L have positive
measure. Let Q be such a component. In view of Statement 5 of Proposition 3.1 the set
Q ∩N has positive measure. Let z0 be a Lebesgue point of the set Q ∩N . Fix r > 0 and
consider the set A defined by (5.2). Using Proposition 5.3 and applying the standard Hopf
argument (see the proof of Theorem 13.1 in [BP]) one can show that Q ⊃ A for sufficiently
small r. This implies that Q is open (mod 0) and so is the set L. Applying Proposition 5.5
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we conclude that P |L is ergodic. Note that the same arguments can be used to show that
the map Pn is ergodic for all n. Hence, P is a Bernoulli diffeomorphism. It also follows
from Proposition 5.4 that m(L) = 1.

Set f = (χ1 ◦ χ2) ◦ P ◦ (χ1 ◦ χ2)
−1 where the maps χ1 and χ2 are constructed in

Proposition 3.4. It follows that the map f satisfies all the desired properties.
Remark. Let us mention another approach for establishing ergodicity of P . Using the

theory of invariant foliations one can show that if P is sufficiently close to R then W̃±(z, P )

are uniformly close to W̃u,s(z, R) for all z ∈ Z. Let Ω ⊂ N be such that there exist Ωα,

α = +,− which consist of the whole leaves of W̃α(P ) such that mN (Ω4Ωα) = 0 (where
mN is the restriction of the Lebesgue measure to N ). It follows from [PS] that mN (Ω) = 0
or mN (Ω) = 1. Hence, if Λ is a P -invariant set then m(Λ

⋂

Nz) = 0 or m(Λ
⋂

Nz) = 1 for
almost all z ∈ M. it follows that Λ factors down to a g-invariant set. This implies that P
is ergodic. In this paper we choose to present another proof since it extends to the case
dimK = 3 or 4 as we show below.

VII. Proof of The Main Theorem: The Case dimK = 3 and 4

Consider the manifold M = D2 × T ` where ` = 1 if dimK = 3 and ` = 2 if dimK = 4
and the skew product map R

R(z) = R(x, y) = (g(x), Rα(x)(y)), z = (x, y), (7.1)

where the diffeomorphism g is constructed in Proposition 1.1, Rα(x) the translation by

α(x), and α : D2 → R a non-negative C∞ function which is equal to zero on the set U
(defined in Proposition 2.2) and is strictly positive otherwise.

We define the singularity set for the map R by S = Q× T `, where Q is the singularity
set of the map g, and we also set N = (D2 \U)×T ` and Z = X×T ` (see Proposition 2.2).

As before we have four cone families K+
R (z), K+c

R (z), K−
R (z), and K−c

R (z) which satisfy
(3.2) and (3.3).

We say that the map R is robustly accessible if for all p, q ∈ N and any pair of foliations
F+ and F− which are close to W+

R and W−
R respectively, there exists a path [p, q] =

[z0z1 . . . z`] such that zj+1 ∈ Fα(zj), α ∈ {+,−}.

Proposition 7.1. The function α(x) (see (3.1)) can be chosen such that the map R is
robustly accessible.

Proof. By [B1] (see also [BW]), a generic skew product over multiplication by the map
∣

∣

∣

∣

5 8
8 13

∣

∣

∣

∣

of T 2 is robustly accessible. Now the statement follows from Statement 1 of

Lemma 1.2. �

Choose the function α(x) such that R is robustly accessible. Then any gentle perturba-
tion of R has the accessibility property. Repeating the proof of Proposition 5.5 we obtain
the following result.

Corollary 7.2. Any gentle perturbation P of R which is sufficiently close to R has no
open invariant sets.
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We consider a gentle perturbation P of R in the form P = ϕ ◦R. We wish to choose ϕ
such that

∫

M

log det(dP |EcP )(z) dm(z) = −ρ < 0. (7.2)

Indeed, in the case M = D2 ×S1, consider a coordinate system ξ = {ξ1, ξ2, ξ3} in a small
neighborhood of a point z0 such that

(1) dm = dξ;
(2) EcR(z0) = ∂

∂ξ1
, EsR(z0) = ∂

∂ξ2
, EuR(z0) = ∂

∂ξ3
.

Let ψ(t) be a C∞ function with compact support. Set τ = ‖ξ‖2

γ2 and define

ϕ−1(ξ) = (ξ1 cos (εψ(τ)) + ξ2 sin (εψ(τ)),−ξ1 sin (εψ(τ)) + ξ2 cos (εψ(τ)), ξ3).

The proof of (7.2) is similar to the proof of Lemma 4.4 (with γ chosen such that γ ≤ ε3).
In the case M = D2 × T 2 write M = (D2 × S1) × S1 and let ϕ1 = ϕ× Id where ϕ is the
above map (note that the distributions EsR, EuR, and EcR are translation invariant).

