ASYMPTOTIC EXPANSION OF CORRELATION FUNCTIONS FOR Z?
COVERS OF HYPERBOLIC FLOWS.

DMITRY DOLGOPYAT, PETER NANDORI, AND FRANCOISE PENE

ABSTRACT. We establish expansion of every order for the correlation function of sufficiently
regular observables of Z? extensions of some hyperbolic flows. Our examples include the Z>
periodic Lorentz gas and geodesic flows on abelian covers of compact manifolds with negative
curvature.

1. INTRODUCTION

1.1. Setup. Let (M,v,T) be a probability preserving dynamical system. Consider (M, 7, T)-
the Z%-extension of (M,v,T) by x : M — Z¢ for a positive integer d. Let (®;);>0 be the
suspension semiflow over (M, v, T) with roof function 7 : M — (0, +00) and let (‘I)t)tzo be the
corresponding Z¢ cover. That is, (&%),20 is the semi-flow defined on

Q:={(z,0,5) € M x Z% x [0,+00) : s €[0,7(z))}

such that ®(z, ¢, s) corresponds to (z, ¢, s+t) by identifying (z, ¢, s) with (T, {+ k(z), s—7(x)).
This semi-flow preserves the restriction i on Q of the product measure ¥y @ m ® [, where m is the
counting measure on Z¢ and [ is the Lebesgue measure on [0, +00).

In the present paper we study the following correlation functions

Ct(fvg) ::/K%f'go(fitd/]a

as t goes to infinity, for suitable observables f,g. Our goal is to establish expansions of the form

K
Ci(f.9) =D Crlf, )t 5  +o(t™27K). (1.1)
k=0

More precisely we assume that ®; is C*° away from singularities, which is a finite (possibly
empty) union of positive codimension submanifolds. We say that ®; admits a complete asymp-
totic expansion in inverse powers of t if for f and g which are C*° and have compact support
which is disjoint from the singularities of ®, the correlation function C(f,g) admits the expan-
sion for each K € N. In this paper we establish a complete asymptotic expansion in inverse
powers of ¢ for two classical examples of hyperbolic systems: Lorentz gas and geodesic flows on
abelian covers of negatively curved manifolds. In fact, our results are more general. Namely,

e we consider an abstract setup potentially applicable to other hyperbolic flows;

e we allow the support of f and g to be unbounded (provided they decay sufficiently fast);

e we allow f and g to take non-zero values on the singularities of the flow. In addition,
we allow them to be only Holder continuous (note that continuity is required in the flow
direction as well) with one of them being C*° in the flow direction.
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1.2. Related results. The correlation function has been studied by several authors. The
leading term (K = 0) for hyperbolic maps (for functions of non-zero integral) is sometimes
called mixing, Krickeberg mixing or local mixing. In case of Z¢ extensions as above, it is a
consequence of some versions of the local limit theorem. See related results in e.g. [1,14-16.129].
Less is known about higher order expansions for maps, but see the recent results in [28]. For
flows, the leading term has been studied in e.g. [2,/9,/17,130]. We also mention that there are
other quantities besides the correlation functions whose asymptotic expansions are of interest.
In particular, the asymptotic expansions have been obtained (using techniques similar to ones
employed in the present paper) for the rate of convergence in the central limit theorem [12] and
for the number of periodic orbits in a given homology class [21},27].

There are several other results for some hyperbolic systems preserving an infinite measure
which may not be a Z? cover and so the powers may be different from —g — k. See the leading
term in e.g. [10,125,26] and expansions in e.g. [20,[23,]24]. We note that the expansions in
the above papers are of the form ¢(¢)i(f)i(g) where ¢(t) admits an expansion of the form

K
o(t) = Z art ™ 4+ 0 (t_ﬂK> . Thus these expansions do not give the leading term in the case
k=1

where ﬂ(_f)/l(g) = 0 and they are not suitable for studying the limiting behavior of ergodic
sums of zero mean functions. In contrast, our expansion provides the leading term for many
observables of zero mean.

1.3. Layout of the paper. The rest of the paper is organized as follows. In Section |2 we
present some abstract results on expansion of correlation functions for general suspension semi-
flows and flows. Theorems [2.1] and guarantee that under a list of technical assumptions,
expansions of the kind hold. The results are proved by a careful study of the twisted trans-
fer operator. One major difference from the case of maps (cf. [28]) is the extra assumption (2.32)
(along the lines of [8]). In Section [3| we study billiards and verify the abstract assumptions of
Theorem for the Lorentz gas obtaining a complete asymptotic expansions in inverse powers
of t for that system. In Section 4, we verify the abstract assumptions for geodesic flows on Z¢
covers of compact negatively curved Riemannian manifolds. Some technical computations are
presented in the Appendix.

2. ABSTRACT RESULTS.
2.1. Notations. We will work with symmetric multilinear forms. Let &,, be the set of permu-
tations of {1,...,m}. We identify the set of symmetric m-linear forms on C4*! with

Smi= {A = (Ais i)y € CE T Vi i, 8 € Gy Aiyy iy = A | -

For any A € S,,, and B € Si, we define A ® B as the element C of S, such that

. . 1
Vit oyimyk € {1, d+ 1}, Gy = m Z Ais(l),__.,ig(mBi5(7n+1)._,,is(m+k) .
’ 5€6m+k

Note that ® is associative and commutative. For any A € S, and B € S with k < m, we
define A * B as the element C € S,,,_; such that

Vit,ooimer €{1,...,d+ 1}, Ciy i = Z A i Bl sty
it seeyim €{1,,d 1}

Note that when Kk = m = 1, A x B is simply the scalar product A.B. For any C™-smooth
function F : C4t! — C, we write F("™) for its differential of order m, which is identified with a
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m-linear form on C**'. We write A®¥ for the product A® ...® A. With these notations, Taylor
expansions of F' at 0 are simply written

1
Z EF(]“)(O) s« xOF
k=0

It is also worth noting that A+ (B® C) = (A* B) xC, for every A € S,,,, B€ Sy and C € S;
with m > k + /.
For any v ® l-integrable function hg : M x R — C, we set

ho(z, €) = /R ¢ ho(z, ) ds,

(this quantity is well defined for v-a.e. x).

Notations /\(()k), a((]k), Hék) stand for the k-th derivatives of A\, a and II at 0.
We write P for the Perron-Frobenius operator of 1" with respect to v, which is defined by:

Vf, g e L3 (v), / Pf.gdy:/ f.goTdv. (2.1)
M M
We also consider the family (Pp¢)ge[—r e ccr Of operators given by
Pye(f) =P <ei9'“ei57 f) . (2.2)
To simplify notations, we write v(h) := [,, hdv.

Let ¥ be a (d + 1)-dimensional positive symmetric matrix. We will denote by ¥ = Wy, the
(d + 1)-dimensional centered Gaussian density with covariance matrix X:

6_%271*‘9@2
U(s) =Uxn(s) i = ——5——. (2.3)
(2m) % Vdet D
In particular, U(%) is the differential of ¥ of order k. Let
ay = e 220 (2.4)

be the Fourier transform of W. Given a non-negative integer o and a real number v, we define
Py B2 = Sy g (s5,2) = 270 (0,5//2/0(7) ) (25)

where 0 denotes the origin in R%.
We will use the notations

n—1 n—1
Kp 1= E koTF and Tnizg roTk.
k=0 k=0

Note that with this notation, we have
By (2,0,8) = (T2, 0+ kn(z), s+t — (), withn st. 7,(z) < s+t < Thyi(a).

It will be also useful to consider the suspension flow (®;);>0 over (M, v, T') with roof function
7 which is defined on Q := {(x,s) € M x [0,+00) : s € [0,7(z))} and preserves the measure p
which is the restriction of the product measure v ® [ to 2. Note that u is a finite measure but
not necessarily a probability measure.
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2.2. A general result under spectral assumptions.

Theorem 2.1. Assume 7 uniformly bounded from above and below. Let ¥ be a (d + 1)-
dimensional positive symmetric matriz. Let K and J be two positive integers such that 3 <
J < K+ 3. Let B be a Banach space of complex valued functions f : M — C such that
B < LY(M,v) and 1), € B. Assume that (Po.¢)oc[—rmdccr 18 a family of linear continuous
operators on B such that there exist constants b € (0,7], C > 0, ¥ € (0,1), 8 > 0 and three
functions \. : [~b,b]%1 — C (assumed to be CX*+3-smooth) and 1L, R. : [~b,b]*1 — L(B, B)
(assumed to be CK+1-smooth) such that Tly = E,[]1ar, and Mg := Ag e ¥(7) satisfies

VE < J, A =), (2.6)

and, in L(B,B),
Vs € [=b, b, Py = \II, + Ry, IRy = RJII, =0, II?=II,, (2.7)
selbaes I o) + elomalt\ b, 1< I1Pocllowm < €O (23)

Let f,g: Q — C be two functions. We assume that there exist two families (fe)eeza and (ge)ecza

of functions defined on M x R — C and vanishing outside Qo := QU (M X [—hifOT,O]) such that

Vh € {fag} V(CC?E) 8) € Qa h(x7£7 8) = hg(l‘,S) + thrlf(a:)(Tva - T(IL')) :

We assume moreover that one of these families is made of functions continuous in the last
variable and that [T

/ D@ fe ) s + llgelw) s du < oo, (2.9)
R peza
1 1
Hp(),qO S [1, +OO} st.—+—=1 and Z HffHLPO(V®[) Hgg/Hqu(l,@)[) < 00, (2.10)
bo Qo toegd
L EL
sup Y [ fel~O)slge (- )5 < o0 (2.11)
SRy wezd

Assume furthermore that fg(',f) € B for every ¢ € Z* and € € R, where B is a Banach space
such that

sup || Pgellzm,rry < C|e|*emokl™ (2.12)
oe[—m,m]?

for some suitable positive C, 0, and

vy >0, 3 (el =9lls llge (&)l ) = OCIEI). (2.13)
00 e7d
Then
e ~ t —5p K+d
it =3 Gt () +o(rF). (2.14)
p=0
as t — 400 where
~ 1
Cp(f,g) = Z a /R aghmﬂ.“’kf m+j+2d+r+1 (S\/ Z/(T), 1)(*5)‘1 ds (2.15)
imti

rlm!

S /R v (g0 G0 (I (felsu)) ) @ (¢ = ou =) dudv @ Ay

00

IThe notation |G|/ means here |G| g := SUPpes, |F|g=1 [Ev [G-F]l.
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where the first sum is taken over the nonnegative integers m, j,r,q, k satisfying
m+j+r+q—2k=2p andj>kJ

and O3hqa~ denotes the derivative of order q with respect to the second variable of he . (defined
by (2.5)) and A € S; is given by (A.2) of Appendiacfor E>0,Apo=1and Ajo =0 for
j>0.

