1.3. Expanding Endomorphisms of the circle. Let $E_{10}: S^1 \to S^1$ be given by $E_{10}(x) = 10x \mod 1$.

Exercise 1. Show that there exists a point x such that E_{10}-orbit of x is neither eventually periodic nor dense.

1.5. Quadratic maps. Let $q_{\mu}(x) = \mu x(1-x)$. It has fixed points 0 and $1 - \frac{1}{\mu}$. Observe that $q_{\mu}^{-1}(0) = \{0, 1\}$, $q_{\mu}^{-1}(1 - \frac{1}{\mu}) = \{1 - \frac{1}{\mu}, \frac{1}{\mu}\}$.

Lemma 1. Consider the map $f: x \to ax^2 + bx + c$, $a \neq 0$. Then either for all x we have $x_n \to \infty$ as $n \to \infty$ or f is conjugated to some $q_{\mu}, \mu > 0$.

Proof. By changing coordinates $x \to -x$ if necessary we can assume that $a < 0$. Then $f(x) < x$ for large $|x|$. Consider two cases

(1) $f(x) < x$ for all x. Then x_n is decreasing so it either has a finite limit or goes to $-\infty$. Since f has no fixed points the second alternative holds.

(2) $f(x) = x$ has two (maybe coinciding solutions) x_1 and x_2, let x_3 be the solution of $f(x_3) = f(x_1)$ and x_4 be the solution of $f(x_4) = f(x_2)$. We have

$$x_1 + x_2 = -\frac{b-1}{a}, \quad x_1 + x_3 = -\frac{b}{a}, \quad x_2 + x_4 = -\frac{b}{a}.$$

Hence $(x_3 - x_1) + (x_4 - x_2) = -\frac{2}{a} > 0$. So either $x_3 > x_1$ or $x_4 > x_2$. In the first case make a change of coordinates $y = \frac{x_3 - x_1}{x_3 - x_2}$. In this coordinates f takes the form $y \to g(y)$ where g is quadratic with negative leading term. Also $g(0) = 0, g(1) = g(0) = 0$. Thus $g = q_{\mu}$ for some μ. In the second case make a change of coordinates $y = \frac{x_4 - x_2}{x_4 - x_2}$. □

Exercise 2. Let $\mu = 4$. Then $I = [0, 1]$ is invariant. Show that

(a) If $x \not\in I$ then $q_4^n(x) \to -\infty$.

(b) Show that the changes of variables $y = 2x - 1, y = \cos z$ conjugate $q_4|_I$ to a piecewise linear map.
Lemma 2. If $0 < \mu < 1$ then either

1. $q^n(x) \to -\infty$
2. $q^n(x) \to 0$
3. $q^n(x) = 1 - \frac{1}{\mu}$, $n \geq 2$.

Proof. There are several cases to consider. (1) $x < 1 - \frac{1}{\mu}$, (2) $1 - \frac{1}{\mu} < x < 0$, (3) $0 < x < 1$, (4) $1 < x < \frac{1}{\mu}$, $x > \frac{1}{\mu}$. We consider case (2), others are similar. In this case by induction $x_n < x_{n+1} < 0$. Let $y = \lim_{n \to \infty} x_n$. Then $q(\mu)(y) = \lim_{n \to \infty} x_{n+1} = y$. So y is fixed. Also $y > x_0 > 1 - \frac{1}{\mu}$ since we are in case (2). It follows that $y = 0$. □

Exercise 3. Complete the proof of Lemma 2.

1.6 Gauss map. Let A be 2×2 matrix. Since $A(0) = 0$ and A moves lines to lines, it acts on the projective line. Let P_A denote this action. Coordinatizing projective space, by making the coordinate of a line its intersection with $\{y = 1\}$ we get

$$P_A(x) = \frac{ax + b}{cx + d}, \quad x \in \mathbb{R} \cup \{\infty\} \quad \text{if} \quad A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Note that $P_A P_B = P_{AB}$.

Exercise 4. Describe the dynamics of P_A. When is P_A conjugated to a rotation?

