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Abstract

We study a particle moving in R2 under a constant (external) force
and bouncing off a periodic array of convex domains (scatterers); the
latter must satisfy a standard ‘finite horizon’ condition to prevent
‘ballistic’ (collision-free) motion. This model is known to physicists as
Galton board (it is also identical to a periodic Lorentz gas). Previous
heuristic and experimental studies have suggested that the particle’s
speed v(t) should grow as t1/3 and its coordinate x(t) as t2/3. We
prove these conjectures rigorously; we also find limit distributions for
the rescaled velocity t−1/3v(t) and position t−2/3x(t). In addition,
quite unexpectedly, we discover that the particle’s motion is recurrent.
That means that a ball dropped on an idealized Galton board will roll
down but from time to time it should bounce all the way back up
(with probability one).

1 Introduction

Galton board [21, Chapter V], also known as quincunx or bean machine,
is one of the simplest mechanical devices exhibiting stochastic behavior. It
consists of a vertical (or inclined) board with interleaved rows of pegs. A
ball thrown into the Galton board moves under gravitation and bounces off
the pegs on its way down. If many balls are thrown into the quincunx, then
one can observe a normal distribution of balls coming to rest on the machine
floor.

In this paper we deal with an idealized infinite Galton board: we consider
a ball moving in a bean machine of infinite length under a constant external
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field. We neglect friction and the spin of the ball. Our pegs are convex
obstacles (scatterers) positioned periodically on the board and satisfying the
‘finite horizon’ condition (the latter means that the ball cannot move in any
direction indefinitely without meeting a scatterer).

This model is identical to a periodic Lorentz gas. Historically, Lorentz gas
(in the 3D space and without necessarily periodic position of scatterers) was
introduced in 1905, see [26], to illustrate the transport of electrons in metals
in a spatially homogeneous electric field. Periodic Lorentz gases have been
later studied mathematically [2, 3, 33]. Without external fields, the periodic
Lorentz gas reduces to a billiard system on its fundamental domain (a torus
minus scatterers). This is a dispersing billiard (Sinai billiard); it preserves a
Liouville (equilibrium) measure and has strong ergodic and statistical prop-
erties, in particular it exhibits diffusive behavior, see [2, 3, 5, 33, 35].

Under a constant external field, the moving particle is likely to acceler-
ate indefinitely, thus the system does not even have a stationary measure
(physicists say that there is no steady state). Such a non-stationary behav-
ior makes mathematical studies very difficult and may explain the lack of
rigorous results (until now), despite persistent interest in physics community
[4, 23, 24, 27, 28, 30, 31]. To make things more tractable, one can remove the
excess of energy in various ways (deterministically or stochastically). One
way to do that is to modify the equations of motion by introducing the so-
called Gaussian thermostat [9, 10, 28]; this will keep the particle’s speed
constant. A rigorous investigation of the Gaussian thermostatted Lorentz
particle under a small external field is done in [9]: it is proven that the dy-
namics has a stationary measure (steady state), the particle exhibits diffusive
behavior and, in addition, it slowly drifts with an average velocity propor-
tional to the field (Ohm’s law), see [9, 10]. If the field is not small, computer
experiments [12] show that the particle’s trajectory converges either to a
fractal set or to a stable periodic orbit.

Here we return to an ‘unaltered’ periodic Lorentz gas in a constant ex-
ternal field, i.e. we do not apply Gaussian (or any other) thermostat. To
deal with indefinite acceleration and the lack of finite invariant measures we
develop non-traditional approaches and arrive at unusual results, see below.

We note that due to the conservation of the total energy, the particle’s
speed v(t) depends on its displacement in the direction of the field x(t), see
Fig. 1; precisely we have v2(t) = ax(t)+ b for some constants a, b > 0. So the
farther the particle travels (in the x direction), the faster it moves. On the
other hand, higher speed leads to a stronger scattering effect, thus increasing
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the chances that the particle bounces back and hence temporarily decelerates
(this is similar to Fermi, or diffusive shock acceleration [22, 36]).

x

0

g

Figure 1: A trajectory of the Galton particle under an external field g.

It turns out that the backscattering effect slows down the particle’s drift
in the direction of the field so much that its average displacement 〈x(t)〉 at
time t will only grow as ta with some a < 1. Physicists have estimated
[24, 28, 30, 31], using heuristic and approximative arguments, as well as
computer simulation, that the displacement of the particle typically grows
as t2/3. Due to the conservation of energy, the speed then grows as t1/3.

We present here the first mathematically rigorous study of this model.
We prove that, under certain conditions, the particle’s displacement x(t)
indeed grows as t2/3 and its velocity v(t) grows as t1/3. We also find limit
distributions for the rescaled velocity t−1/3v(t) and rescaled position t−2/3x(t).
In this respect our results agree with earlier heuristics.

On the other hand, we discover, quite surprisingly, that the particle’s
motion is recurrent; precisely there are thresholds Cv > 0 and Cx > 0 such
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that with probability one

lim inf
t→∞

v(t) ≤ Cv and lim inf
t→∞

x(t) ≤ Cx.

In other words, the particle slows down and effectively returns to the Cx-
vicinity of its initial state infinitely many times!

Such recurrent behavior apparently contradicts common physical experi-
ence: we all know that a ball thrown into a real Galton board always rolls
down and ends up on the floor. But on the idealized board, rather paradox-
ically, the ball will almost surely bounce all the way back up! (Naturally,
this spectacular phenomenon is never observed in practice because physical
collisions are non-elastic and the ball is subject to friction [4, 23, 27].)

The recurrence in our model leads to an additional complication: if the
ball bounces back up too far, its speed may drop to almost zero, and its
motion will not be chaotic enough for us to control it by our methods. Thus
we need to prevent such returns, which we do in two different ways. First
we can assume that our Galton board has ‘open top’ through which the ball
simply escapes. Alternatively, we can close the top with a lid reflecting the
ball back down every time it hits the lid on its way up. In the latter case the
ball’s speed will be bounded below v ≥ vmin � 0. We find that on a closed
board the speed v(t) will indeed grow as t1/3 and the rescaled speed t−1/3v(t)
will converge to a random variable that we describe in this paper.

Let us formulate our results precisely. To be consistent with other related
papers ([24, 31] and especially [9]), we choose the coordinate frame so that
the constant external field g = (g, 0) is directed along the x axis. We denote
by q = (x, y) the particle’s position and by v its velocity vector.

The particle has unit mass, so the equations of motion (between collisions
with the scatterers) are

(1.1) q̇ = v, v̇ = g.

At every collision with scatterers, the velocity of the particle changes accord-
ing to the law of elastic impact:

(1.2) v+ = v− − 2 〈v,nq〉nq,

where v+ and v− refer to the postcollisional and precollisional velocities,
respectively, nq denotes the outward unit normal vector to the scatterer at

4



the collision point q, and 〈·, ·〉 stands for the scalar product. The system
preserves the total energy

(1.3) E = 1
2
[v(t)]2 − gx(t),

where v(t) = ‖v(t)‖ is the particle’s speed.
Since we are not interested in the displacement of the particle in the

y direction, we can replace our infinite board with a strip 0 ≤ y ≤ Ly

and impose periodic boundary conditions at y = 0 and y = Ly (so y will
be a cyclic coordinate). We assume a finite horizon, see above, to exclude
collision-free (‘ballistic’) motion of the particle.

Our ball starts on the line x = 0 with its y coordinate uniformly dis-
tributed on [0, Ly] (minus the scatterers that it crosses) and its initial velocity
is uniformly distributed in a sector

(1.4) SV,α = {v(0) : c1V ≤ ‖v(0)‖ ≤ c2V, |∠(v(0),g)| ≤ α}.

Here 0 < c1 < c2 are two constants whose values are irrelevant, and we
assume that V is large enough and α is small enough.

We distinguish between the ‘open’ machine where the ball coming back
to the line x = 0 escapes and the ‘closed’ one where the line x = 0 acts as a
mirror reflecting the ball back into x > 0.

Theorem 1. In the open board the ball escapes through x = 0 with probability
one.

Theorem 2. For the closed board there are constants c, V0 such that if V ≥
V0, then c t−1/3v(t) converges, as t →∞, to a random variable with density

3z

Γ(2/3)
exp

[
−z3

]
, z ≥ 0.

Accordingly, 2gc2t−2/3x(t) converges to a random variable with density

3

2Γ(2/3)
exp

[
−z3/2

]
, z ≥ 0.
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2 Preliminaries

Here we introduce basic notation and tools used in our analysis.
We denote by D the part of the Galton board available for the particle

(i.e., the half-infinite cylinder {x ≥ 0, 0 ≤ y ≤ Ly} minus the scatterers).
Thee phase space of a particle moving inD isM = D×R2, where R2 accounts
for the velocity vector. Equations of motion (1.1) define a continuous-time
dynamical system (flow) Φt : M → M. It is a Hamiltonian flow, hence it
preserves the Liouville measure, which is just the Lebesgue volume in M.
The 4D space M is foliated by the Φt-invariant 3D submanifolds of constant
energy

ME = {(q,v) ∈M : 1
2
v2 − gx = E}.

We also consider the 3D collision space Ω, which is the cross-section of
M consisting of points (q,v) ∈M, where q ∈ ∂D is the point of impact and
v is the outgoing (postcollisional) velocity vector (pointing inward D). Most
of the time we deal with the closed board, so that the line x = 0 will be a
part of the boundary (but the lines y = 0 and y = Ly are never parts of ∂D
because y is a cyclic coordinate).

We denote points of the collision space Ω by (q, u, K), where q ∈ ∂D
belongs to the board’s boundary, u = v/‖v‖ is a unit vector (pointing in
the direction of the postcollisional velocity), and K = 1

2
‖v‖2 is the kinetic

energy. Clearly the coordinates q, u, K are effectively one-dimensional (for
this reason we use the lower case characters). We denote by F : Ω → Ω
the induced collision map. It preserves the 2D submanifolds ΩE = Ω ∩ME

of constant total energy. The Liouville measure on M induces a smooth
F -invariant measure µ on Ω.

If we remove the external field (i.e. set g = 0), the particle will move with
constant velocity between collisions and its speed will remain unchanged at
all times, i.e. K ≡ const. Geometrically, its trajectory will not depend on
K, and it will coincide with the trajectory of a billiard particle (moving at
unit speed). Its collisions can be described by two variables, q and u, only.
We denote by Ω∗ = {(q, u)} the billiard collision space and by F∗ : Ω∗ → Ω∗
the billiard collision map. The map F∗ preserves a smooth measure µ∗ on
Ω∗; its density is proportional to 〈u,nq〉, in the notation of (1.2). Observe
that the spaces Ω and Ω∗ are not compact and both measures µ and µ∗ are
unbounded (σ-finite).