Proof of Theorem|[2.1. Step 1: Fourier transform.
Notice that

Ci(f,9) ZZ/ (z,8) gor (T"x,5 + 1 — 70 () Ly, () =0—ey d(v @1)(z,5), (2.16)

0,0 n>0 M xR

due to the dominated convergence theorem, (2.10]) and the fact that the sum over n is compactly
supported, as explained below. Indeed gy (T"x, s+t — 7,(x)) # 0 implies that

inf inf
mlOT <s+t—mp(x) < 7(T"x), ie. 7(x)— 11107-

and so the sum over n in (2.16) is in fact is supported in {¢t_,¢t_ +1,...,t;}, where
= [t/supT] —2, ty=|t/inf7]+2.

inf
—5 <t < Tpq1(z)—s with —% <s < 7(x)

Note that
1 —30-('—0) i 0-kn
1{’%”(:6):[/_[} N (27T)d /[—W m]d € ( )6 dg. (217)

Moreover, for every « € M and every positive integer n,
hfﬂmn /f@xsgé’(Tx5+)d

is the convolution of f;(x,—-) with gy (T™z,-). Due to (| -, for v-a.e. x and any choice of
0,0, n, this hy gy 5, (-) well defined. Furthermore, it is continuous (since fy(z,-) or gy (T"x,-) is
continuous) with compact support and its Fourier transform is
ff(xv _‘)gf’ (Tnxa ) € LOO(R) N Ll(R)
Consequently, hyp 2, is equal to its inverse Fourier transform, that is
1

2/ e EETn @) £ (2, —€) o (T, €) dE .
T JR

Combining this with (2.16]) and with (2.17)), we obtain

h@,(’,w,n (t — Tn (CU)) =

Ct(fvg)
> (/ o, ) O g (17, 6) dé’dé) v ()
271' d+1 o\ T ge 5
2,0 n>0 m7]?
(2.18)
_ Z Z/ / it —i6-(¢'~) pn (f (. _@) o (- €) dod
d+1 0, \ JLUs gf’(a&) 5 dl/, (219)
00 n=t_ [—7,m]dxR

where we used the fact that P"(e/"n %™ F) = Pf'.F. We split (2m)"1Cy(f, g) = I + Iy where
I, stands the contribution of £ € [—b, b] and I stands the contribution of |£| > b.
Step 2: Reduction to the integration over a compact domain.
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Here we prove that |I3] = o (t*%). Observe that

Il < Z Z / 7,m]4 % ([—00,—b]U[b,00]) / |P6£ fé( _5)) (8) | dvdfdg

L0 n=t_

=t /[ﬂ,fr}dx([oo,b]u[byoo]) sup Z HP95 <f£ , =€) )H 1Ger (+€) lloo | dOdE .

nGt t+] 0.0

Now due to , we have
lzct [ [ et S =) e €l dede.
[_sz]d b<¢] 0,0 B

We apply (2.13)) to see that for any v > 0 there is C/ > 0 such that

|12 < CJt / e gjoemdg < oS / e~ (] du,
b<‘f| R

Choosing v large, we get |I2] = o <t ) In the remaining part of the proof, we compute I;.
Step 3: Expansion of the leading eigenvalue and eigenprojector.

First, we use , and to write
U9~ e L2 |

o0 bp]

o1t o —16-('=L) \n 05” (He,g (fé(’a _f)) ge (’f)) d(o,¢)

K+d

where ~ means that the difference between the LHS and the RHS is o (tiT>.
Now the change of variables (0,&) — (0,£)/+/n gives

Ci(f.9) 277d+1§:§:nT Z(6.¢n)

Ly n

where

£ 0= ) 5 5
Lo :/ AR (H n<f - ) ge ()) df de .
| ) [—by/m,by/n]d+1 (0.6)/vnY (0.8)/vn o \/~) ¢ Jn

K+d

Next with an error o (t‘T), we can replace Z(¢,¢',n) in the last sum by

e K+1 R 0 ®@m
[t s e (05 (1) o () e

(2.20)
Indeed, for every u € R4*!, there exist w € [0, 1] and z, = wu such that
US| 1
- WO 4t TIEHD () g KD
mzz:m +(K+1)! oy () xu .

Denote

Ts/v/m

D — i )5 s,




CORRELATION FUNCTIONS FOR Z¢ COVERS OF HYPERBOLIC FLOWS 7

Then lirf FE, = 0 by the Lebesgue dominated convergence theorem. Therefore
n—-+0oo

K+d d+1
lim ¢ 2 Z n = =0,
t——4o00

n=t_

justifying the replacement of II by its jet.
Recalling elementary identities ag/ N and as/a, V2= Gy Lemma gives

L(K+1)/(J-2)] K+1+2k
)\TL

v as Z > mF A (/)| Saganr (L4 s m(s/vn),

j=kJ
with limn(¢t) =0 and sup |n| < co. Let
=0 [~b.b]¢

B, = gL+ [s/50)n(s/vin) ds

[_bﬁabmd+1
Since the Lebesgue dominated convergence theorem gives lim E! = 0, the same argument as
n—oo

above shows that the error term arising from replacing in |i / N by the above sum is
negligible. Since 5\95 =X\ ge_if”(T), we conclude

_d+1 ’L£ t—nv(T) 7@94’;4
fa n 2 / Vvnooe N
G (27) d+1 ;Zﬂ: bﬁ,bmd+l (0,6)
K+1 [((K+1)/(J-2)| (K+1)+2k .
T
—V\ge\—F—= IT ff T T = m A; kX d9d§

Step 4. Integrating by parts. ' '
Note that VA € S;,VB € S,, and s € CTL, (B s%™)(A % s%7) = (A® B) * s®m+7). We
claim that

1 et g -t R m A
o [ o () (5 5)) o)

[=by/n,by/n] 4t
#(0,6) ") dpdg

Mg maiy (U =0 t—nv(T)+u—wv -

+o<p sup [ 7, e M) (2:21)

where W is defined by (2.3)) and p < 1. Note that the integration in the second line of (2.21]) is
over a compact set since f; and gp vanish outside of a compact set.
To prove ([2.21]), we first note that, due to (2.11)) by making an exponentially small error we

can replace the integration in the first line to R%*!. Second, we observe that H(()m) fg = m where

fmi = H(()m)fg and that h(¢/\/n) = (W))({) Third, since a is the Fourier transform of
W, it follows that

azd+l
v
(Os1)k1 -+ (Osgpr)kast

(0,8) — (- )E;Hl i 0y nggkd“a((;@ is the Fourier transform of s —
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Fourth, we use the inversion formula for the Fourier transform. To take the inverse Fourier
transform with respect to £ we note that we have a triple product, which is a Fourier transform
of the triple convolution of the form

—_— e (U =0 t—nuv(T
imrI /R2 p(mt) < T \/ﬁ( ) —1 —t2> # N fme( —vV/nt1)ge (-, /ntz)dtrdts.
Making the change of variables u = —y/nt1, v = y/nts we obtain (2.21)).

Formula (2.21)) implies that

K41 [(K+1 —2)| K+1+2k jmi

(K+1)/(
Cilf,e)~>, > P e S (2.22)
m=0 k=0

j=kJ ml 00 n

maiy (U =0 t—nv(T)+u—v m
/ me ‘Il( +j)< \/ﬁ ’ (\/)ﬁ >*V<Hé )(fe(-,u))gg/(',v)(@Aj,k) dUdv

Step 5. Simplifying the argument of .
Note that there exist ag, ag, ¢m+j, ¢, ; > 0 such that, for every ¢, £ € Z? and every u,v €

,sup 7)2

(_irifo‘rvsup T)7
m+j v—1t t—nI/(T)-i-’U,—U =20 (&' =)+ (t—nv(T)+u—0)? _% —nw(T))?
o +a>(\/ﬁ7 9 )gcm+je B0 tu?) < )
(2.23)
Combining this estimate with Lemma (with o = 0), we obtain that
t+
_ mebitdt1-2k (mﬂ)(ﬁ—é t—nz/(T)Jru—v)‘_O(_mﬂ'w%)
sup n , = t 2 .
u,ve(—i"f:;— ,Sup T) nzt \/ﬁ \/ﬁ

Therefore, the terms of (2.22)) corresponding to (m, k, j) with m+ j — 2k > K are in o (t_%>
and so the third summation in (2.22)) can be replaced by ZJKZZ}H% The constraint K —m+2k >
o . K/(J—2
kJ implies that we can replace the second summation in (2.22) by > ,E:/ =2
Next let p = K —m — j + 2k. We claim that we can replace ¥("+7) (z\//’ tn”“%) in
(2.22) by

" t—nuv(r)
Z T' n2 \I/(m+]+r) <O, ﬁ) * (ﬁl — 5, u — 'U)®r .
r=0

Indeed by Taylor’s theorem, we just need to verify that for
t+

, NP — P _mtjtdil-oktp
Jim 175 Z/ e ) lBllge ()l (¢ = Lu—v)lP Y n 2 (2.24)

2 n=t_
i) (xg/ —0 t—nv(r)+z(u— v)> _ g(m+i+p) (0’ t—ny(r)> ‘ dudv

sup )
2€(0,1) vn vn vn
= 0.
By (2.23) and LemmalA.3]
ty _
Z s sup |wom+i+n) (wf’ - 57 t—nuv(r)+x(u— U)> '
n=t_ z€(0,1) \/ﬁ \/ﬁ

bt /
p _meghd1o2ktp 90 (4 ()2 o, mobitd=2ktp
< Contjtp g n 2 e m =O0(t 2 )

n=t_
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uniformly in £,¢' € Z¢ and u,v € (— 1f0 ,Sup 7). Thib combined with . shows that the LHS
of (2.24)) is dominated by an integrable function, so (2.24)) follows by the dominated convergence
theorem

Therefore

K+1 | K/(J-2)] K—m+2k K—m—j+2k .

: _m r m+j+r t—
ZZ Z Z Z zr'm' e o +J+)<07 \7;%(7')>*

00 m=0 k=0 j=kJ r=0 n—t_
/Rz (y (W(-, v) (Hom (fol., u))) ® (¢ — 0, +u— )% dudv @ AM)) . (2.25)

Step 6: Summing over n.
Performing the summation over n and using Lemma, we obtain

K+1 |K/(J-2)] K—m+2k K—m—j+2k K+2k—m—j—r

5 D D VD MDY il 1) M

00 m=0 k=0 j=kJ q=0 rimlq! (v(71)) 2

_ m+j+d+r+q—2k

(2.26)

[ 08 msisgsens (5.1 (5)" ds

* (/R2 v (gw(-,v) (H(()m)(fg(-’u)))) @ (' =, u—v)® dudv ®Aj,k;> '

Therefore Cy(f, g) ~ Zp OCp/Q(f, )(V(T)> * where

p/2 (f:9) Z / 3qhm+j+rk m+J+d+r+1 sv/v(7),1)(—s)?ds (2.27)

A 3 u< (-, ) <H(m)(f (- u)))) ® (¢ — 0,u— )% dudv @ A,
T'm' — R2 gf ) 0 JANR) ) j,k 9

and the first sum is taken over the nonnegative integers m, j, r, ¢, k satisfying m+j+r+q—2k = p.
Applying Lemma with b = m + j + r, we see that C),/, = 0 if p is an odd integer. This
concludes the proof of Theorem O

2.3. A general result for hyperbolic systems. Here we consider extensions of systems with
good spectral properties.

Theorem 2.2. Assume 7 and K uniformly bounded, and that inf7 > 0. Let ¥ be a (d + 1)-
dimensional positive symmetric matriz. Let K, J be two integers such that, 3 < J < L =K + 3.
Let (V,||-|lv) be a complex Banach space of functions f : M — C such that V — L*°(v). Assume
that (M,v,T) is an extension, by p : M — A, of a dynamical system (A,v,T) with Perron-
Frobenius operator P and that there exists a Banach space B of complex functions f : A — C
such that B — L'(A,v) and 15 € B. Assume moreover that the following conditions hold true:

e there exist a positive integer mqy and a -centered bounded function & : A — Z¢ such that
Kop=kKoT™,

o there exist By > 0, a function 7 : A — R and a function x : M — R s.t. 7= Fop+x—xoT
and for every & € R, we have X € V with HeigXHV = O (|¢]%) and (Tm,)%e %m0 € B
Jor every q < L.

o (Pye: f— Ple 0k Zfo)) (0.6)c|—m,aixr 1S a family of linear continous operators on B
such that
sup || Pgle |l < oo, (2.28)

»S, T
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and there exist constants b € (0,x], C > 0, ¥ € (0,1), B > 0 and three functions \. :
[—b, )" — C and I, R. : [~b, 0] — L(B,B) (assumed to be C*-smooth) such that