Let $f(x) = \{1/x\}$. Hence $x_1 = (1/x) - a_1$ for some $a_1 \in \mathbb{N}$. Thus

$$x = \frac{1}{a_1 + x_1} = P \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} x_1.$$

Continuing we get

$$x = P \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} x_1 = P \begin{pmatrix} 0 & 1 \\ 1 & a_1 \end{pmatrix} P \begin{pmatrix} 0 & 1 \\ 1 & a_2 \end{pmatrix} x_2 = \cdots = P_{M_n} x_n$$

where

$$M_{n+1} = M_n \begin{pmatrix} 0 & 1 \\ 1 & a_{n+1} \end{pmatrix}.$$

Denoting the elements of M_n

$$M_n = \begin{pmatrix} A_n & p_n \\ B_n & q_n \end{pmatrix}$$

we get $A_n = p_{n-1}$, $B_n = q_{n-1}$ and

$$p_{n+1} = p_{n-1} + a_{n+1} p_n, \quad q_{n+1} = q_{n-1} + a_{n+1} q_n.$$

Exercise 5. $q_n \geq f_n$ where f_n is the n-th Fibonacci number.
Exercise 6. Find all x such that $q_n = f_n$.

Lemma 3. $p_{n-1}q_n - q_{n-1}p_n = (-1)^n$.

Proof.

$$\det(M_n) = \prod_{j=1}^n \det \begin{pmatrix} 0 & 1 \\ 1 & a_j \end{pmatrix}.$$

Lemma 4. $\frac{p_n}{q_n} \to x, n \to \infty$. Moreover

$$\left| x - \frac{p_n}{q_n} \right| \leq \frac{1}{q^2_n}.$$

Proof. We have

$$\left| x - \frac{p_n}{q_n} \right| = \frac{|p_n - x q_n|}{q_n (q_n - 1 x_n + q_n)} = \frac{|q_n (q_n - 1 x_n + q_n) - x_n q_n|}{q_n (q_n - 1 x_n + q_n)}$$

(by Lemma 3) (since $0 \leq x_n \leq 1$).

Thus for every number $|x - p/q| \leq 1/q^2$ has infinitely many solutions.

Lemma 5. Suppose that x is an irrational number satisfying the quadratic equation

$$F(x) = ax^2 + bx + c = 0$$

with integer coefficients. When there is a constant C such that $|x - p/q| \geq \frac{C}{q^2}$.

Proof. Consider two cases

1. $|x - p/q| > 1$. Then $|x - p/q| > 1/q^2$ since $q > 1$.
2. $|x - p/q| \leq 1$. Decompose $F(z) = a(z - x)(z - y)$ where y is the second root of F. Then

$$F \left(\frac{p}{q} \right) = \frac{a p^2 + b pq + c q^2}{q^2} \geq \frac{1}{q^2}$$

since the denominator is a non-zero integer. On the other hand

$$\left| y - \frac{p}{q} \right| \leq |y| + \left| \frac{p}{q} \right| \leq |y| + |x| + 1$$

we have

$$\left| F \left(\frac{p}{q} \right) \right| \leq |a| \left| x - \frac{p}{q} \right| \left| y - \frac{p}{q} \right| \leq |a| \left| x - \frac{p}{q} \right| (|y| + |x| + 1)$$

(1) and (2) imply the result.
Exercise 7. Let x be an irational root of an equation $F(z) = a_m z^m + a_{m-1} z^{m-1} + \ldots a_1 z + a_0 = 0$. Prove that there exists a constant C such that $|x - p/q| \geq C/q^m$.

Lemma 3 implies
\[
\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}} = \frac{(-1)^{n+1}}{q_n q_{n+1}} \frac{p_{n+1}}{q_{n+1}} - \frac{p_{n+2}}{q_{n+2}} = \frac{(-1)^{n}}{q_{n+1} q_{n+2}}.
\]

so
\[
\frac{p_n}{q_n} - \frac{p_{n+1}}{q_{n+1}} = \frac{(-1)^{n+1}}{q_{n+1}} \left(\frac{1}{q_n} - \frac{1}{q_{n+2}} \right).
\]

Corollary 6. p_{2k}/q_{2k} is increasing, p_{2k+1}/q_{2k+1} is decreasing. In particular
\[
\frac{p_{2k}}{q_{2k}} < x < \frac{p_{2k+1}}{q_{2k+1}}.
\]

Observe that $f(0)$ is not defined.