Furthermore, due to the periodicity of our array of scatterers, we can
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project the billiard dynamics onto a fundamental domain D0 of D, after
which the collision space will be compact, we denote it by Ω0 (in fact, Ω∗ is a
countable union of replicas of Ω0). The billiard map F∗ commutes with the
projection Ω∗ → Ω0, thus it naturally generates a map F0 : Ω0 → Ω0. The
latter preserves a smooth finite measure µ0 on Ω0 (which is just the restriction
of µ∗ to Ω0). We assume that µ0 is normalized, i.e. it is a probability measure.
The billiard map F∗ is strongly hyperbolic, it has stable and unstable cones,
as well as stable and unstable curves with uniform expansion and contraction
rates, cf. [11, Chapters 4–5].

We will also use another dynamical system – the one generated by a
particle moving in a small external field e = (e, 0) at unit speed and with
Gaussian thermostat. Its motion is governed by equations

(2.1) dq/dt = v, dv/dt = e− 〈e,v〉,

which ensure the unit speed throughout: ‖v(t)‖ ≡ 1. The ‘thermostatted’
dynamics induces another collision map, we call it F∗,e : Ω∗ → Ω∗. It also
commutes with the above projection Ω∗ → Ω0, thus it naturally induces
a map Fe : Ω0 → Ω0. For small e > 0, the map Fe has been thoroughly
investigated in [9, 6], it was proved to have a unique Sinai-Ruelle-Bowen
(SRB) measure, µe, which has strong statistical properties.

Next, recall that our initial condition (q(0),v(0)) is chosen randomly
according to a smooth probability measure, we denote it by µini, which is
concentrated on the sector SV,α ⊂ Ω specified by (1.4). This measure is
not invariant under the collision map F , and its images can be described
(rather informally) as follows. Let us partition the sector (1.4) into small
subdomains (cells) Di ⊂ SV,α and represent a smooth measure µini on SV,α as
a weighted sum of its restrictions to those cells (this is called ‘coarse-graining’
in physics).

Now the motion of our particle can be regarded as a small perturbation
of the billiard dynamics in D, as long as the kinetic energy K remains large
enough (which is guaranteed by our assumption on the largeness of V in (1.4),
see below). Thus the image of a small domain D ⊂ Ω under the map Fn gets
strongly expanded in the unstable direction of the billiard map F∗, strongly
contracted in the stable direction of the billiard map F∗, slightly deformed
in the transversal direction (along the K coordinate axis), and possibly cut
by singularities into many pieces. Thus, Fn(D) will soon look like a union of
one-dimensional curves, each of which resembles an unstable manifold of the
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billiard map F∗. Henceforth the measure Fn(µini) will evolve as a weighted
sum of smooth measures on unstable curves. Furthermore, the total energy
on such unstable curves will be virtually constant and its oscillations will
decrease as n →∞.

Motivated by these observations we introduce a family of smooth one-
dimensional measures on certain curves γ ⊂ ΩE (we call them unstable
curves) for large enough E. We follow a general scheme developed in [7,
Section 3.2] and [11, Section 7.4].

A detailed construction of invariant (stable and unstable) cones for small
perturbations of billiards, which have an integral of motion, is carried out in
[6]. Thus it applies to our flow Φt : ME →ME and our map F : ΩE → ΩE

as long as E is large enough, say E > Emin � 0. We will assume that V
in (1.4) is sufficiently large to ensure E > Emin. Thus there are stable and
unstable cones, Cs(X) and Cu(X), at every point X ∈ ΩE for all E > Emin.
The derivative DXF expands unstable vectors and contracts stable vectors:

‖DXFnv‖ ≤ Cϑn‖v‖ ∀v ∈ Cs(X), ‖DXF−nv‖ ≤ Cϑn‖v‖ ∀v ∈ Cu(X),

for all n ≥ 1, here ϑ < 1 and C > 0 are the hyperbolicity constants (there is
an adapted metric in which C = 1, see [7, Section 4.2]).

Now a curve γ ⊂ Ω is stable (unstable) if its tangent vector lies in the
stable (resp., unstable) cone at every point X ∈ γ. The image of a stable
(unstable) curve under F−1 (resp., under F) is a finite union of stable (resp.,
unstable) curves. (Note that the image of one curve may consist of several
curves because the map F has singularities, which are caused by grazing
collisions.) There is another technicality here – stable and unstable curves
need be homogeneous in order for us to control distortions; but the details
are irrelevant for us, they may be found in [6, page 216] or [11, Chapter 5].

Now a standard pair ` = (γ, ρ) is a C2 smooth unstable curve γ ⊂ ΩE with
a probability density ρ whose logarithm is ‘dynamically Hölder continuous’
(this notion was introduced by Young [35]); the latter means that for some
constants CD > 0 and θD < 1 and all X,Y ∈ γ

| ln ρ(X)− ln ρ(Y )| ≤ CD θ
s(X,Y )
D

where s(X, Y ) is the separation time (the first iteration of F when the images
of X and Y get separated by singularities); we refer to [7, Section 4.4] and
[11, Chapter 7] for precise definitions. We only note that ρ(X)/ρ(Y ) ≤ eCD ,
i.e. the density ρ is (uniformly) bounded away from zero and infinity.

8



For any standard pair ` = (γ, ρ) we denote by P` the probability measure
on γ with density ρ. For any function A : Ω → R we shall write

E`(A) =

∫
γ

A dP` =

∫
γ

A(x)ρ(x) dx.

The class of standard pairs remains invariant under F in the following sense:
for any standard pair ` = (γ, ρ) and k ≥ 1

(2.2) E`(A ◦ Fk) =
∞∑
i=1

ci,k E`i,k
(A)

where `i,k = (γi,k, ρi,k) are standard pairs (here γi,k’s are the components
of Fk(γ) and ρi,k denotes the conditional density of the measure Fk(P`)
on the component γi,k ⊂ Fk(γ)); we naturally have

∑
i ci,k = 1. Roughly

speaking, a standard pair is transformed by Fk into a finite or countable
family of standard pairs (with a factor measure defined by the sequence of
the coefficients {ci,k}).

This motivates the consideration of standard families – countable or even
uncountable families G = {`α} = {(γα, ρα)}, α ∈ A, of standard pairs with
a probability factor measure λG on the index set A. (The energy need not
be the same on different standard pairs in G.) Such a family induces a
probability measure µG on the union ∪αγα (and thus on Ω) defined by

µG(B) =

∫
A

P`α(B ∩ γα) dλG(α) ∀B ⊂ Ω.

For any function A : Ω → R we shall write

EG(A) =

∫
Ω

A dPG =

∫
A

∫
γα

A dP`α dλG(α).

Now it is clear that the image of a standard family under Fk, k ≥ 1, is
always a standard family. It is important to control the size of curves γα in
a standard family G. Let

ZG : = sup
ε>0

µG(rG < ε)

ε
= sup

ε>0

∫
P`α

(
x ∈ γα : rG(x) < ε

)
dλG(α)

ε
.

where rG(x) denotes the distance from x ∈ γα to the closer endpoint of the
curve γα. In other words, x divides γα into two subcurves, and rG(x) denotes
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the length of the shorter one. Observe that if G consists of a single standard
pair ` = (γ, ρ), then ZG ∼ [length(γ)]−1.

A standard pair ` = (γ, ρ) is proper if length(γ) ≥ δ0 = δ0(D), where
δ0 > 0 is a small constant that depends on the board D, see [7, 11]. Similarly,
a standard family G is said to be proper if ZG ≤ C0 = C0(D), see [11]. We
choose C0 so large that any proper standard pair is a proper standard family.

It is not hard to see that the initial measure µini = µG for a proper
standard family G (one only needs to represent µini by its conditional dis-
tributions on the fibers of a rather arbitrary smooth foliation of the sector
(1.4) by unstable curves; such foliations are also used elsewhere, see e.g. [7,
Section 3.2]).

Standard pairs and families can also be defined in Ω0, so that they will be
invariant (in the above sense) under the billiard map F0 and under the ‘ther-
mostatted’ map Fe for small e; in fact such standard pairs are constructed
in [7, Section 4.4] and [11, Section 7.4].

Lastly we state an important lemma that ensures that the images of any
short standard pair grow fast, effectively at an exponential rate. For the
proof we refer to [7, Lemma 4.10] and [6, Proposition 5.3]. Let ` = (γ, ρ) be
a standard pair and for n ≥ 1 and X ∈ γ let rn(X) denote the distance from
the point Fn(X) to the closer endpoint of the component γi,n ⊂ Fn(γ) that
contains the point Fn(X).

Lemma 2.1 (“Growth lemma”). We have three properties:
(a) There are constants β1 ∈ (0, 1) and β2 > 0, such that for any ε > 0

(2.3) P`

(
X : rn(X) < ε

)
≤ (β1/ϑ)n P`

(
x : r0 < εϑn

)
+ β2ε,

recall that ϑ < 1 is the hyperbolicity constant;
(b) There are constants β3, β4 > 0, such that if n ≥ β3

∣∣ ln length(γ)
∣∣, then

for any ε > 0 we have P`

(
X : rn(X) < ε

)
≤ β4ε.

(c) There are constants β5, β6 > 0 and θ ∈ (0, 1) such that for any n2 > n1 >
β5

∣∣ ln length(γ)
∣∣ we have

P`

(
X : max

n1<i<n2

ri(X) < δ0

)
≤ β6θ

n2−n1

All these estimates are uniform in ` = (γ, ρ).

Images of standard families grow up in a similar way. If a standard family
G is not proper (i.e. most of its standard pairs are ‘too short’), then its image
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Gn under Fn satisfies
ZGn ≤ c1ϑ

nZG + c2

for some constants c1, c2 > 0, see [11, page 171]. This effectively ensures an
exponential growth of predominantly short standard families.

Many of our statements will be formulated for proper standard pairs,
but they remain valid for proper standard families on which the energy E is
constant; this is a common fact [7, 11].

3 Approximations

Here we construct two convenient approximations to our dynamics. First,
if the speed ‖v(t)‖ is large, the velocity v(t) changes very little between
collisions, so the particle’s path between collisions goes closely to a link of
a billiard orbit. Billiard approximations are often used in the studies of
non-billiard mechanical models [9, 7].

Our system can be even better approximated by a ‘thermostatted’ particle
(2.1) in a small external field e, so that we can use the results of [9, 6] to our
advantage. Indeed, suppose our particle collides with a scatterer at a point
qn ∈ ∂D at time tn > 0 (here n is the collision number), and its next collision
occurs at a point qn+1 ∈ ∂D. We change time variable t̂ = (t− tn)‖v(tn)‖ so
that ‖dq/dt̂|t̂=0‖ = 1 (the particle has unit speed at the moment of the nth
collision). Then the equations of motion (1.1) transform to

(3.1) dq/dt̂ = v̂, dv̂/dt̂ = ε : = g/‖v(tn)‖2.