- . 1
Mg i=Agge ) =1 ST (0,62 +0((6,)), as (6,€) =0, (229)
Ao =1 and Iy = Ep[-|]15 and such that, in L(B,B),
Vs € [<b, b, P, = A\, + R,, TR, = RJII, =0, II?=II,, (2.30)
vkEN sup - sup I(RE) ™| 2(5,8) + sup 1Pelless < CY*. (2.31)
m=0,...,L sg[—b,b]d+1 oe[—m,m]d\[-b,b]?, |€|<b
Furthermore, there is a Banach space B such that
3C.6a>0, s |Pello < Clefte (2.32)
oc|—n,m]e

and Vk < J, )\(k) (()k) where ag s given by .

e there exist Co > 0 and ¥ € (0,1) and continuous linear maps I, : V — BN B, such that,
for every f € V and every integer n > mg and for any 0 € [—m,7]% & € R and for any
non-negative integer j =0, ..., L,

If o T = Ty (f) 0 plloo < Coll fllv ", (2.33)
| Ppe(e oo, )| < Co(t+ IEDIS Iy (2.34)
o’ p2n ( ,—i0.R —i€.7, .
H 50,6y Foe(e” "SI ) | < Cond (L4 (€Dl (2.35)
B
Ha(j,]g)j(H”(f)ew%"_m‘)%m) = Con || fllv (2.36)

with Ky, = ZZ;é koT* and 7, := Zz;é FoTk,
Let f,g: Q — C such that
Vhe{f,g} V(z,ls)¢€ S~2 h(xz, 0, s) = hy(x,s) + Ptz (To, s — 7(z)), (2.37)

where (fg)gezd and (ge)peza are two families of functions defined on M x R — C and vanishing
outside Qg := QU (M X [ inf 7 0]) We assume moreover that one of these families is made of

10 > !
functions continuous in the last variable and that there e:rists Bo such that & v e X fy(-,€) and
€ eXgy(-, &) are CF from R to V and for every k =0,..., L,

sup (‘ TEXF,( H TEXG(-, €) ) < 00, (2.38)
o > (g e ¢ ),
S [+ (Ul + e ) d < oo, (2.30)
¢
vy >0, 3 (19X =©)lIv e g0 (-, &) Iv) = O(1 ™). (2.40)
o
D el <00 or > lgelloo < 00, (2.41)
Lezd Lezs

Then
L5 ]

Cilh.9)= 3 Golf0) (t))+ o (i),

= v(T

vl %
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as t — 400, where

A 1 1
Cp(fag) = Zq‘(())q“'l/Raghm—i-j—&-r,k—mﬂ'*;”“(sa1)(_5)qd8 (2.42)
“(v(T)) 2
gmty / N
“rm) Z/Rz By (fe(-5w), 90(-,0) @ (6= Cu—0)"" dudv ® Aji |
T\

where the first sum is taken over the nonnegative integers m, j,r,q,k satisfying
m+j+r+q—2k=2p andj>kJ,

h is defined in (2.5), Aj for k > 0 are the multilinear forms given by equation (A.2) from

Appendix@, Apo =1 and Ajo =0 for j >0 and By, : V xV = S, are bilinear forms defined

in (2.43) below.

To define B,,, we need the following preliminary lemma, the proof of which is given at the end
of this section, after the proof of Theorem

Lemma 2.3. Under the assumptions of Theorem let u,v: M x ([—7, 7% x R) = C be two
functions such that (0,€) — e~®Xu(-,0,&) and (0,&) — e Xv(-,0,€) are L times differentiable
at 0 as functions from [—m, 7] x R to V.
Then, for every integer N =0, ..., L, the quantity

An(u,v) = lim (B, [u(,—0, =)™ H€mu(T7 (), 0,6)| 3t )

n—-+o0o

(N)
1(0,£)=0
is well defined and satisfies

AN (u, )| = O (lullw+ [[v]lw,-) -

Moreover for each L € N we have

ei9<ﬁn+i£7'n n —-n (N) . —E
\Am,v)— (B, [u(, 0, ~€)e oI, 0.0] %) oo = O (lbws ol n™")
with
& (m)
= —iExy(-, 0, .
b = 32 (e u0.0), | <20

We let B, to be the restriction of A,, on the space of functions depending on neither 6 nor
&. Thus

(m)
0.6)=0"
Observe that (2.42) has the same form as (2.15) with v (Gﬂém)(F )) replaced by B, (F,G).

In fact these two quantities coincide under the assumptions of Theorem More precisely,
suppose that (M,v,T) = (A,7,T). Then, for (§,€) € [—b, b]*H1,

lim (EV [F(-)eie'*”"nU““”“‘””(T”G(T”(-))} X;?)Z lim (Ev [(PyeF) G] A;?)

n—-+o0o n—-+o0o

Bn(F,G) = lim (]E,, [F(-)ew%n<->+Z‘€<Tn<->—"”<f>>G(T”(.))} x;g) (2.43)

n—-+o0o

= lim v (G |MyeF + A2RjF| ) = v(Glpg(F)).

n—-+o0o

In particular, in this case By(F,G) = v(GIIy(F')). A similar argument shows that
B (F,G) = v(GII{™ (F)),
see the proof of Lemma [2.3] for details.
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We also note that due to mixing of 7" we have
Bo(F,G) =v(F)v(Q). (2.44)

Let us mention that B,,(F,G) for m < 3 as well as )\((]k) for £ < 4 have been computed
in [28] in the case of the Sinai billiard with finite horizon with &, instead of (kn, T, — nv(7))
(see Lemma 4.3 and Propositions A.3 and A.4 therein) but the formulas can be extended to the
present context since (k,7) is dynamically Lipschitz and since the reversibility property stated
in [28, Lemma 4.3] also holds for (k, 7).

Proof of Theorem[2.3 We note that the proof of Theorem is in many places similar to
the proof of Theorem [2.1] so below we mostly concentrate on the places requiring significant
modifications. We note that we could have presented Theorem [2.2| without discussing Theorem
2.7] first, however, since the formulas are quite cumbersome in the present setting we prefer to
discuss the argument in the simpler setup of Theorem [2.1] first.

Decreasing the value of b if necessary, we can assume that

d+1 1
Vs € [=b, b)?H!, 9T0@D < | )| < g/ /55 (2.45)

where ¥ is given by ([2:31). Let & == [(L + ZE1) log t/|log V|].
We consider Fy, Gy : A x Z% x R — C given by
Ve 2 VEER, Fi(4,€) =TI (e XU fy(,€) and  Gil-,6,€) =y (e XVge(-,€)).

As in (2.18]), using (2.39) and (2.41)), C¢(f, g) is equal to

iy
1 —ilt ¢ —10-(0'—0) 10 -kn () il () A n
oY ( /[_Mme £ f, (1, —€) e 00— i (0) 01 5, (T ) d9d£> dv(a).

0.0 n=t_

(2.46)
In order to apply the spectral method, as in the proof of Theorem we want to reduce the
integration over M in to integration over A. Namely

El/ ff('? _5) eie.ﬂnei&-ngl’ (Tna f)]
- E, _eigxoT’“t fﬁ(Tkt (), —E) eiGRnoTkt*mOopeiﬁfnoT’ct ope—ifxoTktJf"gg/ (Tk:t—i-n" £>:|
— El/ _eigxoTkt fg(Tkt('), _é-)efiG.Rkt,mOopfif.?ktop €i9~f€nopei£7"nop

e10-Fk;—my OT"°p+i§-7:ktOTnope—ifXOTkt+ng€, (Tkt+n', é—)} (247)

= E; _Ft(',ﬁ, _g)e—ie.kkt_mo—iéfkt e10-Fn i€Tn
10k —mooT" i€, T (. (T™(-), 2, 5)} +0 (ﬂktdﬁ,w (5)) )

with dg e (§) == (Heig'xfe(‘a —llv ||€_i5‘X§Z/('7€)Hv> where we used
e the T-invariance of v and the definitions of £ and T in the first equation, B
e the identities &, o T* ™0 = &, — R, —mo + Fky—mo © T™ and 7, 0 T*t = 7, — 74, + Ty, 0 T
in the second one,
e (2.33) and V — L*°(v) in the last one.

Now using the properties of Perron-Frobenius operator given by ([2.1)) and (2.2) we obtain

E, | ful, =€) 0" e ™o (17, )|
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= By [Be(Foo(, 0, —£)Grol- £,6)] + O (9Fde(6)) | (2.48)
where

Ft,—Q('ra éa _5) = Ft(mv é’ _g)e_iekkt_mo (z)e_i&_—kt (1‘)
Giro(z,0,€) = Gt(:c,ﬁ’,f)ew’f"“t*mo(x)eiﬁ’“t (@),

Due to (2.38]) and (2.40)), substituting (2.48)) into (2.46| yields

Ci(fr9) = d+1 Z Z / fz'gt it (' —0)

00 n=t_ [—7,m]d XR

E, [P” 2k (PthFt ) g)) G- g)}) dode + O(").  (2.49)

Note that (2.49)) is the analogue of (2.19) (with (M, v), Py ') fg( —¢) and gy (-, &) being replaced
by (A, 7) pro2ke . p2he g _o(, ¢, =€) and Gy (-, V', &), respectively).

Due; t07 (l%?'ii[) z;nde’(fZTé)D

I35 Foolvs £ =)l + I P52 (e £, —©)llm < 2C0(1+ DX ful, =) -

Next, we estimate

||Gt,9('a€a£)||3/ ||Gt,9('a£/a£)||00

<
< e X0 g () loo + leT X g (T(+), €) — g, (X g (-, €)) 0 pllow
< (1+Co)lle” X0 g (-, )|y,

where we used the fact that L is continuously embedded into B’ in the first line, the definition
of G; and the triangle inequality in the second one and (2.33) and V < L®(v) in the third one.

Therefore, due to (2.40)),

¥y >0, > 1B Fea( =8Bl Gra( £ €)oo = O(IE ) -
0,0 €7

Hence, proceeding as in Step 2 of the proof of Theorem we obtain that

Cilf.g) = dHZZ / emitt =i/

00 n=t_  [=bbet!

E, [P” 2kt (P%tFt o0, g)) Gro(-, 0 g)} dode . (2.50)

Using (2.48)) again we obtain

Ci(f,9) = d+1 > Z / it —if-(¢'~0)

o0 n=t_ J[=bb4t

E, [ﬁ(-, —€) gy (T, €)] db (2.51)
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Moreover, for every (6,£) € [—b,b]*t! and every integer n satisfying t_ < n < t,, using Taylor
expansion, the following holds true

E, [fe(-, —¢) e e, (Tn.@)} Mg

(N)

x (0, oN
[(6,£)=0 (6,¢)

(L)

1(6,6)1" |. (2.52)
1(67.€")
Let us study the derivatives involved in this formula. First, since Il, is linear and continuous,
for every m =0, ..., L, we have

—i€X T, _ —iEX T,
(1 (= 0hu0.90)) " = ((5ha0.9) ") (2.53)
Using (2.53)) and (2.47) we obtain the following analogue of (2.48)),

(B [~ (1, 352) | =

_ Lleél( el =€) eP5n gy (T7,6)] Mg
N=0

E, [ ful, =€) e ei€m g (17, €))|
+0 sup

we0,1],(6" ' )=(ub,ug) Ao

(o [Bre™ (PRY (Fico(0.-9)) Gual 0.0 352) . +0 (#*nbd() g]) 250
with Jgg/(f) 1= SUD /=0, L <H59Tm(lgxfz )H H(%m e EXgu (-, H )

Using (2.30)), (2.35)), (2-36)), we find that the first term of (2.54) is bounded from above by

n— t n _ (L_m)
((Re,g% /o) + Ae,gkt)m’f) 0.)