Lemma 7. The orbit of x contains 0 if and only if x is rational.

Proof. If $x_n = 0$ then $x = p_n/q_n$. Conversely if x is rational then $f(x)$ is rational with smaller denominator. \qed

Theorem 1. x is eventually periodic if and only if it is a quadratic irrational.

Proof. (1) Observe that if x satisfies a quadratic equation then $ax^2 + bx + c$ then x_n satisfies the equation $A_n x_n^2 + B_n x_n + C_n = 0$ where
\[
A_n = \frac{ap_{n-1}^2 + bp_{n-1} q_{n-1} + c}{q_n^2}, \\
B_n = 2ap_{n-1} p_n + b(p_{n-1} q_n + q_{n-1} p_n) + 2c q_{n-1} q_n, \\
C_n = \frac{ap_n^2 + b p_n q_n + c}{q_n^2}.
\]

We claim that A_n, B_n and C_n are uniformly bounded so they must eventually repeat giving eventual periodicity of x. Indeed using the notation of Lemma 5 we get
\[
|C_n| = q_n^2 |F(p/q)| = q_n^2 |a||x-p/q||y-p/q| \\
\leq q_n^2 |a|(|y|+1)|x-p/q| \\
\leq |a|(|y|+1) (|x| < 1) \\
\text{(Lemma 5)}
\]

Likewise $|A_n| \leq |a|(|y|+1).

Exercise 8. Show (e.g. by induction) that $b^2 - 4ac = B_n^2 - 4A_n C_n$.

Hence
\[
|B_n| \leq \sqrt{|b^2 - 4ac| + 4a^2(|y|+1)^2}
\]

Thus x is eventually periodic.
(2) If x is periodic then for some n

$$x = \frac{p_{n-1}x + p_n}{q_{n-1}x + q_n}.$$

Hence x satisfies the equation

$$q_{n-1}x^2 + (q_n - p_{n-1})x - p_n = 0.$$

Next if

$$x = \frac{p_{m-1}y + p_m}{q_{m-1}y + q_m}$$

with y periodic then y satisfies a quadratic equation an a computation similar to the one done part (1) shows that x satisfies a quadratic equation as well. \hfill \Box

5.12 Markov partitions.

Exercise 9. Show that any linear hyperbolic automorphism of \mathbb{T}^2 has a Markov partition.

Exercise 10. Show that no Markov partition of \mathbb{T}^2 gives a full shift.

Hint. Compare periodic points.

2.4 Expansive transformations.

Exercise 11. Show that no isometry of infinite compact metric space is expansive.

2.8 Applications of topological dynamics.

Exercise 12. Let $T_1, T_2 \ldots T_N$ be commuting homeomorphisms of a compact metric space X. Prove that there exist $x \in X$ and a sequence $n_k \to \infty$ such that $d(x, T_j^{n_k}x) \to 0$ for all j.

Hint. Let $F(x) = \inf_{n \geq 1} \max_j d(x, T_j x)$. Let $A_\varepsilon = \{ F < \varepsilon \}$. Show that A_ε is open and dense.

3.3 The Perron-Frobenius Theorem. A subset $K \subset \mathbb{R}^d$ is called a cone if for any $v \in K$, $\lambda > 0 \lambda v \in K$. Let K be a convex closed cone satisfying

(K1) $K \cap (-K) = \{0\}$ and

(K2) Any vector u in \mathbb{R}^d can be represented as $u = v_1 - v_2$ with $v_j \in K$.

Lemma 8. Any line l containing points inside K intersects the boundary of K.
Proof. Take two points \(v, u \in K \cap K \). Then \(l = \{ z_t = tu + (1-t)v \} \). Rewrite \(z_t = v + t(u - v) \). Let \(z_t \in K \) for all positive \(t \). Since \(K \) is a cone, \((v/t) + u - v \in K \) and since \(K \) is closed \(u - v \in K \). Likewise if \(z_t \in K \) for all negative \(t \) then \(v - u \in K \). By (K2) both inclusions cannot be true. \(\square \)