This trajectory is O(‖ε‖)-close to the billiard trajectory moving with a con-
stant (unit) velocity v̂(0).

On the other hand, the motion with a Gaussian thermostat is governed
by

(3.2) dq/dt̂ = v̂G, dv̂G/dt̂ = ε− 〈ε, v̂G〉,

where the force ε − 〈ε, v̂G〉 is obtained by projecting the constant force ε
of (3.1) onto the direction orthogonal to v̂G. Thus our trajectory (3.1) will
be O(‖ε‖2)-close to that of (3.2). In particular, the next collision point of
the trajectory (3.2) will be O(‖ε‖2)-close to qn+1, unless the latter lies in
the O(‖ε‖2)-vicinity of a singularity caused by a grazing collision, see Fig. 2
(right).
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Figure 2: Our moving particle (solid line) is approximated by a billiard
ball (straight dashed line) and by a Gaussian thermostatted particle (curved
dashed line).

We now construct an approximation to our system on a longer time in-
terval. Pick a moment t0 > 0 and a small ε > 0. We will use a new (fast)
time variable s = (t− t0)/

√
ε, in which the particle’s velocity is

(3.3) ṽ(s) = dq/ds = ε1/2v(t(s))

and its kinetic energy is

(3.4) K̃(s) = 1
2
‖ṽ(s)‖2 = εK(t(s)),

where K(t) = 1
2
‖v(t)‖2. We will call this ε-rescaled dynamics.

Denote by sn the moment of the nth collision (we start counting collisions
after s = 0). At the nth collision we denote by qn ∈ ∂D the collision point
and by un = ṽn/‖ṽn‖ the normalized postcollisional velocity vector. Observe
that

(3.5) dṽ/ds = εg,

i.e. the particle effectively moves in a small field εg. Now the collision map
acts in the ε-rescaled coordinates as

(3.6) F(qn, un, K̃n) = (qn+1, un+1, K̃n+1)

where K̃n = K̃(sn). Observe that the pair Xn = (qn, un) changes rapidly
and chaotically, while K̃n changes slowly. Thus we are in a framework of
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‘slow-fast’ systems, where X is a ‘fast variable’ and K̃ is a ‘slow variable’.
More precisely, since

dK̃

ds
=

d

ds

1

2
〈ṽ, ṽ〉 = ε〈ṽ,g〉,

we have

(3.7) K̃n+1 − K̃n = ε

∫ sn+1

sn

〈ṽ,g〉 ds = εgLn

where Ln denotes the displacement of the particle, in the x direction, between
the nth and (n + 1)st collisions. We denote this displacement by L(q, u, K̃),
because it is a function of (q, u, K̃), and we write Ln = L(qn, un, K̃n).

Next we approximate the motion between qn and qn+1 by that of a ther-
mostatted particle as described above. That particle starts at qn with the unit
speed un and then moves in the thermostatted constant field εn = εg/‖ṽn‖2

in accordance with (3.1) and (3.2). In the ‘adjusted’ time ŝ = (s − sn)‖ṽn‖
we have

dq/dŝ = v̂, dv̂/dŝ = εn − 〈εn, v̂〉,

which ensures a constant unit speed ‖v̂‖ ≡ 1. For the thermostatted particle,
we record the next collision point q̂n+1 and the corresponding outgoing (unit)
velocity vector ûn+1. Then

(3.8) X̂n+1 = (q̂n+1, ûn+1) = F∗,en(qn, un)

where

(3.9) en = ‖εn‖ =
εg

2K̃n

and F∗,e again denotes the collision map of the particle moving in a constant
external field (e, 0) at unit speed with a Gaussian thermostat. Let Le(q, u)
denote the corresponding displacement in the x direction of the thermostat-
ted particle between collisions.

Recall that our original particle moves according to (3.5), i.e. its trajectory
from Xn to Xn+1 is identical to that of a particle starting at Xn at unit
speed and moving toward Xn+1 in a constant field (e, 0) = (en, 0) (instead of
εg) without a thermostat. Now denote by U1

e the set of points (X, K̃) ∈ Ω
where these two trajectories land on different scatterers, i.e. where L(X, K̃)−

13



Le(X) = O(1). Clearly U1
e is a strip of width O(e2) between the singularity

curves of the corresponding maps F and Fe. Now we have

(3.10) Ln − Len(Xn) =

{
O(1) in U1

en

O(e2
n) elsewhere

Now we can rewrite (3.7) as

(3.11) K̃n+1 − K̃n = εgLen(Xn) +R1,

where

(3.12) R1 =

{
O(ε) in U1

en

O(ε3/K̃2
n) elsewhere

Let us also relate Len(Xn) to L0(Xn), which is the displacement in the x
direction of the billiard (straight) trajectory starting at Xn and running till
the next collision. Denote by U2

e the set of points where the corresponding
trajectories in these two dynamics land on different scatterers, i.e. where
Le(X) − L0(X) = O(1). Clearly U2

e is a strip of width O(e) between the
singularity curves of the corresponding maps Fe and F0. Then we have

(3.13) Le(X)− L0(X) =

{
O(1) if X ∈ U2

e

O(e) otherwise

4 Thermostatted dynamics

Here we recall and sharpen certain results of [9] on the ‘thermostatted’ colli-
sion map Fe. For brevity, we use notation µe(A) =

∫
Ω0

A dµe for any function
A : Ω0 → R .

It is proved in [9, Proposition 3] that for any piecewise Hölder continuous
function A : Ω0 → R

(4.1) µe(A) = µ0(A) +
∞∑

n=1

µ0

(
(A ◦ Fn

e )
[
1− exp(−eLe)

])
.

In physics, such expansions are known as Kawasaki formulas [34] (they de-
scribe a ‘nonlinear response’ of a system to perturbations). We note that
exp(−eLe) is just the Jacobian of the map Fe, see [9, page 584]. The terms in
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the series (4.1) decrease uniformly in e, and they are bounded by a stretched
exponential function, see below.

One of the main results of [9] is a discrete-time version of Ohm’s law:

(4.2) µe(Le) =
e

2

∞∑
n=−∞

µ0

(
(L0 ◦ Fn

0 ) L0

)
+ o(e).

This follows from (4.1) via an approximation argument, see [9, page 585].
We note that the correlations in the series in (4.2) is symmetric about n = 0.

We need to slightly improve the error term in (4.2):

Proposition 4.1. There is a δ > 0 such that

(4.3) µe(Le) =
e

2

∞∑
n=−∞

µ0

(
(L0 ◦ Fn

0 ) L0

)
+O(e1+δ).

Proof. Let A = 1
2
Le + 1

2
Le ◦ F−1

e . Due to the Fe-invariance of the measure
µe, and by (4.1), we have

µe(Le) = µe(A) = µ0(A) +
∞∑

n=1

µ0

(
(A ◦ Fn

e )
[
1− exp(−eLe)

])
= µ0(A) +

∞∑′

n=0

µ0

(
(Le ◦ Fn

e )
[
1− exp(−eLe)

])
,

where we use the following conventional summation sign:
∞∑′

n=0

an = 1
2
a0 + a1 + a2 + a3 + · · · .

It is known [9, page 585] that µ0(A) = 0 (this follows from the invariance of
the measure µ0 under the time reversal). Now the error term in (4.3) can be
expressed as

R∗ = e

∞∑′

n=0

µ0

(
(L0 ◦ Fn

e − L0 ◦ Fn
0 ) L0

)
+ e

∞∑′

n=0

µ0

(
(Le ◦ Fn

e − L0 ◦ Fn
e ) L0

)
+ e

∞∑′

n=0

µ0

(
(Le ◦ Fn

e ) ∆e

)
,(4.4)
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where
∆e = e−1

[
1− exp(−eLe)− eL0

]
.

For brevity, we rewrite (4.4) as

R∗ = e

∞∑′

n=0

I(1)
n + e

∞∑′

n=0

I(2)
n + e

∞∑′

n=0

I(3)
n .

It is shown in [9, Theorem 17] that the correlation-type terms I
(k)
n , k =

1, 2, 3, decay uniformly in e, and they are bounded by a stretched exponential
function: |I(k)

n | ≤ Cθ
√

n, where C > 0 and θ ∈ (0, 1) are constants (this bound
can be upgraded to an exponential one, in which

√
n is replaced by n, by

using the results of [6], but we will not need this).

We start analyzing the terms I
(1)
n , which are the hardest to deal with.

First we will estimate Θ = A ◦ Fn
e − A ◦ Fn

0 assuming that A is a smooth
function on Ω0. We use the following ‘telescoping’ sum:

Θ =
n−1∑
i=0

(
A ◦ Fi − A ◦ Fi+1

)
,

where Fi = F i
0 ◦ Fn−i

e . Due to the smoothness of A,

A(Fi(X))− A(Fi+1(X)) = A(F i
0(Y

′))− A(F i
0(Y

′′)),

≤ Const · dist
(
F i

0(Y
′),F i

0(Y
′′)
)
,(4.5)

where Y ′ = Fn−i
e (X) and Y ′′ = F0(Fn−i−1

e (X)). It is clear that dist(Y ′, Y ′′) =
O(e), unless the point Fn−i−1

e (X) lies in the O(e)-vicinity of singularities;
that vicinity has measure O(e), which is too small to affect our estimates (in
fact, it can be easily incorporated into the case (b) below).

Now assume that dist(Y ′, Y ′′) ≤ Ce and there is a stable manifold W s(Y ′)
for the billiard map F0, which passes through the point Y ′ and extends by the
distance 2Ce in both directions (if such a stable manifold does not exist, then
Y ′ belongs to a subset of points where stable manifolds are shorter than 2Ce,
and that subset has measure O(e), see [11, Section 4.12], so we can disregard
that tiny set). Now connect the point Y ′′ with a point Y ′′′ ∈ W s(Y ′) by an
unstable curve γ. For any unstable curve γ ⊂ Ω0 and X ∈ γ we denote by
JγFn

0 (X) the Jacobian of the map Fn
0 restricted to γ at X (i.e., JγFn

0 (X) is
the factor of expansion of γ under Fn

0 ). We have two cases:
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(a) if the map F i
0 is smooth on γ, then

dist(Fi(X), Fi+1(X)) ≤ Ce

∫
γ

∣∣JγF i
0(X)

∣∣ dmγ

where mγ denote the uniform probability measure on γ;

(b) otherwise we have dist(Fi(X), Fi+1(X)) = O(1).