CAL+le) sup KPdpe(©) ]

m=0,...,

L(B.B)

9m 2k

- B ky
which is in O (kthdg,g/(f) ( o v 5L(d+1)>>. This observation, combined with (2.52]), (2.54))

and our choice of k; yields

By [ fu(-, =€) e mgy (17, 6)] 0y (2.55)
B LZ 31 (B [ —g et 0] 357) O« 0,07 +0 (b (010,01

N= )

+OQf gﬁ@g), (2.56)

for (0,¢) € [—b, b7+
Now we apply Lemma to conclude that (2.55]) is equal to

L-1
1 P ~ _ Kotdel _Ltitd | _,
> A (forde ) # (605N +0 (du(€) (n= "5 +nb |0, 01 + M) - @7
N=0"""
Recalling the notation a, := e 27" and Lemma we have
' L(E+1)/(J=2)] K+1+2k
Al = emf”(T)asﬁ Z Z nF Ay * 5% (2.58)

j=kJ
K+
+ 0 (%\/ﬁ/\/i”_T(l +[svalS)n(s) )
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where 1ir% n(s) = 0. Note that the modulus of the dominating term of (2.57) is bounded by
5—

@) (C?g}gl(f)) uniformly in (6,¢) € [~b, 5] and that the modulus of A\ in (2.58) is bounded by
Olay /m / v3) (the first one follows from Lemma the second one follows from (2.45))). Thus
multiplying (2.57)) and (2.58) we conclude

By [fe, =€) e ei€mgy (17.,6)| 2
L—1 [(K+1)/(J-2)] K+1+2k einév(r

= 2 Z > —S‘fn (AN <fg,gg,) ® Aj,k) « s®WV+)
N=0 —

j=kJ
+ (Mm ) (S R S )

+ (Z AN (fogur) 52 awm‘f?a+|sﬁ|f(°>n<s>>

where s = (6,&). This leads to the following error term
@) <dg7gl £) (as\/ﬁ/\/ﬁ (n_K+2d+1 +n5|5]L> +n_L+21+d))
O (e (€)ay ympyan™ 3 (1 + Isv/nl“)n(s)) (2.60)
= 0(de(©) ("5 agmyys (07 E i s+ (1 sy S) n(s))))

Observe that

Lo aura (n 5 b lsl 0 0 sVl n(s)) ds

_dtl

= n 2 as/\/i(

Rd+1

= o0 (n_w> .
Therefore , and , imply

L(K+1)/(J-2)] K+1+2k

(f g d+1 Z N! Z Z Z Z Zﬁ’kﬁ]’ <2'61)

j=kJ €0 n=t_

K+d+1

+ni- |8|L + nf%(l + |S|K°)17(s/\/ﬁ)) ds

where
TV = nk/ e—iet=m(r)) =060 (4 (F, 3, & A, 0.¢ Na | dgde .
o o ( N( ¢ @) j,k> (0,€)% JA(0,6)

By changing variables, we see that

jEt=nr(r) . 0-('~0)

A (AN (fe,%) ®Aj,k)*e_ Vi e (6,6 W ag ¢ dod.

0,0 \n

/[—b\/ﬁb\/ﬂf” !

At first sight, this expression looks simpler than (2.21]) since Ay ( fg, gg,) does not depend on &

and so no convolution is involved when taking the inverse Fourier transform. Namely we obtain

Nk.j a1, — BEENEI=2k N (N U —10 t—nv(r) A
IE o J o~ (271‘) + 2 i +]\Ij( +7) < \/ﬁ , \/ﬁ * (AN (fg,gg/) ®Aj,k> R (262)
where Z ~ 7' means that (2.61]) holds for Z and Z' at the same time (i.e. the difference obtained
when substituting Z and Z' to (2.61)) is in o (t_%) ). Now recall the definition By from ([2.43]).
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Note that the difference between Ay and By is that the latter one is defined for function that
do not depend on £. Thus
. N! . R
Ay (foae) = X gt (U B (L GL L) (263)
mi1+mo+msz=

Note that
(b @ LN = [ )™ o)™ f a6 u)gly, ) dude
Thus is equal to
> N!/RQ(O,—W)Wl @ (0,0)%™ @ By, (f(-,4,u), g(-, £, v)) dudv.

| | |
mi1+ma+mz=N 12T

Now using the binomial theorem, we find that (2.63) is equal to

N
mzzj() TI?J(]\A;VLTI’L)' /RQ (O’i(v - u))@]\/—m ® B, (f(aga u)ag('7€7v)) dudv.

Substituting this into and using (2 and the identity (—1)N—mN+N=" —im we find
L=1 [(K+1)/(J=2)] K+1+2k

. d14N4j—2k
TE SR SIS D 9 3D SFRETEES

j=kJ L4 m=0n=t_

g N+9) <€\/_ﬁ£’ t _%(T)> * (/RQ(O,U — )N @ B (£ 4, w), g(-, £, v)) dudv ®Aj7k> )

Now proceeding as in Step 5 of the proof of Theorem [2.1] we find
L—1 [(K+1)/(J=2)] K+1+2k N K—-N—j+2k ty

NZOZ )IDID DD DD

j=kJ 00 m=0 =0 n=t. m{(N —m)lrln

iag)

d+1+N+j+r—2k
2

G NF7+7) <0, H\;f”) w (0 = 0)%r (/RQ (0,1 — )N @ By (F(-, 4, ), g(-, £,v)) dudv ® AM) .

Performing summation over n as in Step 6 of the proof of Theorem (using again Lemma

A.3]), we derive

K |K/(J-2)] K+1+2k N K—N—j+2k K+2k—N—j—r .
IEDDEDIEED VD I DD P T
N=0 k=0 j=kJ £ m=0 r=0 q=0
d+N+J+T+q 2k
(t/v(r))”

q+1 R aghN-i-j—i-r,k—iN"'H'zd“'T*l (87 1)<_S)q ds

)
(v(7)) 2
«(0 — 0)%" </RZ(0, w— )N @ By (f(-4,w), 9(-, €,v)) dudv @ Am) :

We will set R = N —m + r. The binomial theorem tells us that, m, j, k being fixed, for every
R=0,..,K —m — j+ 2k, the following identity holds true

R! ) -
> il 0” ® (0,u — v)ENT = (¢ — 0 —v)®E.
(r,N): N—m+r=R e

‘We conclude that
K |K/(J-2)] K—m+2k K—m—j+2k K+2k—m—j—R

DD IS S M > il ) M

060 m=0 k=0 j=kJ 7=0 R!m!q! (v(7)) =

_ m+j+d+R+q—2k
2
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q ) _ )4
/Ra2hm+j+R’k_ m+]+§l+R+1 (S, 1)( S) dS

' < By (fe(-, 1), gor (- 0)) © (¢ — £,u —0)®F dudv @ AJ’”“) '
R2

This implies the theorem. O

Proof of Lemma[2.3. Let N € {0,..., L} be fixed. Let us prove that, for every N,
. , (N)
= . —fh = 10-kn+i§Th n
(At = (B, [uteo =0 =16l (0,0.0] 3 ) 0 )

is a Cauchy sequence. Observe that (2.47)) is valid with k; replaced by any integer k such that
mo < k < n. That is, for such k we have

Ann(u,v) = (Ey [(eiﬁxoTku(Tk(_), -9, _g)e—wkk—moop—ifﬁcop) o 10-Fnop+igTrop
@0 k—mq OT " op i€ T oT"0p o —iExoT" *hy oty g 5)} )I((Jz)é)
Thus, we obtain
AN,n(uv U) = -AN,n (Uk7 Vk) s (264)
where -
-AN,n(U7 V) — <EV {U(.’ _97 _€>6i9~knop+i€‘?nopv<Tn( ) 0 g)} o 5)) e :
ﬁk(', 0,¢) := (e_iéxu(-, 0,)) o Tk o (0-Rk—mq+ETk)op ,

and

Ti(,0,) = (7 €X0(-,0,€)) o T* " Fhomy +€7)90
Recall (2.33)) and denote
Uk(-+0,€) := (e~ "*Xu(-, 0,€)).¢" @ mote)and - Vi(-,6,€) := Il "*Xv(-,0, €).' kmo e

Since I}, is linear and continuous and since (6, &) — e~*Xu(-,0,€) is L times differentiable at 0
as a V-valued function, for every m = 0, ..., L, we have

(nk (e—iﬁxu(.,e,g)))l(gl)zo — 11, ((e—iﬁxu( 0 g)) oo ) (2.65)

Thus - )
—i&xoT* (T () g " (e (- 0
[(eeurt o) - (M ut.o0) os
m)
< Cod® || (e7%x F 2.
< Cov* | (e um,fowQ_ < Cov*lullw,s (2.66)
and idem by replacing u by v (and i by —i). Next, observe that
72 4 (™ oo + | (A7) {oey0] = © (2.67)
Combining (2.65)), (2.66)), and (2.67) we obtain
AN (u,v) = An Uy 0 p, Vi 0 p) = Ann Uk, Vie) — Ann(Ur 0 p, Vi 0 p) (2.68)

(N)

_ (EU [eie-fenei&n (Uk(.,_9,_5)Vk(Tn(-),9,g)—Uk(p(-),—G,—#E)Vk(p( ())95))] >|<e,£>—o

O (W 0" [ullw,+ ol ) -
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Let k, := [log?n]. Take n’ € [n,2n]. Using we obtain
|AN 7 (u,v) —AN,n/(u,v)‘
< [ AUk, © 8, Vi, ©8) = A (Ui, 09, Vi, 08)| + O (0¥ s o, 9" )

The main term on the RHS equals to

E, [((At”a"—%ﬂ B (B (U (1) vknc,t))(fo] o @6)

Since )\t_ﬁptﬁ_%” = )\;%"Ht + )\t_ﬁR?_Zk" we can use the definition of B’ to bound (2.69) by

H <()\t_nR?_2k" _ )\t—n/R?/_an) <]5t2kn (Ukzn(', —t))) an('7 t))
< )
L(B,B)

Now observe that the max over my is bounded by O(¥"/?) by (2.31)) and the other terms cannot
grow faster than a polynomial in n. In particular, we use (2.35)) to bound the max over mg and

(2.36) to bound the max over m4. We conclude that (2.69) is exponentially small.
Therefore, for each L € N we have

sup [An (4, 0) = Avpia(u,0)] <Y sup | Angen(u,v) — Avarnga(u, 0)|
n>0 >0 n=0,...,2Pn

(™)

=0llw)

g3

max (/\t_”/)(ml)< max H(RZ‘_zkn)(mQ) 1t=0

[t=0 \ 1<mo<N

|t=0

sON +
n’€[n,2n],1<m; <N L(B,B) 1<mg

max (Pfkn (Us, (- —t)))

1<m3<N

(m3)
3 Vi, (-, t)(m4)

X max —0
1<ma<N |t=

t=0 || 5 5

< [ S @n b lwlwe | = 0 (lulwe ol ") -
=0

Hence Ay (u,v) is well defined and satisfies

A, 0) = Ax(, 0)] = O (Jlulbw.q [olw,- n ") . O

3. MIXING EXPANSION FOR THE SINAI BILLIARD FLOW

3.1. Sinai billiards. In the plane R?, we consider a Z2-periodic locally finite family of scatterers
{0;+0; i=1,...1, L € Z*}. We assume that the sets O; + £ are disjoint, open, strictly convex
and their boundaries are C® smooth with strictly positive curvature.