In case dimK = 3 the remaining part of the proof repeats the arguments in the case
dimK ≥ 5 (see Propositions 5.1, 5.3, 5.4 and 5.5 and Section VI). Note that the embeddings
χ1 : M → B3 and χ2 : B3 → K should be chosen according to [BFK].

We now proceed with the case dimK = 4. We further perturb the map P to P̄ to obtain
a set of positive measure on which P̄ has three negative Lyapunov exponents.

Proposition 7.3. Suppose that the support of the map ϕ is sufficiently small. Then for
all positive ε1, ε2 there exists a gentle perturbation P̄ of P such that dC1(P, P̄ ) ≤ ε1 and

∫

M

[

χc1(z, P̄ ) − χc2(z, P̄ )
]

dm(z) ≤ ε2,

where χc1(z, P̄ ) ≥ χc2(z, P̄ ) are the Lyapunov exponents of P̄ along the subspace Ec
P̄
(z).

Proof. See Section VIII. �

If ε1 and ε2 are sufficiently small then χc1(z, P̄ ) < 0 and χc2(z, P̄ ) < 0 on a set of
positive measure. Indeed, by (7.2) there exist ε1 > 0 and C > 0 such that for any gentle
perturbation P̄ of P with dC1(P, P̄ ) ≤ ε1 we have

∫

M

(χc1(z, P̄ ) + χc2(z, P̄ )) dm ≤ −
ρ

2

and |χc1(z, P̄ ) ± χc2(z, P̄ )| ≤ C. Hence, χc1(z, P̄ ) + χc2(z, P̄ ) < −ρ
4

on a set of measure at

least ρ
4C and χc1(z, P̄ ) − χc2(z, P̄ ) > ρ

8 on a set of measure at most 8ε2
C .

To complete the proof one now proceeds as in the case dimK ≥ 5.

VIII. Almost Conformality

We will prove Proposition 7.3. We follow the arguments in [M1, Bo] and split the proof
in several steps. In what follows we adopt the following agreement: if at some step we use
a statement of the type:
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”for any positive ε`1 , . . . , ε`p there exist positive εk1 , . . . , εkq
such that . . . ”

then each time thereafter we assume that εkj
(j = 1, . . . , q) are functions of ε`i (i = 1, . . . , p)

satisfying the condition above.
Consider the set D = {z ∈ M \ S : χc1(z, P ) 6= χc2(z, P )}. If m(D) = 0 the desired

result follows (it suffices to choose P̄ = P ). From now on we assume that m(D) > 0. Let
Ec1(z) and Ec2(z) be the one-dimensional Lyapunov directions corresponding to χc1(z, P )
and χc2(z, P ). They are defined for almost every z ∈ D.

Lemma 8.1. For every ε3 > 0 there is a measurable function n0 : M\ S → N such that
for any z ∈ M\ S and two one-dimensional subspaces E ′, E′′ ∈ EcP (z) one can find maps

Lj(z, E
′, E′′) : EcP (P j−1(z)) → EcP (P j(z)), 1 ≤ j ≤ n0(z)

satisfying

(1) Lj(z, E
′, E′′) = Rβj(z,E′,E′′)(dP |E

c
P (z)) where Rβ denotes the rotation by angle β

and βj = βj(z, E
′, E′′) is such that

‖βj‖ ≤ ε3, βj = 0 on U , (8.1)

(2) if

L̂(z, E′, E′′) = Ln0(z)(z, E
′, E′′) ◦ · · · ◦ L1(z, E

′, E′′)

then L̂(z, E′, E′′)E′ = dPn0(z)E′′.

Proof. Let A be the set of points z ∈ M\S for which the statements of Lemma 8.1 hold.
It is easy to see that A is invariant. Since the number n0(z) does not depend on the choice
of subspaces E′ and E′′ by continuity of dP we find that the set A is open. In view of
Corollary 7.2 if A is not empty it coincides with M\ S. We shall show that A 6= ∅.

Let x ∈ D2 \ Q be a periodic point of the map g of period r whose trajectory does not
intersect supp(ϕ) (such a point always exists if supp(ϕ) is sufficiently small). We have
that P rT 2(x) = T 2(x) where T 2(x) is a fiber over x. Moreover, P r|T 2(x) is a translation.
Therefore, the desired result holds for any z ∈ T 2(x). �

Given positive ε3, ε4, and N define

D1(ε3, ε4, N) = {z ∈ M :n0(z, ε3) ≤ N,

∣

∣

∣

∣

1

n
log ‖dPn|Ec` (z, P )‖ − χc`(z, P )

∣

∣

∣

∣

≤ ε4, ` = 1, 2,

∠(Ec1(P
n(z), P ), Ec2(P

n(z), P )) ≥ e−ε4|n| for any |n| ≥ N}.