Though unstable curves expand nonuniformly (and the factor of expansion is
unbounded near singularities), the situation is manageable because we only
need an integral estimate (4.4), i.e. we need to bound∫

Ω0

(A ◦ Fi − A ◦ Fi+1) L0 dµ0

for every 0 ≤ i < n. To this end we can foliate Ω0 by smooth unstable curves
on which the measure L0 dµ0 has smooth conditional densities (with respect
to the Lebesgue measure on those curves), thus we get L0 dµ0 = µG for a
proper standard family G, see definition in Section 2.

Lemma 4.2. There are large constants C, Λ > 1 such that for any proper
standard pair ` = (γ, ρ) and i ≥ 1∫

γ

∣∣A ◦ Fi − A ◦ Fi+1

∣∣ dP` ≤ CeΛi.

Proof. If we ignore the case (b) for a moment, then we would have∫
γ

|A ◦ Fi − A ◦ Fi+1| dP` ≤ Ce · length
(
F i

0(γ)
)

where “length” stands for the total length of the one-dimensional set F i
0(γ).

This set consists of Ki curves of uniformly bounded lengths, and Ki grows
at most exponentially in i, see [7, Section 4.4], thus

(4.6) length
(
F i

0(γ)
)
≤ ConstΛi

for some Λ > 1. To account for the case (b), we can just extend each
component of F i

0(γ) by an extra curve of length O(1), which will not affect
(4.6). �
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The above argument is designed for smooth functions A, now we need to
adapt it to A = L0. This function has discontinuities which coincide with
those of the billiard map F0, besides, the derivatives of L0 are unbounded.
To handle this case, we make a simple geometric observation (see, e.g. (A1.5)
in [3]) that for any unstable curve γ with endpoints X ′, X ′′ on which F0 is
smooth

|L0(X
′)− L0(X

′′)| ≤ Const
[
length(γ) + length(F0(γ))

]
.

Thus our analysis easily applies to the function A = L0.
Now integrating over ` ∈ G gives∫

Ω0

∣∣L0 ◦ Fi − L0 ◦ Fi+1

∣∣L0 dµ0 ≤ Const e Λi,

thus

|I(1)
n | ≤

n∑
i=0

CeΛi ≤ C1eΛ
n

for some constant C1 > 0.
Next we estimate I

(2)
n . It follows from (3.13) that |I(2)

n | ≤ C2e for some
constant C2 > 0, because Fn

e µ0(U2
e ) = O(e) (this last bound follows from

Growth Lemma, see [6, Proposition 6.2] and [9, page 587]).

Next we estimate I
(3)
n . It is easily seen that

∆e =

{
O(1) in U2

e

O(e) elsewhere

hence |I(3)
n | ≤ C3e for some C3 > 0.

Lastly, combining all our estimates gives∣∣∣∣ ∞∑′

n=0

I(1)
n

∣∣∣∣ ≤ ∣∣∣∣c|ln e|∑
n=0

C1eΛ
n
1

∣∣∣∣+ ∣∣∣∣ ∞∑
n=c|ln e|

Cθ
√

n

∣∣∣∣ = O(eδ)

for some δ > 0, provided c > 0 is small enough, and for k = 2, 3∣∣∣∣ ∞∑′

n=0

I(k)
n

∣∣∣∣ ≤ ∣∣∣∣c|ln e|∑
n=0

Cke

∣∣∣∣+ ∣∣∣∣ ∞∑
n=c|ln e|

Cθ
√

n

∣∣∣∣ = O(eδ).

As a result, R∗ = O(e1+δ). �

18



5 Limiting process for the kinetic energy

In this and subsequent sections we use elements of Ito calculus. We first
recall basic definitions and facts following [29, 32].

A (one-dimensional) Ito diffusion process is a stochastic process on R
satisfying stochastic differential equation (SDE)

(5.1) dY = a(Y ) dt + b(Y ) dWt, Y (0) = Y0,

where Wt denotes the standard Wiener process on R and a(y) and b(y) are
smooth functions; a(Y ) is called the drift coefficient and b(Y ) the diffu-
sion coefficient. Equation (5.1) has a (unique) solution, which is a time-
homogeneous Markov process and has continuous paths. It is a martingale
if and only if a = 0.

Consider another process Z = φ(Y ), where φ is a smooth function. The
Ito formula asserts that

dZ =
[
φ′(Y )a(Y ) + 1

2
φ′′(Y )b2(Y )

]
dt + φ′(Y )b(Y ) dWt,(5.2)

thus Z is also an Ito diffusion process.
We now return to our system. Let K̄ ≥ 0 and `ε = (γε, ρε) a one-

parameter family of standard pairs such that length(γε) ≥ ε100 and for some
(=for any) point (Xε, K̃ε) ∈ `ε we have K̃ε → K̄ as ε → 0.

The following theorem will be proved in Sections 7 and 8.

Theorem 3. Assume that (X(0), K̃(0)) is chosen according to the probability
measure P`ε, where `ε is as above. Then there is a constant σ > 0 such that
in the ε-rescaled dynamics the random function K̃(ξε−2), for 0 < ξ < 1,
weakly converges to an Ito disffusion process K(ξ) on [0,∞) satisfying SDE

(5.3) dK =
σ2

2
√

2K
dξ + (2K)1/4σ dWξ, K(0) = K̄

which, additionally, reflects at the point ξ = 0.

Observe that the drift coefficient in (5.3) has singularity at 0, so we need
to be careful defining its solution at this point. We shall show that the
process Z = K3/2 satisfies equation (5.4), see below, whose coefficients are
regular enough to guarantee the existence and uniqueness of its solution. By
a solution to (5.3) we shall mean K(ξ) = Z2/3(ξ), where Z is the solution to
(5.4).
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The foregoing discussion indicates that 0 is a special point for the limiting
process (5.3). It also has a special character in the dynamical sense – when
the particle’s velocity is small (close to zero), its motion may differ signifi-
cantly from that of a billiard particle. Accordingly, our proof of Theorem 3
consists of two parts. First we show in Section 7 that the result is true if
K̄ > 0 and when K(t) stays away from 0. Then in Section 8 we extend the
result to the special case K̄ = 0.

Combining (5.3) and (5.2) shows that the process Z = K3/2 satisfies

dZ =
3σ2

2
√

2
dξ +

3 4
√

2 σ

2

√
Z dWξ

with reflections at 0. Changing the time variable ξ = 8
√

2
9σ2 η gives

(5.4) dZ =
4

3
dη + 2

√
Z dWη.

Hence Z is a Bessel square process of dimension 4/3 (its index = −1/3), see
e.g. [32, Section XI.1]. Thus the properties of K can be derived from those
of Z.

First of all, the process solving (5.4) exists and is unique, hence so is
the process K solving (5.3). Second, Z is recurrent, in fact it hits zero
infinitely many times with probability one, hence our process K has the
same properties. Third, if K(0) = 0 then for any ξ > 0 the random variable
c ξ−2/3K(ξ) has density

(5.5) f(x) = Const exp(−x3/2),

where c = c(σ) > 0.
This last fact readily implies Theorem 2, as we show next.

Proof of Theorem 2. We set K̄ = 0 and apply Theorem 3 to the proper
standard family G such that µG = µini (this is possible due to the remark in
the end of Section 2 and because the kinetic energy for X ∈ SV,α is uniformly

bounded). Remembering that t =
√

εs (we set t0 = 0) and K(t) = ε−1K̂(s),
see (3.4), we conclude that

εK(ξε−3/2) = K̃(ξε−2) ⇒ K(ξ)

as ε → 0. Now changing variable ε = t−2/3, setting ξ = 1, and using (5.5)
yield Theorem 2. �

20



Next we derive other useful properties of the limit diffusion process K(t).
Combining (5.3) and (5.2) shows that the process L =

√
K satisfies

dL =
σ

23/4L1/2
dWξ,

so the drift is missing, hence this process is a martingale (during intervals of
time when it stays strictly positive).

Given ξ0 > 0 with K(ξ0) > 0 we denote by ξ1 > ξ0 the first time the
process K(ξ) goes up to 2K(ξ0) or down to 1

2
K(ξ0). Denote

(5.6) p = P
(
K(ξ1) = 1

2
K(ξ0)

)
and 1− p = P

(
K(ξ1) = 2K(ξ0)

)
.

Since
√
K is a martingale, we have

(5.7)
√
K(ξ0) = p

√
K(ξ0)/2 + (1− p)

√
2K(ξ0),

whence p = 2 −
√

2 ≈ 0.59, i.e. the process K is more likely to decrease by
half than to double its value.

Furthermore, let ξ0 < ξ1 < ξ2 < · · · denote consecutive time moments
such that ξk is the first time when K(ξk) = 2nK(ξk−1) for some n = ±1.
Then the process Zk = log2K(ξk)− log2K(ξ0) is a simple random walk on Z
defined by

(5.8) P(Zk = Zk−1 − 1) = p and P(Zk = Zk−1 + 1) = 1− p.

Since p > 0.5, the random walk escapes to −∞ with probability one. This
actually confirms the recurrence of K(ξ).

Next, it is easy to see that the distribution of the rescaled process c−2/3K(ct)
is independent of c. Let τR denote the first time when K(τ) = R (assuming
that K(0) = 0). Then the distribution of τR/R3/2 is independent of R.

Fix a δ > 0. We define a δ-excursion of K to be a maximal interval of
time [a, b) such that K(a) = δ and K(s) > δ/2 for s ∈ [a, b). Let τ δ = b− a.
There may be many δ-excursions τ δ,1, τ δ,2 . . . on any trajectory of K, and
τ δ,1, τ δ,2 . . . are i.i.d. random variables (because K is a time-homogeneous
Markov process). We easily see that

(5.9) the distribution of τ δ/δ
3/2 is independent of δ.

Lemma 5.1. We have the following ‘tail estimate’:

(5.10) P(τ 1 > A) ∼ Const

A1/3
as A →∞.
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The idea of the proof is the following. Observe that if τ 1 > A, then due
to (5.5) we have

max
[a,b]

K(t) ∼ A2/3,

where [a, b] is the interval corresponding to τ 1. On the other hand,

P
(
K(t) reaches A2/3 before 1/2

)
=

Const

A1/3
,

since
√
K is a martingale. This explains (5.10). The precise proof is very

similar to the proof of Lemma 8.1 given in Section 10, so we leave the proof
of Lemma 5.1 to the reader.

Now let Tn(δ) =
∑n

i=1 τ δ,i denote the total time of the first n δ-excursions;
it is the sum of n independent random variables each having the distribution
of τ δ.