The dynamics of the Lorentz gas can be described as follows. A point particle of unit speed
is flying freely in the interior of @ = R?\ Uy, (O; + ¢) and undergoes elastic collisions on Q
(that is, the angle of reflection equals the angle of incidence). Throughout this paper we assume
the so-called finite horizon condition, i.e. that the free flight is bounded. The same dynamics
on the compact domain is called Sinai billiard. The position of the particle is a point ¢ € o
and its velocity is a vector v € S! (as the speed is identically 1). Since collisions happen
instantaneously, the pre-collisional and post-collisional data are identified. By convention, we
use the post-collisional data, i.e. whenever ¢ € OQ, we assume that v satisfies 7,.v > 0, where
. stands for the scalar product and 7, is the unit vector normal to 8Q directed inward Q
The phase space, that is, the set of all possible positions and velocities, will be denoted by
Q=09 xS

The billiard flow is denoted by &, :Q — Q, where t € R. Let [tp be the Lebesgue measure
on € normalized so that fio((Q N[0,1]?) x S) =1.
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The Sinai billiard is defined analogously on a compact domain. That is, we consider disjoint
strictly convex open subsets O; C T2 (corresponding to the canonical projection of O;), i =
1,...,1, whose boundaries are C? smooth with strictly positive curvature. Then we put Q =
T2\ U;0;. We define the billiard dynamics (€2, ®;, o) exactly as (Q, ®;, fig) except that we use
the billiard table Q instead of Q and Lo is a probability measure.

Next, we represent the flow ®; as a suspension over a map. This map is called the billiard
ball map: the Poincaré section of ®; corresponding to the collisions. That is, we define

M ={(q,v) e Q:qec 09} ={(q,v) € Q:qe0Q,iigv>0}.

T : M — M is defined by T'(x) = ®,(x), where 7 = 7(z) is the smallest positive number such
that ®,(x) € M. The projection of pg to the Poincaré section is denoted by v. In fact, v has
the density cii,.vdgdv, where ¢ = 2|0Q]| is a normalizing constant such that v is a probability
measure. Clearly, we can write

Q={(z,t),xe M, t€[0,7(x))}.
1
v(T)
Note that the measure g is a probability measure unlike i defined in Section

Finally, we define the measure preserving dynamical system (M T, U) analogously to the
Lorentz gas. For every { € 72, we define the f-cell Cy as the set of the points with last reflection
off Q took place in the set Ule(Oi +¢). Identifying T? with the unit square [0, 1) C R?, we see
that (M, T, D) is the Z*-extension of (M, T,v) by k : M — 72, where k(z) = £ if T(z) € C,.

The observable (k,T) : M — Z* x R satisfies the central limit theorem (see e.g. [7]). That is,
there exists a 3 x 3 positive definite matrix ¥, - so that for any A C R3 whose boundary has
zero Lebesgue measure

(perrsEmno ) )y,

and ¥ is the Gaussian density defined by . Consequently, the central limit theorem holds
for the observable k with a covariance matrix ¥, which is obtained from ¥, » by deleting the
last row and the last column.

Denote

With this notation, we have pg = v ® I, where [ is the Lebesgue measure on [0, +00).

_ 1h(y) — b(2)|
10ll32 = ;telg 1b(y)| + y’zesgpy# T

We will say that a function b : Q@ — R is smooth in the flow direction if
oN ~
veo Y2 (hes)
=e Zz:' 95 \7° %) g

Note that in order for (3.1)) to hold, it is sufficient that b is C'™° in the position ¢ € é and

< 0. (3.1)
He,

satisfies
8N
\V/N>0, ZH@Q‘N[}‘ ) <OO,
14 Cp

We say that h : @ — R is n-Hélder continuous if it is n-Holder continuous on Q x S* and
satisfies (3.2) with N = 0.

Now we are ready to formulate the main result of this section.
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Theorem 3.1. Let f,g: Q — R be two n-Holder continuous functions with at least one of them
smooth in the flow direction. Assume moreover that there exists an integer Ko > 1 such that

S 1D (Il + llallag, ) < oo (33)
L

Then there are real numbers €y(f,g), €1(f, 9), ..., €k, (f, 8) so that we have

Ko
/Q Fgodudio =3 Culf, )t~ + oft~17K0) (3.4)
k=0

as t — 4o00. Furthermore, €o(f,g) = o [g fdfto [& 9dfio with

o v
07 ory/det o,

and the coefficients €, as functionals over pairs of admissible functions, are bilinear.

(3.5)

We note that the bilinear forms € are linearly independent. Namely in Appendix [B] we give
examples of parts fi, g such that €4 (fx, gx) # 0 while €;(f, gr) # 0 for all j < k.

In the remaining part of Section [3] we derive Theorem [3.I] from Theorem [2.2] However, we
will not be applying Theorem directly to (M,v,T), but instead we apply it to the Young
tower extension of the Sinai billiard. Thus we first briefly review the Young tower construction
in Section Then we prove condition ([2.32]) in Section along the lines of [8]. Finally we
complete the proof of Theorem in Section is established in Section

3.2. Young towers. Let R C M be the hyperbolic product set constructed in |31}, Section 8].
Furthermore, let (A, F') be the corresponding Young tower (”Markov extension”). There is a
natural bijection ¢ between Ay, the base of the tower and R. We will denote points of R by
x = (y*,~%), which is to be interpreted as v* N ~*, where v* = 4%(z) and v* = ~%(x) are an
unstable and a stable manifold containing z. Points of Ay will be denoted by & = (*,4%). Note
that « can be extended to 7, a mapping from A to M (this map is in general not one-to-one).

We recall the most important ingredients of the construction of |[31]. The base of the tower
has the product structure X = Ag = I'* x I'*. The sets of the form A x I'¥, A C I'* are called
u-sets if t(A C I'") is compact. Similarly, sets of the form I'* x B, B C I'* are called s-sets if
(B C I') is compact. Also, sets of the form I'* x {4°} are called stable manifolds and sets
of the form {4"} x I'* are unstable manifolds as they are images of (un)stable manifolds (or
rather, the intersections of (un)stable manifolds and R) by the map ¢~!. A has a partition
Ao = Upez,. Dok, where Agy, = I'* x '} are s-sets. The return time to the base on the set
Ao is identically 7, that is A = Ugez, U}“igl Ak, where App = {(2,1) : & € Agg}. There
is an F-invariant measure v on A so that m,v = p and F' is an isomorphism between A;; and
A1 and F(2,0) = (2,14 1). Also F is an isomorphism between A, _; , and F(A,, 1), the
latter being a u-set of Ag. Furthermore, if 21,22 € Ag, belong to the same (un)stable manifold,
so do F"k(#1,0) and F"*(22,0). We write F = F"*~! on A;; and 7(3%,4%) = r(3%) = ry for
(4*,4°) € Ag k. Define = on A by

2((3%9°), D) = ((%*,4°),1) with a fixed 4*. (3.6)

Let A = Z(A) and 7 = E,v. There is a well defined F' : A — A such that Zo F = F o Z. The
dynamical system (A, 7, F), is an expanding tower, in the sense that it satisfies assumptions
(E1)-(E5) below.

Let (A, 7, F) be a probability preserving dynamical system with a partition (A”g)ke 11=0,...rp—1
into positive measure subsets, where I is either finite or countable and r, = ’I"(AQk) is a positive
integer. We call it an expanding tower if
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(E1) for every i € [ and 0 < j < r; — 1, F is a measure preserving isomorphism between Aji
and Aj-l—l,i' B B
(E2) for every i € I, F'is an isomorphism between A,,_;; and

X = A() = UiEIAOi‘

(E3) Let r(z) = (AO k) if 2 € Agg and F : X — X be the first return map to the base,
ie. F(z) = F'®(z). Let s(z,y), the separation time of 2,y € X, be defined as the
smallest integer n such that F"z € Ag;, F'y € Ag; with i # j. As .7-" Ap; — X is an
isomorphism, it has an inverse. Denote by a the logarithm of the Jacobian of this inverse
(w.r.t. the measure ). Then there are constants ¥y < 1 and C' > 0 such that for every

r.y € Do, Jafe) —a(y)| < OO,
(E4) Extend s to A by setting s(x, y) =0 if #,y do not belong to the same Aj; and s(z,y) =
s(F iz, FIy)+1ifx,y € Aj;. (A, 7, F) is exact (hence ergodic and mixing) with respect
to the metric

dy(z,y) == 95@Y). (3.7)
Furthermore, in case of Sinai billiards, we have
(E5) v(z :r(x) >n) < Cp"™ with some p < 1.

3.3. Condition - for Sinai billiards. Given a function f : M — C, we define f A—>C

by f fom. Now given a function f A — C (which may or may not be a lift-up of a function
f:M — C), we write X = Ag and define

fx: X—=>C J%(($) tf(frj(@>)7
j=0
F:A=C, f(350) = FfE5%10),
B B - r(&s)—lA
fx: X=C, fx(5) = FFI(A™,4%))
=0

Fix » < 1 and consider the space of dynamically Lipschitz functions on X (w.r.t. the metric
d,,):
C,(X,C) = {f: X — C bounded and L(f) < o<},
where

L(f) =inf{C : Yo,y € X : |f(z) — f(y)| < Cs*@W}.
This space is equipped with the norm

1f1l = LCF) + 11 £l oo-

Let @ be the Perron-Frobenius-Ruelle operator associated with F, i.e.
(@k)(x) = D e Wh(y)
y:- Fy=z
where e® is the Jacobian defined in (E3). We have for h with ||A]],, < oo
Qh =v(h) + Rh, (3.8)
where ||Rh|.. < p||h||; with some p < 1.
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Now we introduce the (signed) temporal distance function D on R by defining

o0

D(z,y) = Y [T(T("(2),7 (@) = 7(T" (1" (2),7* () + (3.9)

f=—00

(T (), ) = (T (v“(y), 7* ()],

where 7 is defined in Section Note that there is a lift-up 7 : A — R, defined by 7(z) =
7(m(%)) and corresponding functions 7x, T, 7.
We also define the operators

Qeh = Q7% ). (3.10)

For real valued functions defined on X, we will consider the norms

oo M-llser I1-llgy 7= max{]].[[oo, CoL(.)/€}

where £ > 1 and () is a constant to be specified later.
Now, let us consider points ., = (V“(zm), Y*(Tm)), Ym = (Y (Ym ), 7* (Ym)) € R which satisty
that F*(1=Y(@m)) € Aox, FE(7 Hym)) € Ao, for k>0, where

B 2ifk=m2ork=m2+m
R 1 otherwise.

Let
= 10D () = ((F N (@) and o, = T2 (g) = f(F™ 0 ().