Let \(\tilde{K} \) be a subset of the \(\mathbb{RP}^{d-1} \) consisting of directions having representatives in \(K \). Define a distance on \(\tilde{K} \) as follows. If \(\tilde{u}_1, \tilde{u}_2 \) are rays in \(K \) choose \(b \in \tilde{u}_1, c \in u_2 \) and let \(l \) be the line through \(b \) and \(c \). Let \(a \) and \(d \) be the points where \(l \) crosses the boundary of \(K \) such that \(a, b, c, d \) is the correct order on this line and let \(t \) be an affine parameter on \(l \). Define

\[
d_K(u_1, u_2) = \ln \left(\frac{(t_c - t_a)(t_d - t_b)}{(t_b - t_a)(t_d - t_c)} \right).
\]

To see that this distance correctly defined it is enough to consider the case of the plane since \(d_K \) only depends on the section of \(K \) be the plane containing \(u_1 \) and \(u_2 \). Now let \(v_1 \) and \(v_2 \) are two vectors on the boundary of the cone and \(u \) is a vector on the line joining \(v_1 \) and \(v_2 \). Thus \(u = tv_1 + (1-t)v_2 \). Now if we consider another line say through \(v'_1 \) and \(v'_2 \) then this line crosses the ray through \(u \) at a point \(\tilde{u} = sv'_1 + (1-s)v'_2 \). Denoting by \(\times \) the vector product we get

\[
(v_2 + t(v_1 - v_2)) \times (v'_2 + s(v'_1 - v'_2)) = 0
\]

Thus

\[
s = \frac{v'_2 \times (v_2 + t(v_1 - v_2))}{(v_2 + t(v_1 - v_2)) \times (v'_1 - v'_2)}.
\]

That is, the map between the affine parameters corresponding to different lines is fractional linear. Since fractional linear maps preserve the cross ratio \(d_K \) is correctly defined.

Exercise 13. Let \(K \) be the cone of vectors with non-negative components and

\[
K_L = \{ u \in K : \max_i u_i \leq L \min_i u_i \}.
\]

Show that \(K_L \) has finite \(d_K \)-diameter.

Theorem 2. Let \(A \) be a matrix with positive entries. Then

(a) \(A \) has a positive eigenvalue \(\lambda \);

(b) The corresponding eigenvector \(v \) is positive;

(c) All other eigenvalues have absolute value less than \(\lambda \);

(d) There are no other positive eigenvectors.
Lemma 9. Let P_A be the projective transformation defined by A. Then there exists $\tilde{v} \in \tilde{K}$ and $\theta < 1$ such that $P_A(\tilde{v}) = \tilde{v}$ and for all $\tilde{u} \in \tilde{K}$

$\text{(3)} \quad \text{dist}(P_A^n \tilde{u}, \tilde{v}) \leq \text{Const} \theta^n.$

Proof of Theorem 2. Let \tilde{v} be as in Lemma 9 and v be a positive vector projecting to \tilde{v}. Then $P_A(\tilde{v}) = (\tilde{v})$ means that $A(v) = \lambda(v)$, so A has positive eigenvector. Take i such that $v_i \neq 0$. Then $\lambda = (Av)_i/v_i$ is positive. Also it v' is another positive eigenvector then $P_A(\tilde{v}') = (\tilde{v}')$ contradicting Lemma 9, so there are no other positive eigenvectors.

We can assume without the loss of generality that $||v|| = 1$. Next we claim that for all $u \in \mathbb{R}^d$ there exist the limit

$\text{(4)} \quad l(u) = \lim_{n \to \infty} \frac{||A^nu||}{\lambda^n}$

and moreover

$\text{(5)} \quad ||A^nu - l(u)\lambda^n v|| \leq \text{Const} \lambda^n \theta^n.$

Indeed assume first that $u \in K$. denote $S(\tilde{u}) = \frac{||Au||}{||u||}$ (this definition is clearly independent of the choice of the vector projecting to \tilde{u}). We have

$$||A^nu|| = ||u|| \prod_{j=0}^{n-1} \frac{||A^{j+1}u||}{||A^ju||} = ||u|| \prod_{j=0}^{n-1} S(P_A^j(u)) = (||u||\lambda^n) \exp \left[\sum_{j=0}^{n-1} \left(\ln S(P_A^j(u)) - \ln S(v) \right) \right].$$