Corollary 5.2. The distribution of Tn(δ)

δ3/2n3 does not depend on δ. It approaches
a limit distribution as n →∞.

Proof. The first claim follows from (5.9). The second follows from (5.10)
and a standard limit theorem for sum of independent random variables with
heavy tails (see, e.g., [20, Section 2.7]). �

Lastly we comment on the recurrent character of our limit process K(ξ).
It means that the kinetic energy K(t), and hence the coordinate x(t), of the
Galton particle must evolve in a similar manner – its excursions into the
depth of the Galton board must alternate with retreats to a vicinity of the
starting line x = 0. As time goes on, excursions tend to last longer and longer
and extend farther and farther (because the coordinate x(t) must grow as
t2/3), but every excursion is followed by a retreat of the particle back to the
initial region x ≈ 0. All this will be established in the subsequent sections.

6 Proof of Theorem 1

Since the limit stochastic process K(t) constructed in the previous section
is recurrent, almost every trajectory of K(t) returns to zero infinitely many
times. In Section 10 we prove the following lemma, which effectively means
recurrence for the Galton particle on a closed board.
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Lemma 6.1. There is a large constant Kmin > 0 such that for every standard
pair ` = (γ, ρ) with γ ⊂ ΩE, E > Emin, we have

P`

((
X(0), K(0)

)
∈ γ : inf

t>0
K(t) > max{Kmin, E}

)
= 0,

i.e. almost every trajectory originating from γ eventually slows down to the
level max{Kmin, E}.

Recall that K(t) ≥ E due to (1.3). Hence the lemma tells us that if
E > Kmin, then almost every trajectory starting at γ ⊂ ΩE eventually hits
the line x = 0. If E is not very large (E < Kmin), then almost every trajectory
originating from γ ⊂ ΩE eventually goes under the line x = (Kmin − E)/g.
We also note that even if E is not very large, the initial kinetic energy K(0)
may be arbitrarily large, as it depends on the x coordinate of points on γ.

We now derive Theorem 1 from Lemma 6.1 using an idea of J. Littlewood
[25]. Let

ΩA,B = {(q, u, K) ∈ Ω: x(q) ≤ A, K ≤ B},

where x(q) denotes the x coordinate of the point q ∈ ∂D. Observe that
µ(ΩA,B) < ∞ for every A, B.

Let Emax denote the maximal total energy of trajectories originating from
the sector SV,α defined by (1.4) and pick any A > (Kmin − Emin)/g and
B > Emax. Then the trajectories originating from (1.4) fill a subset of positive
µ measure in ΩA,B, and almost all of them come back to ΩA,B (after leaving
that set), according to Lemma 6.1. Denote

Ω∗ = ΩA,B ∩
(
∪∞n=0Fn(SV,α)

)
.

We see that µ(Ω∗) < ∞ and the return map

F∗(x) = Fk(x), k = min{n ≥ 1: Fn(x) ∈ Ω∗}

is defined almost everywhere on Ω∗. It then easily follows from the Poincaré
recurrence theorem that almost every initial state (X, K) ∈ SV,α returns to
SV,α. But such a return obviously means that on the open Galton board the
trajectory just escapes through the opening x = 0. �

We remark that Theorem 1 remains true for any V > 0 used in the
definition (1.4), i.e. V does not have to be large. Indeed, if V is small,
then there are two types of trajectories originating from the initial sector
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SV,α. Some never reach high kinetic energy which would ensure hyperbolic
behavior; they simply return to the line x = 0 with probability one according
to the Poincaré recurrence theorem. Others do reach high kinetic energy that
ensures hyperbolicity, and to those we can apply the above argument again
(observe that hyperbolicity is ensured whenever K > Emin).

Of course, in order to apply our argument to trajectories of the second
type we need to foliate their union (at the moment when their kinetic energy
exceeds Emin) by smooth unstable curves (which, together with conditional
densities, become standard pairs). Such foliation is always possible because
the trajectories of the second type, at every iteration of the map F , occupy
countably many domains in Ω with piecewise smooth boundaries, since our
map F is piecewise smooth.

7 Proof of Theorem 3 away from K̃ = 0

We now start proving Theorem 3. In this section we work away from the
critical point K̃ = 0, i.e. assume K̃ ≥ K̃min for some K̃min > 0. The next
section deals with a delicate issue of approaching zero.

Lemma 7.1 (Averaging). Let K̄ > 0. Suppose `ε = (γε, ρε) is a family of
standard pairs such that length(γε) ≥ ε100 and chose a point (Xε, K̃ε) ∈ `ε

we have K̃ε → K̄ as ε → 0. Then after N = C| ln ε| iterations we have

E`ε(LeN
◦ FN) =

εg

4K̃ε

∞∑
n=−∞

µ0

(
(L0 ◦ Fn

0 ) L0

)
+O(ε1+δ),

where C � 1 is a large constant, δ > 0 is a small constant, and we use
notation of Section 3.

Proof. This lemma is a close analogue of [7, Proposition 3.3] and [9, Propo-
sition 4]. First observe that the kinetic energy K̃ changes by O(εn) dur-
ing n iterations, according to (3.11), hence it stays in a narrow interval
K̄±Cε| ln ε|. Second, due to a standard growth lemma, see [7, Lemma 4.10],
it takes ∼ C0| ln ε| iterations of F to transform `ε into a proper standard fam-
ily, where C0 = C0(D) is a constant. We choose C � C0, hence effectively
we can assume that `ε is a proper standard pair.

Next we put e = εg
2K̄

and consider the ‘thermostatted’ collision map
Fe : Ω0 → Ω0. Recall that the map Xn 7→ Xn+1 is a O(ε2)-perturbation
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of the map Xn → Fe(Xn), cf. Section 3. Now a standard shadowing-type
argument used for hyperbolic systems with singularities yields

E`ε(LN ◦ FN) = µe0(Le0) +O(Nε2)

and O(Nε2) = O(ε2| ln ε|) � ε1+δ. For a detailed exposition of the afore-
mentioned shadowing-type argument we refer the reader to the proof of [7,
Proposition 3.3]. Hence our result follows from Proposition 4.1. �

We introduce two convenient notation:

σ̄2 = g2

∞∑
n=−∞

µ0

(
(L0 ◦ Fn

0 ) L0

)
and

ā(K) =
σ̄2

4K
, K > 0.

In the next theorem we assume that I = (K̃min, K̃max) is a finite interval
such that K̃min > 0. Given a point K̄ ∈ I, we suppose, just like in the
previous lemma, that `ε = (γε, ρε) is a family of standard pairs such that
length(γε) ≥ ε100 and for some (=for any) point (Xε, K̃ε) ∈ `ε we have
K̃ε → K̄ as ε → 0.

Now we choose the initial state of the particle according to the probability
measure P`ε and let the particle move under the iterations of the map F as
long as its ε-rescaled kinetic energy K̃ = εK stays within the interval I.
Once it exists I, we stop the particle and ‘freeze’ its kinetic energy (forever).
We denote by K̃∗

n the so modified ε-rescaled kinetic energy of the particle at
the nth collision and by nI = min{n : K̃n /∈ I} be the first (discrete) time
when K̃n exits I (i.e. when K̃n and K̃∗

n start differ).

Theorem 4. Under the above conditions
(a) K̃∗

ξ̄ε−2 weakly converges to a stochastic process K∗(ξ̄) satisfying SDE

(7.1) dK∗ = ā(K∗) dξ̄ + σ̄ dWξ̄, K(0) = K̄,

and stopped when it exits I.
(b) The process K̃∗

n satisfies

E`ε

(
[K̃∗

nI
]1/2
)

= K̄1/2 +O(εδ).
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We note that part (b) can be rewritten as

E`ε

(
Φ(K̃∗

n)− Φ(K̃∗
0)
)

= O(ε2+δn)

for any function Φ that solves the differential equation σ̄2

2
Φ′′ + āΦ′ = 0; the

general solution of the latter is Φ(x) = c1

√
x + c2.

Observe that (7.1) and Ito’s formula (5.1) imply that the process Z =√
K∗ satisfies the SDE dZ = σ̄

2Z
dWξ̄, i.e. it has no drift, hence it is a martin-

gale (during intervals of time when K∗ stays within I).
Theorem 4 can be proven by standard techniques based on moment esti-

mation [7, 15, 19]. For completeness we outline its proof in Appendix.
Lastly we derive Theorem 3 (away from K = 0) from Theorem 4. The

latter describes the limit process K in the time variable ξ̄ = ε2n, which is
proportional to discrete time n (the collision counter). All we need is to
convert its result to continuous time ξ = ε2s used in Theorem 3. This is
done by a standard time change procedure which we sketch below.

As our particle moves at speed ṽ =
√

2K, it experiences

(7.2) n = sṽ/τ̄ + o(s)

collisions during a time interval of length s, where

τ̄ = π Area(D0)/length(∂D0)

is the mean free path for the billiard dynamics (D0 denotes the fundamental
domain of D). The relation (7.2) is an analogue of the law of large numbers
that can be proved by a fairly standard argument, see e.g. [7, Section 6.8].
Thus the time variable is changed by the rule

dξ̄ =

√
2K
τ̄

dξ.

The discrete-time diffusion coefficient σ̄2 also needs to be replaced with that
of the continuous time system according to a standard formula: σ2 = σ̄2/τ̄ .
Now (7.1) reads

dK =
σ2

2
√

2K
dξ + (2K)1/4σ dWξ,

as Theorem 3 claims.
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8 Proof of Theorem 3 for small energies

Theorem 4 almost proves Theorem 3 except that it requires us to stop the
process K∗(ξ̄) when its value becomes too small or too large. The later
restriction is harmless since K = ∞ is an ‘inaccessible point’ for our process;
precisely this means

P
(
max
[0,1]

K(ξ̄) > R
)
→ 0 as R →∞,

hence it can be easily ensured that the stopped process K∗ differs from the
actual one on a set of arbitrarily small probability.

The other restriction, which requires K to stay away from zero, is more
serious. First of all, since our initial kinetic energy is K = O(1), the limit
process starts at zero: K(0) = 0. Second, even if the Galton particle starts
with a high enough initial kinetic energy K(0) to ensure that K(0) > 0, we
would still have

lim inf
R→0

P
(
min
[0,1]

K(ξ̄) < R
)

> 0.

In fact both limiting processes defined by (5.3) and (7.1) visit zero infinitely
many times. Thus the vicinity of zero cannot be completely neglected.

To describe our idea we recall that Theorem 3 tells us that the actual
kinetic energy of the Galton particle during the time interval 0 < t < T
should be K(t) = O(T 2/3). For every trajectory K(t), 0 < t < T , and a
small δ > 0 we call a δ-excursion a maximal time interval (t1, t2) such that
K(t1) = δT 2/3 and K(t) > 1

2
δT 2/3 on [t1, t2).