Let Q,, be the solid rectangle with corners . [z, y/.1, Ui, [Yh, 20y, 1-€. the unique topological

rectangle inside the convex hull of R which is bounded by two stable and unstable manifolds, such
that two of its corners are 2}, and y/,,. We claim that there are two constants 0 < co < ¢1 < 1 s0
that ¢’ < u(Qm) < cf* for sufficiently large m. To prove this claim, let Qp; denote the smallest
topological rectangle containing ¢(Ag ;) for i = 1,2. Note that T"! is a C? self map of Qp;. By
construction, T9" Q,, is a subset of Qo,1 for j =0,1,...,m — 2. Now consider a foliation of Q,,
by unstable curves. Each such curve is expanded by a factor A > 1 by the map T"* and so
the upper bound follows. To prove the lower bound, observe that T"~1" Q. intersects both
Qo,1 and Qg2 and so, as we can assume that the distance between Qg1 and Qg » is positive, the
length of the image of each unstable curve in our foliation under the map T~ 1" is uniformly
bounded from below. Furthermore, the expansion of T"* on Qg is bounded from above and so
the lower bound follows as well. Next, Lemma 5.1 of [18] states that p(Qy,) = [D(@m, Ym)| (see
also [7, §6.11]). Note that D(z, ym) has another representation: it is the unique small number
o so that ®7Y; = Y5, where ® is the billiard flow, Y7, ..., Y5 are points whose last collisions were
at zl, [y, Yhs Ui, Tinls @0, Tespectively and the pairs (Y7,Y2), (Y3, Ys) are on the same
stable manifold of ® while the pairs (Y2, Y3), (Yy, Ys) are on the same unstable manifold of ®
(see Lemma 6.40 in [7]). We summarize the results of this construction in

/
Ty

Lemma 3.2. There exist some ag > 0, and ¢ € Ry such that for any & > 3 there are x =
2(§),y = y(§) € R satisfying

NI () € Aoy for all k= —(In€)*/? .., -1, (3.11)
THTT2(y)) € Ao and THTEEITIT2 () € Aoy for all k= —(In€)¥? . -2, (3.12)
FE ), F*( (y) € Aot U Ao for allk >0, (3.13)

and
|e€P@Y) _ 1] > gm0 (3.14)
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Proof. 1t is sufficient to prove the lemma for £ large. Indeed, if we can prove the lemma for
& > &, then we can extend it to any & > 3 by choosing ¢ small enough unless there is some
¢ € [3,&)] so that ¢’D(z,y) = 0 (mod 27) for all z,y. Note that this cannot happen since this
would imply 1&'D(x,y) = 0 (mod 27) where we can choose [ € Z so that I£' > &.

Now given &, we choose m so that ¢[* < ¢! < 071”*1. Recall that for this m, we have points
xl,, yn, so that ¢ < |D(x),,y.,)| < . We conclude

mcy
626 lncl <£|D( m’ym)| <1.
Clearly, (3.11)), (3.12) and (3.13)) hold for £ > & as m? > (In€)3/2. O
Recall the definition of Q¢ from (3.10). We have

Lemma 3.3. There are constants a1, Cy,Cy so that for every £ > 3,

HQ6’1 In¢ Cs

ha<1—g;. (3.15)

Proof. Let h satisfy ||hl|e) =

First recall that by [6], there exists a constant Cp 1 such that
L(Q¢h) < Coalgllhllco + 6" L(R)], (3.16)

(see also Proposition 3.7 in [22]). Thus choosing our Cp = Cp(Cj 1) small enough in the definition
of the norm ||.[|(¢) and C1 sufficiently big, we obtain

£ (QF" ) = 565

In order to prove the lemma, it remains to verify (3.15f - ) for the infinity norm.
This proof is divided into three parts:
Step 1. We show that ||Q, @, 21n£h||L <1- gfl‘ll assuming the following hypothesis.
(H): there is some
UEX<2 —{LL‘EX J—“n( )EA()lUAOQ fOT’CLllTLEN}

so that
Ca2

501,2 '
Let U denote the Co2Co&~%271/2 neighborhood of u (w.r.t the metric d,,) in X. Since
(h) < &/Ch, we have |h(u')] < 1 — 2?11 5 for any « € U. By the bounded distortion property
and by the fact that u € X<o, we have a1 > < p(U). Observing that

[Q¢hl < Q[h] (3.17)

holds pointwise (by definition of the operators and by induction on n), and using ||hl|s < 1, we
derive that for any /¢

/@%@S/WW@:/WM:/WM+[ |h|d
U X\U

[h(u)] <1 -

0272 _ _ 02,4
< (1 - 25&172) vU)+1-p(U)<1- gars
with 02’4 = 02,20273/2 and a4 = a12+ a13.
Caps

Step 2. Under hypothesis (H), we show that Hle’Blngle <1- gars”
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For any u € X, we have
Q| (u) = QLD (QE ) (w)
<BID (Q@a-Craine |gEi2np]) (u) < v (|Qg" 2 h|) + CgpCro=Cratine,

where the last inequality follows from (3.8), (3.16) and (3.17). By Step 1 and by choosing
(i3 — C1 2 sufficiently large, we see that Step 2 is completed.

Step 3. We show that HQélunth <1l-

Cos
g

In order to complete Step 3, it suffices to show that there exists some v € XSQ that either
satisfies (H) or satisfies the following:

|Q¢h(v)] <1 - 50 with n = Cy 3Iné. (3.18)

Indeed, if there is a v satisfying (H), then noting that ||Q¢||o < 1, the proof in Step 2 applies.
On the other hand, if there is a v satisfying (3.18)), then since ||Q¢ll(¢) < 1, we have 1Q¢hlle <1
and so we can apply the results of Step 2 for the function h replaced by Q¢h.

For a function f: X — R and n € N, we write f,(z) = E;L:_Ol f(Fiz).

Recall that for our £, Lemma gives us x,y € R (in fact, with the previous notation z =
Ty Y = Yy With m = (In(1/c1)) ™ In§). Let us write (3(x),5°(z)) = ¢ (z), (3*(y),5°(y)) =
), v = FM2(3%(x)), w = FY%(5°(y)). We will show that in case no point satisfies (H),
then either v or w satisfies . To this end, assume by contradiction that none of them

satisfies (3.18)).
Writing h(Z) = r(Z)e’*® | we have
ueX:Fru=v

= oW HEERN 0 ) (4 i) gm0 ) FEEOR W) (o )b 4

where

Vo = BT (@), 7 (@), v = BT (1 (), 45 (2)))
and ... corresponds to all other preimages.
Thus (Q¢h)(v) is expressed as a weighted sum of the unit vectors elT)n(W W] ¢ €, with
weights e®»(Wr(u). Noting that Z e®(W = 1 and |r| < 1, we observe that v can only
u€X :Fru=v
violate if all the unit vectors, whose weights are at least C /£ are nearly collinear,
i.e. their angle do not differ by more than Cy /€6 with a1 6 = a1 2.
If r(v,) < 1/2 or r(v”,) < 1/2, then one of these points satisfies (H) and so the proof is

completed. If r(v”,) > 1/2 and r(v”,)) > 1/2 then we also claim that e®("“n) > 20, 6/€%6 and

e (Vn) > 20, 6/€46. Indeed, this holds since v’_,,,v”,, € X<5 and since « is a Holder function
and so it is bounded from below by a positive number on the compact set XSQ (and so e on
the set X<o is bounded from below by a number which is bigger than one).

Thus we have derived that

€T )In(v20) = E(Tx)n(v2,)] = [8(01,) — d(W2,)]] < Co6/E™°
Repeating the above argument for w, and writing
wl, = 2N TR (), v (y))), wl, = ETHTT (5 (), 75 (),

we find

€T )In(w’y) = E(T5)n(w?)] = [B(wl,) = d(w”,)]| < Cap/E™ .
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By construction, s(v’,,,w”,) > n/2 and thus |¢(v,) — ¢(w”,,)] < Co6/?6 assuming that
C1 2 is sufficiently large. Similarly, we can assume |¢p(v”,,) — p(w’_,)| < C26/£% ¢ and thus with
Co7 =406 and a17 = a1 6 + 1,

[A] < Co/&"7 where A = (Tg)n(v],) = (Tx)n(v0) + (Tx)n(wl,) = (Tg)n(w?,).  (3.19)
Recall (3.6) and (3.9). Using the notations z = (v%(2),7%(2)) € R, 2 = 1 1(2) = (3%(2),4%(2))

and

= [ (T ("(2),7°(2))) = T(T (v, v ()],
(=0
observe that we have

Px(74(2),4°(2)) = T2 (3°(2)) = H(y*(2),7°(2)) = H(T"T D (5%(2),4°(2))) - (3.20)
To simplify notation, we write

[21, 22] = (7"(21),7°(22)) (3.21)
and
dpj(21,22) = f(T([21, 21]) = (T ([21, 22))) = F(T*([22, 21])) + f(T*([22, 22])).

Recall the dynamical Holder continuity of 7: there is some C and ¥ < 1 so that if 21,20 € M
are such that T°(z1) and T*(z;) stay on the same local unstable manifold for all £ < L, then
|7(21) — 7(22)| < CYL. Likewise, if T*(21) and T*(21) stay on the same local stable manifold for
all £ > —L, then |7(z1) — 7(22)| < CYL.

We have
maym Z dﬂT mvym Sl +S2+S37
l=—00
where
—rin/2—1
Si= Y T(T,)) — T(T ([, yh))
f=—00
—r1(n/2—1)—ro—1
Z _T(TE([yn’w m])) + T(Te(ym))
l=—00
ri(n/2—1) ri(n/2—-1)
So= Y T(T))— D (T, v0)
b=—rin/2 b=—r1in/2
ri(n/2—1) ri(n/2—1)
- > (T [y, ©0))) + > (T (yy,));
b=—r1(n/2—1)—r2 b=—r1(n/2—1)—r2
and
Ss= > 7(T,)) = (T (@ y))) = T(T (W 20)) + 7(T(41))-

l=ri(n/2—-1)+1

In other words, we rearrange terms in the infinite sum according to the first return to the base
in the tower representation. Observe that in view of ([3.20)),

=D Ax(FrL,)) = A (FRL,)) — Fx (FRwly,)) + 2x (FF ().

Next, using (3.19)), (3.20) and performing a telescopic sum, we find
S = At do g (T2, T 20724 ) iy g (T2, ), T V20572 ),
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By the dynamical Holder property of 7, S1 + (S2 — A) + S3 can be made smaller than Cy 7/£7
assuming that C o is large enough. Indeed, e.g. both series whose sum defines \S; are absolutely
convergent and are smaller than C ﬁﬁ”/ 2 (the absolute convergence justifies why we can write
S7 as a sum of these two series). Estimating Ss is even simpler: we can assume n/2 > m and
so all of the points
T (), T [y ))s T (9) T (s )

lie on the same local stable manifold for £ > n/2. Assuming n/4 > m as well, the dynamical
Hélder continuity of 7 implies |S3| < 15 19”/ 4. The argument is similar for (So — A). Thus
we derived that D(x,,y.,) < 2C57/£%7 Wthh is a contradiction with the choice of 2}, and v/,
assuming, as we can, that aq is chosen sufficiently big so that a1 7 > ao. O

Let the operator Qg ¢ be defined by Qg ¢h = Q(e!?®x+%Tx]), where k : M — Z? is defined in
Section[3.1] Since & is constant on local stable manifolds, the proof of Lemma[3.3]|can be adapted
to imply the following generalization (see also Lemma 3.14 in [22] for a similar argument):

Crlné Cs
sup [ QS ) <1- 3.22
oe[—m,m]d (€ §a1 ( )
Now we revisit the tower (A, F'). Recall that a separation time s was defined in (E4). Let
1/l = 1fllso + sup{C : Yo,y € A+ |f(z) = f(y)| < Cor’™¥} (323)

Let us denote by P the Perron-Frobenius operator associated with F and let 159,5 be defined by
Pye(f) := P (e"FTET f) . We conclude this section by

Lemma 3.4. There are constants Cg, a0 and d so that

sup || Pglell s o) < C3l¢[@2e o172 (3.24)
oc[—m,m]d

Proof. This lemma is proved by operator renewal theory. The proof is very similar to Section 4
in [22], based on our Lemma (but is easier as we only consider purely imaginary i£). We do
not repeat the proof here. O

3.4. Proof of Theorem Let So = OM = {(q,v) € M : iig.v = 0} be the singularity set,
i.e. the collection of points in the phase space corresponding to grazing collisions.
The transformation T defines a C! diffeomorphism from M \ (SoUT1Sp) to T\ (So UTSp).
Moreover there exist Cy > 0 and 6y € (0,1) such that the diameter of every connected
component of M \ U?:_n T—I8y is less than Coby. We consider now 5 is a suitable separation
time on A. The main difference between s and § is that counts the steps straight up in the
tower, i.e. §((z,1), (y,1)) = 8((x,0), (y,0)) — . The exact definition of § is not important for us
and can be found in [31].
Recall that, by construction of [31], for every x,y € A in the same unstable manifold, = (z) and
m(y) lie in the same connected component of M \ U =) ) T8, with 3(z,y) = §(2(x), E(y)).
We will prove that the assumptions of Theorem are satisfied with:
Y= En,‘r
K =2K,
=2,
,T)=(Av,F), 7' =T=Tom, k:=R=KoT,
177) (AI/F)p—EandP:P
V the space of functions f : A — C such that the following quantity is finite
n mn
o= 1t sup JEZIOL UGS

n
Y @yEYY n>0, v%; z,yey* »




CORRELATION FUNCTIONS FOR Z¢ COVERS OF HYPERBOLIC FLOWS 27

where s is a fixed real number satisfying
max (9(1]/4,98,19> <<l (3.25)

where ¥ is defined in (3.7)). B
e The space B is the Young space of complex-valued functions f : A — C such that
| fllz < oo with || - ||g defined by

@) = F @I ey

@) (3.26)

1flls= Sup 1f14, lloce ™" + supess sup
zyen

with s as in (3.25]) and a suitable eg.

e The space B is the space of complex-valued bounded Lipschitz functions f : A — C such
that || f|lp < co with || - || defined in (3.23) for the same choice of s.