Since S is Lipshitz we have

$\text{(6)} \quad |\ln S(P_A^j(u)) - \ln S(v)| \leq \text{Const} \theta^j$

which proves (4) with $l(u) = ||u|| \prod_{j=0}^{\infty}$. Moreover the exponential convergence of (6) implies $||A^nu|| = l(u)\lambda^n (1 + O(\theta^n))$. Now by Lemma 9 we have

$$\frac{A^nu}{||A^nu||} = v + O(\theta^n)$$

This proofs (5) for positive vectors. Now (5) in general case follows by (K2). From the properties of limit it follows that l is a linear functional. Let $L = \text{Ker}(l)$. Then L is $d - 1$ dimensional hypersurface and since $l(A(u)) = \lambda l(u)$, L is A-invariant. Thus all other eigenvectors lie in L. It follows from (5) that

$$||A^n|_L|| \leq \text{Const} \lambda^n \theta^n$$

so all eigenvalues are less than $\lambda \theta$ in absolute value.
Proof of Lemma 9. For any u in K we have
\[\min_{ij} A_{ij} \max_j u_j \leq (Au)_i \leq d \max_{ij} A_{ij} \max_j u_j \]
so $A(u) \in K_L$ with $L = d \max_{ij} A_{ij}$. Now K_L is compact in both dist and d_K metrics so it is enough to establish (3) for d_K.

Lemma 10. Given D there exists $\theta < 1$ such that for and d for any linear map $A : \mathbb{R}^d \to \mathbb{R}^d$, such that $A(K) \subset K$ and $P_A(\tilde{K})$ has diameter less than D in \tilde{K} $d(P_A\tilde{v}_1, P_A\tilde{v}_2) \leq \theta d(\tilde{v}_1, \tilde{v}_2)$.

Proof of Lemma 10. Since the definition of $d_K(\tilde{v}_1, \tilde{v}_2)$ deepends only on the section of K by the plane through v_1 and v_2 it is enough to establish the result for linear map from plane to plane. Now on the plane we can use y/x as a coordinate for the point (x, y). In this case $\tilde{K} = [0, \infty]$ and P_A is a fractional linear transformation. Also for $z_1 < z_2$

\[d_K(z_1, z_2) = \ln \left(\frac{z_2 - 0}{z_1 - 0} \lim_{z \to \infty} \frac{z_1 - z}{z_2 - z} \right) = \ln \frac{z_2}{z_1} = \int_{z_1}^{z_2} \frac{dz}{z}. \]

So we have to prove that any fractional linear transformation s from $[0, \infty]$ to itself such that $s(\infty)/s(0) < e^D$ contracts distance (7) by a factor which depends only on D. Since dilations preserve (7) we can assume that $s(\infty) = 1$ thus we have

\[w := s(z) = \frac{z + a}{z + b} \]

with $a/b > e^{-K}$. We have

\[\frac{dw}{dz} = \frac{b - a}{(z + b)^2} \]

so that

\[\frac{dw}{w} = \frac{z(b - a)}{(z + a)(z + b)} \frac{dz}{z} \]

But

\[\frac{z(b - a)}{(z + a)(z + b)} \leq \frac{b - a}{b} < 1 - e^{-D}. \]

It follows that

\[d_K(s(z_1), s(z_2)) = \int_{w_1}^{w_2} \frac{dw}{w} = \int_{z_1}^{z_2} \frac{z dw}{w dz} \]

\[< (1 - e^{-D}) \int_{z_1}^{z_2} \frac{dz}{z} < (1 - e^{-D})d(z_1, z_2). \]

(3) follows from Lemma 10 and contraction mapping principle.
Theorem 3. Let A be the matrix with non-negative entries such that for all i, j there exists n such that $A^n_{ij} > 0$. Then there exist lambda > 0 and c such that
(a) $\lambda e^{2\pi ir/c}$ are eigenvalues of A.
(b) A^c has c linearly independent positive eigenvectors with eigenvalues λ^c.
(c) All other eigenvalues have absolute value less than λ.
(d) There are no other positive eigenvectors.