Observe that δ-excursions of K(t), after ε-rescaling the dynamics and
time (as done earlier), will correspond to the δ-excursions of the limit pro-
cess K(ξ) defined in Section 5. Moreover, since we already have proved
Theorem 3 away from K = 0, it follows that for every δ > 0 the δ-excursions
of the process K(t) weakly converge to the δ-excursions of the process K(ξ).
It precisely means that if we cut and remove intervals complementary to
all the δ-excursions from both processes, we would have the desired weak
convergence.

It remains to show that the complements of the δ-excursions become
negligible as δ → 0. Precisely, let Jδ ⊂ [0, 1] be the union of all intervals
complementary to the δ-excursions of the limit process K(ξ) and |Jδ| denote
its Lebesgue measure. Then for every ε > 0

P
(
|Jδ| > ε

)
→ 0 as δ → 0
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which follows from known properties of the Bessel square process Z = K3/2,
cf. Section 5.

Similarly, let Jδ ⊂ [0, T ] be the union of all intervals complementary to
the δ-excursions of a trajectory K(t) and |Jδ| denote its Lebesgue measure.
We need to show that for every ε > 0

(8.1) P
(
|Jδ| > εT

)
→ 0 as δ → 0.

To this end, we will show that (i) there are not too many intervals comple-
mentary to the δ-excursions, and (ii) those intervals are not too large.

Let Mδ denote the number of the above intervals on a trajectory K(t),
0 < t < T ; observe that the number of δ-excursions on that same trajectory
must be Mδ ± 1. Since the δ-excursions of trajectories K(t) weakly converge
(with proper rescaling, see above) to those of the limit process K(ξ), an
analogue of Corollary 5.2 holds for our process K(t) as well; that is, the
total length of M first δ-excursions divided by (δT 2/3)3/2M3 = δ3/2TM3

converges in distribution, as M →∞, to a finite random variable. Since the
total length of all Mδ of our δ-excursions cannot exceed T , we conclude that
Mδ = O(δ−1/2). Furthermore, for any ε > 0

(8.2) P(Mδ ≥ Cδ−1/2−ε) → 0 as δ → 0.

Next we estimate the length of individual intervals complementary to the
δ-excursions. Let K > 0 and assume that the Galton particle starts on a
proper standard pair ` with a kinetic energy E`(K(0)) < K. Denote by τK

the first time the particle’s kinetic energy goes up to K.

Lemma 8.1. There are constants c, p > 0 such that P`

(
τK ≤ cK3/2

)
≥ p.

Note that this bound holds uniformly for any K(0) < K, in particular for
K(0) = 0. The proof of the lemma is quite long, it will be given in Section 10.

Now let ∆ be an arbitrary interval between two neighboring δ-excursions
on a trajectory K(t); the previous lemma implies that

(8.3) P
(
|∆| ≥ cδ3/2−εT

)
≤ (1− p)δ−ε

.

Combining (8.2) and (8.3) shows that for typical trajectories the total length
of all the Mδ intervals complementary to the δ-excursions does not exceed
cCδ1−2εT . This proves (8.1) and completes the proof of Theorem 3.
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9 Retreats of the Galton particle

In this section we prove Lemma 6.1. We need several elementary facts about
simple biased random walks which can be found e.g. in [1].

Proposition 9.1. Let ξ̃1, ξ̃2, . . . , ξ̃n, . . . be i.i.d. random variables such that
ξ̃n ∈ {−1, 1} and P(ξ̃n = −1) = p > 1/2. Denote X̃n = ξ̃1 + ξ̃2 + · · · + ξ̃n.
Then
(a) P

(
X̃n hits k ≥ 1 before −m ≤ −1

)
equals

(q/p)k − (q/p)m+k

1− (q/p)m+k
, where q = 1− p;

(b) P
(
X̃n = k for some n

)
= [(1− p)/p]k for every k ≥ 1;

(c) P
(
X̃n ≤ 0 for all n

)
= 2− 1/p > 0;

(d) For each c > E(ξ̃i) = 1 − 2p there are constants C > 0 and θ < 1 such
that P(X̃n > cn) ≤ Cθn.

Part (d) is just the standard law of large deviations. We shall also use
the following comparison criterion (see e.g., [16]).

Proposition 9.2. Let ξ̃1, ξ̃2, . . . , ξ̃n, . . . be the same random walk as above and
ξ1, ξ2, . . . , ξn, . . . another sequence of random variables such that ξn ∈ {−1, 1}
and for every n ≥ 1 we have the following bound on conditional probabilities:

P(ξn = −1| ξ1, . . . , ξn−1) ≥ p.

Denote Xn = ξ1 + ξ2 + · · · + ξn and X̃n = ξ̃1 + ξ̃2 + · · · + ξ̃n. Then for any
n ≥ 1 and m1, m2 ∈ Z we have

P
(
max
k≤n

X̃k ≤ m1 & min
k≤n

X̃k ≤ m2

)
≤ P

(
max
k≤n

Xk ≤ m1 & min
k≤n

Xk ≤ m2

)
.

We begin our proof of Lemma 6.1. For an easy control over the ki-
netic energy we introduce some convenient notation. For any point X =
(q, u, K) ∈ Ω we denote by K̂(X) the minimal kinetic energy of all points
X ′ = (q′, u′, K ′) ∈ Ω such that q and q′ belong to the same scatterer and
X and X ′ have the same total energy. (Clearly, the minimum is achieved
when q′ has the smallest x coordinate on the scatterer.) For any standard
pair ` = (γ, ρ) let K̂` denote the common value of K̂(X) for X ∈ γ. For a
given trajectory {Xn} we will put K̂n = K̂(Xn).
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Lemma 9.3. There exist a large constant Kmin � 1 and a small constant
p0 > 0 such that for every standard pair ` = (γ, ρ) there is n` ≥ 0 such that

(9.1) P`

(
min
n≤n`

K̂n ≤ Kmin

)
≥ p0.

First we derive Lemma 6.1 from (9.1). Recall that the image Fn(γ) is a
finite or countable union of unstable curves (which, along with the induced
measures, make standard pairs, cf. Section 2) and K̂n is constant on each of
them. Thus we can apply the above lemma to the components of Fn`(γ) on
which K̂n`

is still above Kmin, and then continue this procedure repeatedly;
the total measure of the remaining components (where the kinetic energy
exceeds Kmin), after k repetitions, will be≤ (1−p0)

k. This proves Lemma 6.1.
�

Next we prove Lemma 9.3. Observe that small standard pairs expand
under Fn, n ≥ 1, and their images consist, mostly, of proper standard pairs
due to part (c) of the Growth Lemma. Thus we can (and will) assume that
` is a proper standard pair.

We put Rn = 2nK` for n ∈ Z. Let σ1 : γ → N denote the first time when
either K̂σ ≥ R1 or K̂σ ≤ R−1. Thus K̂σ1 is close to Rζ1 where ζ1 ∈ {−1, +1}.
Let σ2 : γ → N, σ2 > σ1, denote the first time, after σ1, when either K̂σ ≥
Rζ1+1 or K̂σ ≤ Rζ1−1. Then K̂σ2 is close to Rζ2 where ζ2 ∈ {−2, 0, 2}. Then
we continue defining σk ≥ σk−1 and ζk = ζk−1 ± 1 for k > 2 by the same
procedure. We also set σ0 = ζ0 = 0.

Recall that the limiting process K satisfies (5.6) with p = 2−
√

2 ≈ 0.59.
By Theorem 3 (note that we use it “away from zero”, in which case it is
already proved), if K̂` ≥ Kmin and Kmin � 1 is large enough, then

P`(K̂σ1 ≤ R−1) ≥ 0.55 and P`(K̂σ1 ≥ R1) ≤ 0.45

Thus on at least 55% of the images of ` at time σ1 the kinetic energy will
decrease by half, and on at most 45% it will double. To extent this result
to σ2 (and further to σn, n ≥ 3), we need to apply Theorem 3 to the com-
ponents γσn,i ⊂ Fσn(γ) for n ≥ 2 (with induced measures on them). Recall,
however, that Theorem 3 only applies to standard pairs which are not too
small; it is easy to check that in our case it applies to components satisfy-
ing length(γσn,i) ≥ K̂−100

`n,i
. Accordingly, we define a decreasing sequence of

subsets γ ⊃ L1 ⊃ L2 ⊃ · · · by

Ln =
{
X ∈ γ : length

(
γσk

(X)
)
≥ [K̂σk

(X)]−100 for k = 1 . . . n
}
,
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where γj(X) denotes the component of F j(γ) containing the point F j(X).
Also consider an increasing sequence of subsets U1 ⊂ U2 ⊂ · · · ⊂ γ defined
by

Un =
{
X ∈ γ : min

1≤k≤n
K̂σk

(X) ≥ Kmin

}
.

Now Theorem 3 applies and gives

P`

(
{K̂σn+1 ≤ Rζn−1}

⋂
Ln+1

∣∣(Ln

⋂
Un)
)
≥ 0.55.

Therefore the random variables ζn, n ≥ 2, behave like the first variable ζ1,
but only after we restrict ζn to the set Ln ∩ Un. To discard that restriction,
we define a new sequence of random variables {ζ̂n} on γ as follows: we put
ζ̂n = ζn on Ln ∩ Un; and on the complement γ \ (Ln ∩ Un) we define ζ̂n

arbitrarily in such a way that the increment ζ̂n − ζ̂n−1 is independent of the
‘past history’ {ζ̂1 . . . ζ̂n−1} and must take two values: −1 with conditional
probability 0.55 and +1 with conditional probability 0.45. (Since (γ, P`) is a
Lebesgue space, such a construction is always possible.)

Thus, the sequence {ζ̂n} is in fact a combination of the real dynamics
on the images of γ and some abstract random variables that ‘take over’
whenever the images of γ either become too short or hit the destination (i.e.
their kinetic energy falls below Kmin). Observe that the process {ζ̂n} satisfies
ζ̂n+1 = ζ̂n ± 1 and

P(ζ̂n+1 = ζ̂n − 1| ζ̂1, . . . , ζ̂n) ≥ 0.55,

thus we can use Proposition 9.2 to compare {ζ̂n} to a simple random walk
{Xn} with transition probabilities

(9.2) P(Xn+1 = Xn − 1) = 0.55 and P(Xn+1 = Xn + 1) = 0.45.