Lemma 8.2. For any positive ε3, ε4, ε5 one can find N1 > 0 such that for any N ≥ N1,

m(D \D1(ε3, ε4, N)) ≤ ε5.

Proof. The result follows from the Birkhoff ergodic theorem and Oseledec’ theorem. �

Fix z ∈ D1(ε3, ε4, N). Since χc1(z, P ) ≥ χc2(z, P ) we obtain from the definition of the
set D1(ε3, ε4, N) that for every point z in this set, v ∈ Ec2(z, P ), ‖v‖ = 1, and |n| ≥ N ,

∣

∣

∣

∣

1

n
log ‖dPnv‖ − χc2(z, P )

∣

∣

∣

∣

≤ ε4 (8.2)

and for v ∈ Ec1(z, P ), ‖v‖ = 1 such that ∠(v, Ec2(z, P )) ≥ e−ε4 , and |n| ≥ N ,
∣

∣

∣

∣

1

n
log ‖dPnv‖ − χc1(z, P )

∣

∣

∣

∣

≤ 2ε4. (8.3)
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Lemma 8.3. For any positive ε3, ε4, ε6, ε7, and N2 there exist positive N3 and ε5 such
that

(1) for any ε8 > 0 and N ≥ N3 one can find a set Ω = Ω(N) for which P j(Ω)
⋂

Ω = ∅,

|j| ≤ N and if Ω̄ =
⋃N
j=0 P

j(Ω) then m(D \ Ω̄) ≤ ε8;

(2) if

D2(ε3, ε4, ε6, N,M) ={z ∈ Ω̄ : z = P j0(y), for some y ∈ Ω, |j0| ≤ N and

Card {j : |(N − j)/j − 1| ≤ ε6 and f j(y) ∈ D1(ε3, ε4, N)} ≤M}.

then
m(D2(ε3, ε4, ε6, N,N2)) ≤ ε7.

Proof. The first statement is just the Rokhlin-Halmos Lemma. Note that the measure of
each set Rj(Ω) is of order 1

N and that the number

Card

{

j :

∣

∣

∣

∣

N − j

j
− 1

∣

∣

∣

∣

≤ ε6

}

is of order ε6N . The second statement follows. �

The set Ω(N) is called a tower of height N .

Lemma 8.4. For any positive ε3, ε7, ε9 there exist positive ε4, ε6 such that the following
statement holds. Fix z ∈ D1(ε3, ε4, N1), positive n1, n2 satisfying

∣

∣

∣

∣

n2

n1
− 1

∣

∣

∣

∣

≤ ε6, n = n1 + n2 ≥ N3,

and maps Lj(z) = Lj(z, E
c
1(z, P ), Ec2(z, P )), j = 1, . . . , k ≤ ε6N3 satisfying (8.1) and such

that L̂(z) = Lk(z) ◦ · · · ◦ L1(z) moves Ec1(z, P ) into Ec2(P
k(z), P ). Then

exp

[

n

(

χc1(z, P ) + χc2(z, P )

2
− ε9

)]

≤
∥

∥

∥

(

dPn−k ◦ L̂(z) ◦ dPn1 |EcP (P−n1(z))
)∥

∥

∥

≤ exp

[

n

(

χc1(z, P ) + χc2(z, P )

2
+ ε9

)]

.

Proof. Set
P = dPn−k ◦ L̂(z) ◦ dPn1 |EcP (z).

Let e1 ∈ Ec1(z, P ) and e2 ∈ Ec2(z, P ) be a normalized basis in EcP (z). Then by (8.2) and
(8.3),

1

n
log ‖Pe`‖ = χc`(z, P )n1 + χc3−`(z, P )n2 + O(ε4n)

for ` = 1, 2. Let Π(z) : Ec(z) → Ec(z) be a linear map satisfying det Π(z) = 1 and the
vectors Π(z)e1 and Π(z)e2 are orthogonal. Then

log ‖ exp

(

n
χc1(z, P ) + χc2(z, P )

2

)

P‖ = log ‖Π−1(Pn(z))‖

+ log ‖Π(Pn(z)) ◦ exp

(

n
χc1(z, P ) + χc2(z, P )

2

)

P ◦ Π−1(Pn1(z))‖ + log ‖Π(P−n1(z))‖

and each term is of order O ((ε6 + ε4)n). The desired result follows. �
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Lemma 8.5. For any positive ε10, ε11, ε12, ε13 there exist positive ε3, ε7, ε9, and N2 such
that the following holds. Let Ω1 = Ω \D2(ε3, ε4, ε6, N2, N3) where Ω = Ω(N3) is a tower
of height N3 and

Ω2 = {f j(z) : z ∈ Ω1 and j is the smallest number for which
∣

∣

∣

∣

N3 − j

j
− 1

∣

∣

∣

∣

≤ ε6 and f j(z) ∈ D1(ε3, ε4, N2) }.