In view of (E5),
B — L% (v) for some g € (1,+00) (3.27)

provided that g is small enough.

Observe that, with these notations (fl, @t, f10) can be represented by the suspension semiflow
(®¢)¢>0 (with roof function 7) over the Z?-extension of (M,v,T) by 7.

We define

1180 = || flloo +inf{C :Va,y € A |f(x) — f(y)| < Cs*@V)}

Observe that By C BN B and that the multiplication by an element of By defines a continuous
linear operator on B and on B.

Since k is constant on stable manifolds, there exists a 7-centered Z>-valued bounded function
K € B such that 5 o p = k (therefore my = 0).

Moreover, since T is 1/2-Holder on every connected component of M \ (Sp U Ty *(Sp)) and
since /0y < s, we have 7 € V.

Now, on A, we define x := 3%, (T oFF —10Fko E) By construction,

T=Top+x—xoF, where ToE(z",l) = 7(2“,1) = 7(2“,2°,1). (3.28)

Next, we claim that x € V and T € By.
Indeed, first,
IxXlloo Y N0 F¥ =70 FF o Zlp <) |I7llys < oo.
k>0 k>0

Second, if z,y € A are on the same stable manifold, then Z(F"(z)) = E(F"(y)) and so, since T
is 1/2-Hélder, for every nonnegative integer n,

(@) = X(F @) < X [r (P (@) = ()| < € 3 (o) = 002,
k>0

k>0

Third, if z,y € A are on the same unstable manifold, then
/ ‘ (= (= S(x,y)—j\ 1
[T(F(2)) = (B ()| + |7(FI (2(x))) = 7(FI (2(y)))] < 2C+(Coby ™ )3

and

I\J\H

[T(F (x)) = 7(F (E(2)))| + [7(F(y)) = 7(F (E(y)))] < 2C7(Cobp)>.

1
So, since 0 < s

0<k<3(z,y)/2 k>8(z,y)/2
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This shows that y € V. Then clearly x o ' € V holds as well. Since 7 € V, implies
T op €V which in turn gives T € By.

Observe that He’f'XHV = O(1 + [¢]) and that (T, )Fe %0 € B for every k and mg = 1.

The fact that (Ppe : f = P(e%™ 7)) g ¢)el—nmaxr satisties (2.28), 229, [2:30), (2.31),
with J = 3 follows from [29,31] (see also |28]). Condition is proved by Lemma [3.4]

For any f € V and any nonnegative integer n, we define II,, f : A — C by

Vee A, (IL,f)o=(z) :=E,[f o F"|5(-,x) > 2n].

Note that IT,, is linear and continuous from V to By with norm in O (2%_2”). By definition of
V, if s(x,y) > 2n, then by considering z in the stable manifold containing x and in the unstable
manifold containing y, F™(2) is in the same unstable manifold as F"(y) with $§(F"(y), F™(z)) > n
and so

[f(F™(2)) = FE™ ()] < [f(F" (@) = F(F" ()| + [f(F"(2)) = FF )] < [[fllva" .
Therefore we have proved that
VieV, |[IfoF" —ILi(f)o &l < Collfllvs",

and so (2.33)) holds for any 9 > s.
Recall that
Figh(z)= ) etnBH0mm@Hemip ),
zEF~2n({z})
with

-1 -1 -1
o ::ZaoF’“, Rl::ZRoFk, and T ::ZfoFk.
k=0 k=0 k=0

By construction of (@,D,F), for every x,y € A with §(x,y) > 1, there exists a bijection
Way, : F722({z}) — F~2"({y}) such that 5(z, Wa,(z)) > 2n and so II, f(z) = IL,f(Wa,(2)).

Moreover, since «, &, T € By, for g € {a,k, 7} and for any z,y, z as above, we have
|9(F*(2)) = g(F* (W (2)))] < [lgllse 220
Hence
190 (F*(2)) = ga(F*(Wa(2)))] < [lgllo (1 = 50) 500 Fn=k,

We conclude that there exists Cy > 0 such that, for every § € [—7,7]¢, ¢ € R and for every
non-negative integer j,

ol

o _ 0 E i _ (0 R s Nofn
4 P2n efze.nnfzg.rnl—[n < H 'P2n el(G.Kn+£.‘rn)oF Hn H +
P N, < s Nl
N a.] - n— . —n 0= . n
—3§(z,y) aon (2)+(10Rn+i8n)oF™(2) _ aon(Wn(2))+(10Rn+imn)oF™ (Wy(2)) I
sup & - e e nJ{(Z
o s 2 | )i )
S(ay)>1 b @)
< Con? (1 + €)1l
and
o7 . . o9 . .
. Hn f 620~nn,m0+z§.7n < H . Hn f 610"{"*”0'“5'7—”
Haw,s)ﬂ( ) N = lower ™) N

< Cor | fllss

o0
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Where we used that & and 7 are uniformly bounded and p is such that & + ~ =1 with gy defined
in (3.27). Therefore we have proved (2.34), (2.35) and (2.36). We deﬁne f and g as follows:
f(x,ﬂ, s) = f(q + £ + sv,¥) and similarly g(z,¢,s) = g(q + ¢ + sv,?) if w(z) = (q, V). Note that
(q+ L+ sU,7) = $s(q+€,ﬁ) for s € [0,7(q,7)). Let (b, h) = (f, f) or (g,9). We define

halw, ) i= xo(s)b (Bola + 6,7)) (1= xo(s = 7(2)),

with xo : R — [0,1] a fixed increasing C*° function such that yo(u) = 0 if u < —2BT and
Xxo(u) =1if u>0. . _
Note that he(z,-) have support in [—28T ()], coincide with h(z,¢,-) in [0,7(z) — 2BT], and

0 7 10
satisfy (2.37). Let u € R be fixed. Then [|he(-,u)[|oc <  sup  ||blc, - Furthermore, since
[¢/—¢|<max T
T €V, 6] < 3, and h o &, is uniformly n-Holder continuous for s € [— migT,max 7], we obtain

that there exists a uniform constant C' > 0 such that

lhe(- )y <C sup 1Bl - (3.29)
e/

[¢/—|<max T

Thus, (2.41) and (2.39) follow directly from (3.3). Recall that

k

ik efif'XA € = kil 7 —i€x is kfmeifs 2.8)ds
agk( hue( é))nlzom,( )( X)™"e /( (is) he(z,s)ds. (3.30)

k—m S O)

Next, to prove it suffices to show that

—Z§Xf€ + H
z <Hagk s

Observe that |le~%X||y, = O(1+|¢|) and the integral in (3.30)) is uniformly bounded by 2 max 7 ||| .-
Furthermore, for x,y € 4" such that §(z,y) > n (resp. for z,y € F"(y°)) and such that
7(z) < 7(y), we have

/ ' woho(zy 8) ds—/ . he(y, s)ds
(=277 (@) (—202T 7 (y))

10

_’g G, 5))

) <C+g]). (3.31)

v

7(y)

710 T\E T

(=)

< /( C lhe(-, )l 5" ds + [Tl 52°C (-, 8), ds-

m;gf ()

Now ) follows from (|3.29] and .

Assume next that b satlsﬁes (3-1), then the functions hy(z,-) are C* and there exists a
uniform constant Cy > 0 such that
8N
osN

m

9]
s™ <h °® >|s:0

Moreover, since hy is C*° with compact support, by classical integration by parts, we have

. N
VN €N, hg(a:,f):(—i)NfN/Re gNhg( s)ds

Therefore, since x € V, we have proved that, if h satisfies , we have
Yy >0, Y lle ®Xhy(-,—E)]ly = O(I¢]7), (3.32)
¢

<Cp sup sup
Vv m=0,...,N [¢/—¢|<max T

VN €N, H he(-, 5)

n
’chl
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which, combined with (3.31)) implies (2.40)).
3.5. Identifying €. Recall the notations ¥, -, ¥, from Section and that here d = 2.
2

u

Let us set o := \/det Y,/ det Xi. Observe that ¥y, (0,0,u) = m.
Now the leading term of Cy(f, g) can be obtained by taking m = j =k =7 =¢ =0 in (2.42):

Jlim tCi(f.9) = v(1)Co(f.9) (3.33)

= (v(r))é/R@b(OO s\/v(T) / Bo(fe(-,u), go(-,v)) dudv

0,0 €72

a(f)ing)

= S ——R(Dilg) =
T ordets, .Y
where we used By(u,v) = v(u)v(v) (see (2.44)).
Recalling that the left hand side of (3.4) is an integral with respect to fip as opposed to
C¢(f,g) which is an integral with respect to i and using fi = v(7)fig, we obtain ({3.5).

27n/det Yk

4. GEODESIC FLOWS

Let Q be a compact Riemannian manifold with strictly negative curvature and Q be a cover
of @ with automorphism group Z%. Then Q can be identified with Q x Z¢.

The unit tangent bundle of Q is denoted by Q) and unit tangent bundle of Q is denoted by Q.

The phase space of the geodesic flow ® on Q is Q and likewise, the phase space of the geodesic
flow ® on Q is Q. Thus Q is a Z% cover of  and we denote by Let p the covering map. Geodesic
flows are Anosov flows and can be represented as a suspension flows over a Poincaré section M
such that T': M — M, the first return map to M is Markov (see [4] and [5]). Thus M is a
union of rectangles M = UL | Aj where Ay, have product structure Ay = [AY x Af] where A¥
are u-sets and Aj are s-sets and [+, -] is defined by (3.21] - i

Let 7 be the first return to M. Choose a copy M C Q such that p(M) = M and p : M — M
is one-to-one. As for billiards, we define Cy as the set of points in that € such that the last visit
to the Poincaré section was in M x {¢} for £ € Z%. We denote by fi the Liouville measure.

Now we have the following analogue of Theorem

Theorem 4.1. Let f,g: Q — R be two n-Holder continuous functions with at least one of them
being smooth in the flow direction. Assume moreover that there exists an integer Ko > 1 such
that (3.3) holds. Then there are real numbers €y(f,9), €1(f,9), ..., €k, (f, 8) so that we have

[ fgoétdﬁozfem,g)t“ o (t75750) (4.1)
Q k=0

as t — 4o00. Furthermore, €y(f,g) = ¢o fQ fdiig fQ gdiig and the coefficients €, as functionals
over pairs of admissible functions, are bilinear.