Note also that we need to make

L = [log2(K̂`/KE)] + 1

steps down from K̂` to reach the destination Kmin. Now Proposition 9.1 (d)
ensures that there is a large constant C > 0 such that

P`(ζ̂N ≥ −L) < 0.01, N = [CL],

thus the random walk {ζ̂n} reaches the destination (the point −L) in N =
[CL] steps with probability > 0.99.
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Now observe that if ζ̂n(X) ≤ −L, then either the particle’s energy falls
below Kmin at some moment σj, j ≤ n, or

(9.3) length
(
γσj

(X)
)
≤ [K̂σj

(X)]−100 for some 1 ≤ j ≤ n.

We claim that the probability of the second alternative can be made arbi-
trarily small by choosing a sufficiently large Kmin. First we shall show that
there is a constant θ̄ < 1 such that for any k ≥ 1 and m ≥ 1

(9.4) P`

(
Card{n : ζ̂n = −L + m} > k

)
≤ θ̄k.

and

(9.5) P`

(
Card{n : ζ̂n = m} > k

)
≤ θ̄m+k.

Indeed every time we have ζ̂n = −L + m, the comparison with the ‘model’
random walk (9.2) and Proposition 9.1 (c) tell us that ζ̂ will never visit the
point −L + m again with a positive probability p ≥ 2/11. This immediately
proves (9.4) for k = 1 and θ̄ = 9/11, and then we use induction on k. To
prove (9.5), we note that by Proposition 9.1 (b) our sequence {ζn} reaches
the point m with probability ≤ θ̄m, and then we repeat the proof of (9.4).

Given a constant D > 0, we shall say that a point X ∈ γ and the
corresponding sequence {ζ̂n(X)} are D-good if for every m ≥ 0 we have

Card{n : ζn = −L + m} ≤ D(m + 1),

Card{n : ζn = −m} ≤ D(m + 1),(9.6)

Card{n : ζn = m} ≤ D/2m;

in other words, the trajectory of a D-good point does not visit any particular
point m > −L too many times (especially those near −L and near 0). Denote
by γD ⊂ γ the set of all D-good points on γ. Then (9.4)–(9.5) imply

(9.7) P`(γ \ γD) ≤ 2
∞∑

m=1

θ̄Dm +
∞∑

m=1

θ̄m+D/2m

=: φ(D).

Observe that φ(D) → 0 as D → ∞; hence the measure of the set of points
that are not D-good can be made arbitrarily small by choosing D large
enough. Next denote by γD,0 the set of D-good points X ∈ γD where (9.3)
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holds, i.e. whose images accidentally fall into inadmissibly short standard
pairs. Using part (b) of the Growth Lemma 2.1 gives

(9.8) P`(γD,0) ≤
∞∑

m=1

β4Dm

(2mKmin)99
,

which can be made arbitrarily small by choosing a sufficiently large Kmin

(assuming that D has been chosen already). (Observe that we only used
the first bound in (9.6), the other two will be used later.) Combining our
estimates we see that the measure

P`

(
X ∈ γ : min

n≤σN

K̂n(X) ≤ Kmin

)
can be made > 0.98 by first choosing large enough D to make (9.7) small,
and then choosing large enough Kmin to make (9.8) small. This completes
the proof of Lemma 9.3. �

Note that we have actually set p0 = 0.98, and in fact p0 could be made
as close to one as we pleased.

For our future purposes we need to improve Lemma 9.3, and to this end
we work with continuous time. Given a proper standard pair ` = (γ, ρ) we
consider the family of trajectories (X(t), K(t)) such that (X(0), K(0)) ∈ γ
equipped with probability measure P`. We denote by K` the minimal initial
kinetic energy K(0) on γ. For any R > 0 we denote by τR = min{t >
0: K(t) = R} the first time the kinetic energy hits R (we may have R < K`

or R > K`).
Now Lemma 9.3 can be restated as follows: for every standard pair ` =

(γ, ρ) with K` > Kmin there is t` ≥ 0 such that P`(τKmin
≤ t`) ≥ p0. We need

an explicit estimate for t`, at least for proper standard pairs.

Lemma 9.4. There exist a small constant p1 > 0 and a large constant Q > 0
such that for every proper standard pair ` = (γ, ρ) with initial kinetic energy
K` > Kmin we have

(9.9) P`

(
τKmin

≤ QK
3/2
`

)
≥ p1.

Proof. First we recall certain properties of the limiting process K(ξ), see
Section 5. It is is scale-invariant; in particular, the distribution of τR/R3/2 is
independent of R; here τR denotes the first time when K(τ) = R (assuming
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K(0) = 0). We restate this property a little differently. Let R > 0 and
assume that K(0) = K̄ ∈ (R/2, 2R); we consider min{τR/2, τ2R}, which is the
first time when the process hits either R/2 or 2R. Now there is a constant
c > 0 such that for any R > 0

(9.10) P
(
min{τR/2, τ2R} ≤ cR3/2

)
≥ 1/2,

i.e. it takes cR3/2 units of time for 50% of the process’ trajectories to escape
from the interval (R/2, 2R).

We now return to the Galton particle. By Theorem 3 (which we again
use “away from zero”, where it is already proved), a property similar to
(9.10) holds for the kinetic energy K(t) along trajectories starting from a
standard pair. Precisely, there is a large constant Rmin � 1 such that for
any R ≥ Rmin and any standard pair ` = (γ, ρ) such that length(γ) ≥ R−100

and R/2 < K(0) < 2R we have

(9.11) P`

(
min{τR/2, τ2R} ≤ cR3/2

)
≥ 1/2

(here c > 0 is a constant that should be somewhat larger than c in (9.10)).
Thus for at least 50% of points X ∈ γ their kinetic energy will have

left the interval (R/2, 2R) by the time cR3/2. The remaining points make
standard pairs at their first collision that occurs right after t = cR3/2. We
can apply (9.11) again to those standard pairs whose length is ≥ R−100; and
the union of shorter pairs will have relative measure < β4R

−100 due to part
(c) of the Growth Lemma. It follows by induction on k that

(9.12) P`

(
min{τR/2, τ2R} > kcR3/2

)
≤ k

R99
+

1

2k
.

Next we need to recall the key moments σn’s of our constructions in the proof
of Lemma 9.3 and express them in continuous time. Recall that σn+1(X) is
the first (discrete) moment of time, after σn(X), when the point Fσ(X)
belongs to a component γσ,i ⊂ Fσ(γ) on which K̂σ moves above Rζn+1 or
falls below Rζn−1. Now we denote by tn(X) the corresponding continuous
time when Φt(X) ∈ γσ,i. Observe that K(tn) will be close to Rζn . We also
set t0 = 0.

Now (9.12) implies that for any n ≥ 0 and k ≥ 1

(9.13) P`

(
tn+1 − tn > kcRζn

∣∣ (Ln

⋂
Un), ζn

)
≤ k

R99
ζn

+
1

2k
.
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Recall that in the proof of Lemma 9.3 we established that at least 98% of
trajectories originating on γ have three key properties: (i) their kinetic energy
falls below Kmin within N = [CL] steps, (ii) they avoid inadmissibly short
standard pairs at every ‘critical moment’ σn, and (iii) they are D-good. Now
we say that a point X ∈ γ is D-nice if it has all the properties (i)–(iii) and,
in addition, for each n

ζn = −L + m =⇒ tn+1 − tn ≤ (m + 1)DcR
3/2
−L+m,

ζn = −m =⇒ tn+1 − tn ≤ (m + 1)DcR
3/2
−m,(9.14)

ζn = +m =⇒ tn+1 − tn ≤ 2−mDcR
3/2
+m;

where m ≥ 0. According to (9.13), the measure of the set of points that are
D-good but not D-nice is bounded by

∞∑
m=0

D2(m + 1)2

2100mK100
min

+ 2
∞∑

m=0

D(m + 1)

2D(m+1)
+

∞∑
m=0

θ̄mD/2m

2D/2m ;

in the last sum we used the fact that the sequence {ζn} reaches the point
m ≥ 1 with probability ≤ θ̄m, see the proof of Lemma 9.3. As in that proof,
we can make the above sum less than 0.01 by first choosing large enough
D to suppress the last two sums and then choosing large enough Kmin to
suppress the first one. Thus we can guarantee that 97% of points X ∈ γ are
D-nice.

On the other hand, for every D-nice point X ∈ γ we can estimate the
time τKmin

it takes for the kinetic energy K(t) to fall below Kmin by

τKmin
≤

∞∑
m=0

D2(m + 1)2c[2−mK`]
3/2 +

∞∑
m=0

4−mD2c[2mK`]
3/2 = QK

3/2
` ,

where Q = Q(D) < ∞. Lemma 9.4 is proved �

Note that we have actually set p1 = 0.97; and just like p0 in the previous
lemma, p1 could be made as close to one as we pleased (at the expense of
increasing Q).

10 Excursions of the Galton particle

In this section we prove Lemma 8.1. Our proof proceeds in several steps.
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Step 1. We slightly modify (5.6) and the subsequent calculation of p =
2−

√
2 by replacing the ‘factor of 2’ by a ‘factor of 4’. More precisely, given

ξ0 > 0 with K(ξ0) > 0 we denote by ξ1 > ξ0 the first time the process K(ξ)
goes up to 4K(ξ0) or down to 1

4
K(ξ0). We denote p∗ = P

(
K(ξ1) = 1

4
K(ξ0)

)
and, because

√
K is a martingale, we set up an equation similar to (5.7) and

obtain p∗ = 2/3.
Next we derive a similar fact for the kinetic energy K(t) of trajectories

originating from a standard pair ` = (γ, ρ). We use the notation of the
previous section (in particular K` and τR). Note that τK`/4 ≤ τ4K`

means
that the kinetic energy K(t) goes down to 1

4
K` earlier than it goes up to 4K`,

i.e. P`

(
τK`/4 ≤ τ4K`

)
is the ‘dynamical’ counterpart of the above probability

p∗. Of course, the process K(t) is not a martingale, but the part (b) of
Theorem 4 allows us to treat the discrete time sequence {Kn} as a martingale
approximately, with the error term being O(ε2+δn); since n = O(ε−2), the
error term is simply O(εδ). Recall that Theorem 4 requires the standard pair
satisfy length(γ) ≥ ε100, so we can assume that length(γ) > K−100

` , identify ε
with K−1

` , and then apply Theorem 4 (b); now the same calculation as above
gives that

(10.1) P`

(
τK̂`/4 ≤ τ4K̂`

)
=

2

3
+O

(
K̂−δ1

`

)
with some constant δ1 > 0.

Step 2. We construct a sequence of times tn and a sequence of integers ζn,
just like in the previous section, but replacing the ‘factor of 2’ by a ‘factor of
4’; that is, we start with Rn = 4nK`, etc. In the previous step we established
that the sequence {ζn} approximately behaves as a simple random walk {ξn}
on Z with transition probabilities

(10.2) P(ξn+1 = ξn − 1) = 2/3 and P(ξn+1 = ξn + 1) = 1/3.