Proof. Let $Z_{ij} = \{n : A^n_{ij} > 0\}$. Observe that $Z_{ij} + Z_{jk} \subset Z_{ik}$ in particular Z_{ii} are semigroups.

Lemma 11. If $a, b \in Z_{ii}$ let $q = \gcd(a, b)$. Then for large N $Nq \in Z_{ii}$.

Proof. We have $q = ma - nb$ for some $m, n \in \mathbb{N}$. Write $N = Lb + k$ then $Nq = (Lq - n)b + mk$. □

Corollary 12. Let c_i be the greatest common divisor of all numbers in Z_{ii}. Then $Z_{ii} = c_i\mathbb{N}$ — finitely many numbers.

Proof. Let $c_i^{(1)}$ be any number in Z_{ii}. Then $c_i^{(1)}\mathbb{N}$ is in Z_{ii} and if there are no other numbers in Z_{ii} then we are done. Otherwise if $b_i^{(1)} \in Z_{ii} - c_i^{(1)}\mathbb{N}$ then let $c_i^{(2)} = \gcd(c_i^{(1)}, b_i^{(1)})$. Then $c_i^{(2)}\mathbb{N}$ - a finite set is in Z_{ii} and if there are no other numbers in Z_{ii} then we are done. Otherwise if $b_i^{(2)} \in Z_{ii} - c_i^{(2)}\mathbb{N}$ then let $c_i^{(3)} = \gcd(c_i^{(2)}, b_i^{(2)})$ etc. Since $c_i^{(k)}$ is decreasing it must stabilize. □

Lemma 13. (a) Any two numbers in Z_{ij} are comparable mod c_i.
(b) Any two numbers in Z_{ji} are comparable mod c_i.
(c) $c_i = c$ do not depend on i.

Proof. (a) Let $n', n'' \in Z_{ij}, n \in Z_{ji}, m \in Z_{jj}$ then $n + n' = n + n'' = n + n' + m$ mod c_i. This prove (a) and (c). (b) is similar to (a). □

Let $V_m = \{i : Z_{ii} = m \mod c\}, L_m = \text{span}(e_i, i \in V_m)$. Then There exists N such that $A_{ij}^N > 0$ if and only if i and j belong to the same V_m. Thus by Theorem 2 A^N has unique eigenvector v_1 on L_1 with positive eigenvalue ν. Let $v_i = A^{i-1}v_1$. Since A commutes with A^N v_i are eigenvectors of A^N and since A has non-negative entries v_i are non-negative. Also $v_i \in L_i \mod c$. In particular by uniqueness of the positive eigenvalue $A^N v_1 = \nu v_1$. Let $\lambda = \nu^{1/c}$. Then $A^c(v_i) = \lambda^c(v_i)$.

Let $w_r = \sum_{j=1}^{c} e^{2\pi ijr/c} v_j$. Then $Aw_r = e^{2\pi ijr/c} w_r$. Finally by Theorem 2 all other eigenvalues of A^N are less than $\nu = \lambda^N$ in absolute value. Theorem 3 is proven. □
4.10 Weak Mixing.

Let U be a unitary operator and ϕ be a unit vector. Let
\[R_n = \langle U^n \phi, \phi \rangle. \]

Lemma 14. There is a probability measure σ_ϕ on $[0,1]$ such that
\[R_n = \int e^{2\pi i u} d\sigma(u). \]

Proof. For $0 < \rho < 1$ let
\[f(u, \rho) = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} R_{n-m} e^{2\pi i (m-n)} \rho^{n+m}. \]
Since $R_{n-m} = \langle U^n \phi, U^m \phi \rangle$ it follows that
\[f(u, \rho) = || \sum_n \rho^n e^{-2\pi i u} U^n \phi ||^2 \]
is a real positive number. Estimating terms in () by their absolute values we get $|f| \leq (1 - \rho)^{-2}$. Thus $f \in L^\infty(du) \subset L^2(du)$. Let us examine its Fourier series. We have
\[f = \sum_k R_k e^{-2\pi i u} \sum_m \rho^{k+2m} = \sum_k e^{-2\pi k} R_k \rho^k (1 - \rho^2)^{-1}. \]
Consider measures
\[d\sigma_\rho = (1 - \rho^2) f(u, \rho) du. \]
We have
\[\int e^{2\pi i u} d\sigma_\rho(u) = R_k \rho^k. \]
Hence as $\rho \to 1$
\[\int e^{2\pi i u} d\sigma_\rho(u) \to R_k. \]
Since linear combinatorials of $e^{2\pi i u}$ are dense in $C(S^1)$ it follows that for any continuous function A
\[\int A(u) d\sigma_\rho(u) \to \sigma(A). \]