Proof. The proof of Theorem is a simplified version of that of Theorem Namely, we
still apply the abstract Theorem to an appropriate symbolic system. This system is now a
subshift of finite type that is constructed using a Markov partition {Ay}. By mixing and by the
Perron-Frobenius theorem, there exists r so that for any i,j = 1,..., K, T"(4A;) and A; have a
non empty intersection. We define the spaces V, B, and B the same way as in Section [3| with

K
A(]:M and A():UA}:
k=1
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and with constant height r. Consequently, the norms ||.||p and ||.||s are equivalent. The assump-
tions of Theorem are verified similarly to Section [3| with additional simplifications coming
from the boundedness of the return time and the equivalence of B and B.

The only point in the proof of Theorem where we used the special properties of billiards is
in the proof of Lemma[3.2] where we referred to Lemma 6.40 in [7] (which is specific to billiards).
It remains to revisit this part of the argument (again, in a simplified version as the alphabet is
finite and we do not need to verify conditions - )

Geodesic flows preserve the natural contact form « on the unit tangent bundle (corresponding
to the symplectic structure on the tangent bundle). According to the results of [19] (Lemma
B.6), there is some ¢ > 0 so that for any z € @ and for any sufficiently small unstable vector
v € E"(z) and stable vector w € E*(z) with the notation z = exp,(v), y = exp,(w), the
temporal distance function D(z,y) (defined as in (3.9)) satisfies

D(z,y) = da(v,w) + O([ol*|w]* + [[v]*lw]) -

Since the contact form is non-degenerate, there is a constant Ry such that for any z and any
v € E%(z), we can find some w € T, such that w > da(v,w) > Ro|lv||||w|. Let us
decompose w into center unstable and stable components w = w +w*. By Lemma B.2 in [19],
da(v,w™) = 0 and so we can assume w = w® € E*(z). We conclude that for fixed z, there
are constants g, Rg, so that for any § < dy there exist vectors v € E%(z),w € E*(z) such that
[o]] = [[w]] = 6 and

52 9

Now we can complete the proof of the analogue of Lemma [3.2] as before by choosing ¢ in a way
that for given &, 6% ~ ¢71. OJ

APPENDIX A. SOME FACTS ABOUT TAYLOR EXPANSIONS.

Lemma A.1. Let a be given by and a CE+3_smooth function X : [—b,b]4T — C (for some
b > 0) satisfying for some J < K 4 3. Denote (s = 2—3, M= |(K+1)/(J—2)]. Then
there are Ajy, € S; (where j = 0,...|J(K +1)/(J —2)], k=1,...,M), Ky € N (depending on
K and J) and a function n : Rt — [0, 4+00) continuous at 0, satisfying n(0) = 0 such that
after, possibly, decreasing the value of b, for every n large enough, every s € [—by/n, b\/ﬂdJrl
and every 3 = J, ..., K + 3, we have

M M
3 <Z> 3 L (P e.a@) =Y nau (@A)
k=1

.
=t N >0 =g TR
and
M K+1+2k N ] o
o2 3 e ()| o e e
ovE J =
k=1 j=kJ v %s/v2

Recalling that the first J — 1 derivatives of ¢ vanish at zero, we see that in case \is CY
(namely, if j < K + 3), the LHS of (A.1) is simply equal to %(C")gj).

Proof. Decreasing if necessary the value of b, we may assume that |/~\u] <a, o <a, I3 and

A — ay| < Clu|? for every v € R4 with |u| < b (the existence of b with these properties
follows from our assumptions on J and A). Applying Taylor’s theorem to the function x — z"
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near 1 we conclude that for every s € R™! with |s| < by/n,
M/ s k

no__ 2) o

o/ kZ_O <k> <C (ﬁ) >

< (") 'c( ) - 1]MH (nax(1, o (2= ) . (4.3)

Recall that |>\s/\f| < as/m This together with the fact that as/m/as/\f (a 8/\/@)_1
implies that the RHS of (A.3)) is bounded by

MH‘C s/v/n) —1‘M+1 s/m) (n—M- 1)—7’LM+1’ (s/f)—a(s/\f)‘MH(aS/\/?Tn)—n—M—y

Next, we use the identity (a, / )t = a, /v3 and the inequality |Aw — au| < Clul)’ to conclude
that the last displayed expression is bounded by

Crm™(ay,5) 7 ((s/vm) A1) |

for every s, for every n large enough since (OLS/\/g—n)_"—]V[—1

-1
_ -1
N <as\/<1+1‘2“>/3> < (@yv9)
for every n large enough. Now observe that by definition (2 — J)(M + 1) < —K — 1 and so
(2—J)(M+1) < —K — 2. Thus the last display, and hence (A.3) is bounded by
K42
C'M(as/f) 'n 5 MED, (A.4)
Clearly, (|A.4) can be included in the RHS of (A.2). Thus it remains to compute the sum in the
LHS of (A.3).
To do so, we fix some k =1,.... M. Let L = K + 1+ 2k — J(k —1). Using the elementary
estimate |a® — b*| < kmax(|a|, |b])* ! a — b|, we find

() (Cls/v/m) — 1)) Z SN (A5)
k—1
< nfkmax | [¢(s/vn) = 1], Z G5 (/7)™ (A-6)
j= J
L 1. .
<<s/¢ﬁ>—1—2ﬁ<é”*<s/¢ﬁ>®ﬂ . (A7)
j=J

Next by our choice of L
L=K+1+Q2-Nk+J<K+1+2-J)+J=K+3.

Recalling that A /a is C5+3 smooth and its first J —1 derivatives at zero vanish, Taylor’s theorem
implies that (A.7) is bounded by (s/v/n)%n0(s/v/n), where 179(0) = 0 and 7 is continuous at 0.
On the other hand, (A 6] is bounded by n*k (s/ \/ﬁ)‘](k_l). We conclude that (A.5)) is bounded
by

Ky (57 ) (A.8)
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where 71 = kno. Since a, s is bounded from above, (A.8) can be included in the RHS of (A.2).
So we have approximated C;‘/ NG by

k

(&) i}}ﬁé” s/ V)

L
<n> Z . (C(gjl)@---@Céjk))*(s/\/ﬁ)®(j1+...+jk)

1 g0
]17---7]1@:Jj J

n K+1+2k 1 . .

"
PRSI T S R L

#(s/vn)® + 0 (n—¥sK+1+2k+1)
uniformly on s € [~by/n, by/n]%t!. Note that the last step above uses the observation that if

1y g = Jand j1 + - + jr < K + 1+ 2k, then necessarily j; < L for all [. Again, the last
error term can be included in the right hand side of (A.2) as a; V2 is bounded from above.

Finally, observe that

1 . .
(Z) 2 AR (CRERETR)

J1yendk2d t it ge=J

is a polynomial of degree k in n with values in §;. This ensures the existence of A, ;. OJ
Lemma A.2. If H : R — R is in the Schwartz space (i.e. x*H® (z) is bounded for any positive

integers a and b), then for any L € N there is some constant cy 1, such that

Vt € R,¥n >0, < et (A.9)

ZnH(t+k:17)—/_oo H(z)dx

kEZ

Proof. We can assume without loss of generality that ¢ € [0,1). Given L,t and 7, we choose
Ap and By, so that the above sum for k ¢ [Ap/n, Br/n] and the above integral as well as the
first L derivatives of H for x ¢ (A, Br) are less than n”. Such Ay and By, exist since H is in
the Schwartz space. Now Euler’s summation formula (e.g. Theorem 4 in [3] with the notation
f(z) =nH(t+xn— Ar), m = L) implies that

Br/n By, 1 By,
N nH@+kn) - | H@)de= o [ Popsi(a/n) HE (2)dan?
A 2L+ 1) Ju
k=—Ar/n r L

+ Z Ba, [H(2r—1)(BL) B H(27‘—1)(AL)} n2r

— (2r)!
1
+onlH(Br) — H(AL)],
where Py (x) are the periodic Bernoulli polynomials and By, are Bernoulli numbers. Now (A.9))
follows from the choice of Ay, By,. O

Observe that (A.9) and the fact that H is in the Schwartz space imply

1
t/v(r)+t2Te

t—nv(t)\ Vi K
VK >0, Ve>0, > H< 7 >_U(T)/RH(x)dﬂc+O(t ) (A.10)

1
n=t/v(r)—t2 T
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(clearly, the constant in ”O” depends on K and ¢).
Lemma A.3. For every ye R and Q) € Z,

i o) (0, kil _\%(7)>

n=t_

_ <V(t7)>7§1't;(7) /Raghm (5.1) (~s)7ds + 0 (19 (A.11)

q=0

where hqo is defined by ([2.5) 03 denotes the derivative of order q with respect to the second
variable.

Proof. For ease of notation, we prove the lemma coordinate-wise, i.e. we replace \Il(a)(s) by

9«
8Sj1 ...8Sja \IJ(S) ’

Observe that due to the rapid decay of U("+7+7)(0, .), we can replace S°5, by Zt/y(;)?t) "
n=t/v(r)—t27°

for any € > 0 (here, we can choose e.g., € = 1/4).
Next, observe that by the definition ([2.5)),

Thus it remains to estimate the sum

1
t/v(r)+t2te

Y by (t _3’;(7)7 er(T)) . (A.12)

1
n=t/v(t)—t27¢

Using Taylor expansion, we can rewrite (A.12]) as

1
t/v(r)+t2te

2. i;aghw (t_n\/’;mg <—t_2”(7)>q +0 (%), (A.13)

1 =0
n=t/v(r)—t2+c 4 0

Indeed, we control the error term using the estimate
tfu(r)+2+e
> s

o9+, <t —nv(r) y) ' ’t —nv(r)
e R L t
n=t/v(rt)—t2

which can be derived similarly to (A.10]). Performing summation over n in (A.13]), using (A.10)),
we obtain that (A.12)) (and thus the left hand side of (A.11))) equals to

Q _a=1
1¢ 2 q q _Q
;_o:q‘ e /RthM (s:1) (~s)ds + 0 (°9) .

This completes the proof of the lemma. O

Q+1

Lemma A.4. Let b,q be non-negative integers. The function s — O3hp(s,1)(—s)? is even if
b+ q is even (and is odd if b+ q is odd).

Proof. The lemma follows since if P(z) is a polynomial with odd (even, resp.) leading term, then

d%(P(x)eCﬁ) = Q(z)e” where Q(z) is a polynomial with even (odd, resp.) leading term. [
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APPENDIX B. CORRELATION FUNCTIONS OF COBOUNDARIES

Lemma B.1. Let G' : M — M be a flow preserving a measure p (finite or infinite). Let
£, f,9: M — M be bounded integrable observables such that f'(x) = %h:of(Gtw). Denote

Ci= [ FlaoG)dn Ci= [ a6 dn.

Assume that there exist real numbers o > 0, ¢, ..., CK—1,C(, ..., Cxc Satisfying:

K-1 K
Cy=t¢ (Z at™F+o (t_(K_1)>) and Cj;=1t“ (Z Gt 4o (t_K)> . (B.1)

k=0 k=0
Then ¢y =0 and ¢}, = —cx—1(a +k —1) for every k =1,..., K — 1.
In particular if K =1 and co # 0, then ¢j; =0 and

Ci(f'yg) ~ —cpat— 1 (B.2)

We note that the fact that the rate of mixing for coboundaries is faster than for general
observables is used, for example, in [11,[13].

Proof. By integration by parts
= / FlgoG) du=- [ 1(s0G") du
M
0

)
_ ¢ t _
_ / 8tgoG)d = at/f(goG)du oCt
Since lim Cy =0
t—+oo

+o00
/ C. ds—/ Zc’ ok o(sTe )Y ds
t

It follows that ¢j =0 if o« +k <1 and

K /
c
C, = k t—a—f—l—k t—a—K—i—l )
! kz—o —a—k+1 +of )
The lemma follows by comparing the above expansion with the first equation in (B.1]). O
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