Let also k = ε6N3. Then

(1) there exists an open set Ω3 satisfying m(Ω34Ω2) ≤ ε10 and a map P̂ = P ◦ ϕ̂ such
that

supp (ϕ̂) =





k−1
⋃

j=0

P̃ j(Ω3)



 \ (U × T 2);

(2) dC1(ϕ̂, Id) ≤ ε1;
(3) there exists Ω4 ⊂ Ω2 such that m(Ω2 \ Ω4) ≤ ε11 and for all z ∈ Ω4,

‖(dP̂n|EcP )(z) − L̂(z)‖ ≤ ε12 for some n ≤ k, (8.4)

where L̂(z) : EcP (z) → EcP (Pn(z)) moves Ec1(z, P ) to Ec2(P
n(z), z) (see Lemma

8.4);
(4) for any z ∈ Ω,

d(EcP (z), Ec
P̂
(z)) ≤ ε13.

Proof. The proof is similar to [Bo]. Consider a finite atlas Φ = {Φ1 . . .Φn} such that in
each chart Φi one can introduce a coordinate system {ξ1, ξ2, ξ3, ξ4} satisfying

dm = dξ1dξ2dξ3dξ4.

Approximate Ω2 by the finite union of balls
⋃

j B(zj, rj), with rj ≤ ρ where ρ is sufficiently

small. By coordinate rotation we may assume that EcP (zj) =< ∂
∂ξ1

, ∂
∂ξ2

> |zj
. We can

apply Lemma 8.4 to each z ∈ Ω2 and construct the maps L1(z), . . . , LN1
(z) such that

L̂(z) = LN1
(z) ◦ · · · ◦L1(z) moves Ec1(z, P ) to Ec2(P

n(z), P ). By slightly shrinking the set
Ω2 if necessary we may assume that the maps Li(z) are continuous on Ω2. Recall that
each map L`(w) is a twist of the form

L`(w) = Rβ`(w)(dP |E
c
P (w)).

We define ϕ̄ on each B(zj , rj) to be

ϕ̂(ξ1, ξ2, ξ3, ξ4) = (Rψ(||ξ||/rj)β1(zj)(η1, η2)), ξ3, ξ4 ),

where {η1, η2, η3, η4} = exp−1
zj

(ξ1, ξ2, ξ3, ξ4) and the function ψ(x) is supported on [0, 1]
and

ψ(x) = 1, x ∈ [0,
1

2
]. (8.5)
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Continuing by induction for each ` ≤ N1 we approximate the sets P `(B(zj , rj)) by balls
and define ϕ̂ on each ball to be an appropriate twist generated by the maps L`(z). This
construction allows us to define ϕ̂ in such a way that (8.4) holds for n = N1 on a set ∆1

for which m(∆1) > c(N1)m(Ω2). Here c(N1) is a constant which can be made arbitrary
close to ( 1

16 )N1 if the approximation by balls is chosen appropriately; we exploit here the
fact that in view of (8.5)

m(B(z, r2))

m(B(z, r))
=

1

16
.

Consider a point z ∈ Ω2 \ ∆1. Let N̄1(z) > N1 be the first moment when the trajectory
{P j(z)} visits the set D1. Define ϕ̂ along the orbit {f j+N (z)} with N̄1(z) ≤ j ≤ N̄1(z) +

N1 to be appropriate twists such that the map dP N̄1(z)−N1 ◦ dP̄N1 moves Ec1(z, P ) to

dP N̄1(z) ◦dP̄N1Ec2(z, P ). Thus, we obtain a set ∆2 for which m(∆2) > m(Ω2 \∆1) ≥ c and
n = N1 + N̄1(z) on ∆2. Repeating this procedure (N2/N1) times we obtain the required

map ϕ̂. All properties of the map P̂ can now be verified by the arguments similar to those
in Lemma 4.4. �

It remains to show that ε10, ε11, ε12, ε13 can be chosen such that

∣

∣

∣

∣

1

N3
log ‖P̂N3(z)|Ec

P̂
(z)‖ dm(z) −

1

2

∫

M

log det(dP̂ (z)|Ec
P̂
(z)) dm(z)

∣

∣

∣

∣

≤ ε2.

This again is similar to the proof of Lemma 4.4 and we leave the details to the reader.
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