Exercise 14. Consider a full two shift with Bernoulli measure (that is the measure of each cylinder of size n is $(1/2)^n$) and let
\[\phi(x) = \sqrt{2} (I_{x_0=1, x_1=1} - I_{x_0=0, x_1=0}). \]
Find the spectral measure of ϕ with respect to $U(\phi) = \phi(\sigma x)$. \[\square \]
Exercise 15. Let $\Phi_n(u) = \frac{1}{n^2} \sum_{j,k=1}^n e^{2\pi i(j-k)u}$. Show that $\Phi_n(u) \to 0$, if $u \neq 0$ (and $\Phi_n(0) = 1$).

5.1 Expanding endomorphisms.

Let $f : S^1 \to S^1$ be a map such that $|f'| \geq \theta^{-1}$ for some $\theta < 1$. We call such map expanding. Given any diffeomorphism of S^1 let $\bar{g} : \mathbb{R} \to \mathbb{R}$ be its lift, that is $\pi \circ \bar{g} = g \circ \pi$, where $\pi : \mathbb{R} \to S^1$ is the natural projection. Define $\deg(g) = \bar{g}(x+1) - \bar{g}(x)$ (this number is easily seen to be independent of x and the lift \bar{g}). Let L be the space of maps $\bar{\tau} : \mathbb{R}^1 \to \mathbb{R}^1$ which are lifts of degree 1 maps. That is $\bar{\tau} - x$ is periodic. We endow L with the distance $d(\bar{\tau}_1, \bar{\tau}_2) = \sup_{x \in \mathbb{R}} |\bar{\tau}_1(x) - \bar{\tau}_2(x)| = \max_{x \in [0,1]} |\bar{\tau}_1(x) - \bar{\tau}_2(x)|$.

Lemma 15. Let f be an expanding map and g be a map of the same degree. Then given any two lifts \bar{f} and \bar{g} there is unique $\bar{\tau} \in L$ such that $\bar{f} \circ \bar{\tau} = \bar{\tau} \circ \bar{g}$.

Proof. $\bar{\tau}$ must satisfy $\bar{\tau}(x) = \bar{f}^{-1}(\bar{\tau}(\bar{g}(x)))$. Define $K : L \to L$ by $K(\bar{\tau})(x) = \bar{f}^{-1}(\bar{\tau}(\bar{g}(x)))$. Since f is expanding it follows from the Intermediate Value Theorem that $|\bar{f}^{-1}(x_1) - \bar{f}^{-1}(x_2)| \leq \theta |x_1 - x_2|$. Hence $d(K(\bar{\tau}_1), K(\bar{\tau}_1)) \leq \theta d(\bar{\tau}_1, \bar{\tau}_2)$. Now the result follows from the contraction mapping principle. □

Theorem 4. Any two expanding maps of the same degree are topologically conjugated.

Proof. Let \bar{f}_1 and \bar{f}_2 be lifts of two expanding maps. By Lemma 15 there are maps $\bar{\tau}_1, \bar{\tau}_2$ such that $\bar{\tau}_1 \circ \bar{f}_1 = \bar{f}_2 \circ \bar{\tau}_1$ and $\bar{\tau}_2 \circ \bar{f}_2 = \bar{f}_1 \circ \bar{\tau}_2$. Let $\bar{\tau} = \bar{\tau}_2 \circ \bar{\tau}_1$. Then $\bar{\tau} \circ \bar{f}_1 = \bar{f}_1 \circ \bar{\tau}$. By uniqueness part of Lemma 15 $\bar{\tau}_2 \circ \bar{\tau}_1 = \text{id}$. Likewise $\bar{\tau}_1 \circ \bar{\tau}_2 = \text{id}$. □

Exercise 16. Show that this conjugacy is typically NOT C^1.