By Proposition 9.1 (a) we have

(10.3) P(ξn hits 1 earlier than −m) =
2m − 1

2m+1 − 1
=

1

2
+O

( 1

2m

)
.

Comparing our ‘dynamical’ sequence {ζn} with the random walk {ξn} (we
use Proposition 9.2 as in the previous section) gives

(10.4) P`

(
τ
K

1/2
`
≤ τ4K`

)
=

1

2
+O

(
K−δ2

`

)
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with some constant δ2 > 0; note that we set m = log4 K` when making
comparison with (10.3).

Step 3. So far, like in the previous section, we were estimating the
probability of our sequence {ζn} going down; but to prove Lemma 8.1 we
need to estimate the probability of K(t) going up! From now on we start
looking in the right direction, where ζn increases.

We claim that there are constants K̄ < ¯̄K and c1 > 0 such that for any
standard pair ` = (γ, ρ) such that K` ≥ ¯̄K and length(γ) ≥ K−100

` for all
K > K` we have

(10.5) P`(τK ≤ τK̄) ≥ c1

√
K`/K,

i.e. the probability that K(t) goes up to K earlier than down to K̄ is ≥
c1

√
K`/K.

To prove (10.5), we define a decreasing sequence of subsets γ = γ0 ⊃
γ1 ⊃ γ2 ⊃ · · · as follows. Let γ1 consist of points X ∈ γ where K(t) goes up

to 4K` before it comes down to K
1/2
` and at the first collision after reaching

4K` they belong to standard pairs of length ≥ (4K`)
−100. Then inductively,

let γi+1 ⊂ γi consist of points whose kinetic energy K(t), starting on the
standard pairs of energy ∼ 4iK` formed in the construction of γi, will go up
to 4i+1K` before it will come down to (4iK`)

1/2 and at the first collision after
reaching 4i+1K` they belong to standard pairs of length ≥ (4i+1K`)

−100.
We assume that K̄ is large enough to ensure a good approximation for

the transition probabilities in (10.1) (recall that Kmin in the previous section
served a similar purpose, so we may identify K̄ with Kmin). We also assume
that ¯̄K > K̄2 and observe that

(10.6) γm ⊂ {X ∈ γ : τK ≤ τK̄},

where m = [log4(K/K`)] + 1.
Due to (10.4) we have an estimate for conditional probability

P`

(
γi+1 | γi

)
=

1

2
+O

(
(4iK`)

−δ2
)

and obtain

P`(γm) = P`

(
γm | γm−1

)
P`

(
γm−1 | γm−2

)
· · ·P`

(
γ1 | γ0

)
=
(1

2

)m
m−1∏
i=0

[
1 +O

(
(4iK`)

−δ2
)]

= O
(√

K`/K
)
,(10.7)
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which readily implies (10.5).

Step 4. We claim that the estimate of Step 3 is sharp, namely that under
the same conditions

(10.8) P`(τK ≤ τK̄) ≤ c2

√
K`/K

for some constant c2 > 0. To this end we shall show, roughly speaking, that
the optimal way for the kinetic energy K(t) to reach a high level K (before
dropping to K̄) is exactly as described in the construction of γm, every other
way to reach K (before dropping to K̄) is less probable.

We begin by observing that the ‘target’ level K(t) = K corresponds to
ζn = m+ : = log4(K/K`) > 0 and the ‘bottom’ level K(t) = K̄ corresponds
to ζn = m− : = log4(K`/K̄) < 0. The ‘model’ random walk {ξn} defined by
(10.2) reaches m+ before m− with probability

(1/2)m+ − (1/2)m++m−

1− (1/2)m++m−
=

1

2m+

(
1 +O

( 1

2m−

))
=

√
K`

K

(
1 +O

(√
K̄

K`

))
,

cf. Proposition 9.1 (a). Our sequence {ζn} can be compared with another
simple random walk {ξ∗n} whose transition probabilities are

P(ξ∗n+1 = ξ∗n − 1) = 2/3− ε and P(ξ∗n+1 = ξ∗n + 1) = 1/3 + ε,

where ε > 0 can be made arbitrarily small by choosing sufficiently large
K̄. Then the comparison Proposition 9.2 shows that for any standard pair
` = (γ, ρ) such that length(γ) > K−100

` and K̄ < K` < K we have

(10.9) P`

(
τK ≤ τK̄

)
≤ 2

( 1
3

+ ε
2
3
− ε

)log4(K/K`)

≤ 2

(
K`

K

)0.49

.

This bound is weaker than the desired (10.8), but it will be helpful.
We now return to our sets γ0 ⊃ γ1 ⊃ · · · ⊃ γm constructed in Step 3

and examine which points of {X ∈ γ : τK ≤ τK̄} we missed. First, these are
points X ∈ γi, 0 ≤ i ≤ m − 1, whose kinetic energy K(t), starting on the
standard pairs of energy ∼ 4iK` formed in the construction of γi, will come
down to (4iK`)

1/2 before it goes up to 4i+1K`, and then still it goes up to
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4i+1K` before it comes further down to K̄. Second, these are points X ∈ γi

whose images at the first collision after reaching 4i+1K` belong to standard
pairs of length ≤ (4i+1K`)

−100.
Consider the points of the first type whose images at the first collision

after their kinetic energy drops to (4iK`)
1/2 belong to standard pairs of length

≥ (4iK`)
−50. The relative measure of the set of such points is bounded, due

to (10.9), by [
(4iK`)

1/2/4i+1K`

]0.49 ≤ (4iK`)
−0.2,

which can be incorporated into the error term of (10.7). So it is unlikely that
the kinetic energy deviates from the pattern described in Step 3.

It remains to estimate the measure of the set of points whose images fall
into inadmissibly short standard pairs. This set cannot be ignored as even
at the first step, i = 1, its measure is of order K−100

` , which may be much

larger than our estimate c2

√
K`/K. So we need to wait until short standard

pairs expand, by which time their kinetic energy may change significantly.
To account for the expansion of short standard pairs and the resulting

extra change of K(t), we define a sequence of ‘stopping times’ 0 = τ ∗0 <
τ ∗1 < · · · on γ as follows: τ ∗i+1(X) is the first time, after τ ∗i (X), such that
K(τ ∗m+1) ≥ 4K(τ ∗i ) and the image of X at the first collision after τ ∗m+1(X)
belongs to a standard pair of length ≥ [K(τ ∗m)]−100. In other words, not only
the kinetic energy must quadruple between τ ∗i and τ ∗i+1, but we also wait
until the point falls into an admissibly long standard pair (thus K(τ ∗i+1) may
be actually much larger than 4K(τ ∗i )). As before, it should normally take
m = log4(K/K`)+1 steps to reach the level K, but it may take fewer steps if
standard pairs expand slowly (and the kinetic energy happens to grow fast).

Considering separately two cases, as before,

(10.10)
{
X : τ ∗i+1 ≤ τ

K
1/2

τ∗
i

}
and

{
X : τ ∗i+1 > τ

K
1/2

τ∗
i

}
we obtain a conditional probability formula

P`

(
τ ∗i+1 ≤ τK̄ | τ ∗i ≤ τK̄

)
=

1

2
+O

(
(2iK`)

−δ3
)

for some constant δ3 > 0, with the main contribution coming from the first
alternative in (10.10). Therefore, as in (10.7), for every i ≥ 1 we have

P`

(
τ ∗i < τK̄

)
≤ C ′

(1

2

)i

,
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where C ′ > 0 is a constant. Now we have

(10.11) P`

(
τK ≤ τK̄

)
≤

m−1∑
i=0

P`

(
{τ ∗m−i < τK̄}

⋂
Ji

)
where

Ji =

{
m−i∏
j=1

(
K̂τ∗j+1

4Kτ∗j

)
≥ 4i

}
is the set of points X ∈ γ where K(τ ∗m−i) ≥ K.

Observe that J0 = γ, and actually the term i = 0 in (10.11) can be
estimated as in (10.7); but for the other terms we need a good upper bound
on the measure of Ji, i ≥ 1. These sets consist of points whose images fall
into short standard pairs for many consecutive iterations of F ; and by the
Growth Lemma 2.1 (c) short standard pairs expand to proper standard pairs
exponentially fast, which should make P`(Ji) small.

Also recall that the kinetic energy is proportional to the x coordinate of
the Galton particle, cf. (1.3), and the latter changes by ≤ max |L(X)| < ∞
between collisions, due to our finite horizon assumption. Thus when the
kinetic energy grows from 4iK` to 4i+1K`, the Galton particle must experience
at least c(4i+1K` − 4iK`) collisions, where c = c(D) > 0 is a constant, thus
we have > c4iK` iterations of F at our disposal. This allows us to prove that
for some constants C > 0 and θ < 1

P`

(
Ji | τ ∗m−i ≤ τK̄

)
≤ Cθc4i

(see [18], the proof of Lemma 11.2 for more details). Lastly we obtain

P`

(
τK ≤ τK̄

)
≤

m−1∑
i=0

P`

(
Ji | τ ∗m−i ≤ τK̄

)
P`

(
τ ∗m−i < τK̄

)
≤

m−1∑
i=0

CC ′θc4i

(1/2)m−i = O
(
(1/2)m

)
= O

(√
K`/K

)
,

which completes the proof of (10.8).

Step 5. We need an extension of (10.8), namely

(10.12) P`

(
nK3/2 ≤ τK ≤ τK̄

)
≤ c3θ

n
√

K`/K
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for some constants c3 > 0 and θ < 1 and all n ≥ 1. To prove this we just
amend our argument in Step 4 by using Lemma 9.4. The key estimate is

(10.13) P`

(
τ ∗i+1 − τ ∗i ≥ (4i+1K`)

3/2n | τ ∗i+1 ≤ τK̄

)
≤ θn

for every i ≥ 0 and n ≥ 1. Indeed, if K(τ ∗i ) < 4i+1K` (the ‘normal case’), we
apply Lemma 9.4 consecutively n times (recall that we may identify Kmin and
K̄). If K(τ ∗i ) ≥ 4i+1K` (the ‘abnormal case’), then we combine Lemma 9.4
with the previous estimates on the measure of Ji. After proving (10.13) we
continue arguing as in Step 4 to complete the proof of (10.12).

Step 6. For any X ∈ Ω, we call an excursion above K̄ a maximal time
interval [t1, t2] such that K(t) > K̄ for t1 < t < t2 and at the first collision

right after t1 the image of X belongs to a proper standard pair. Let [t
(i)
1 , t

(i)
2 ]

denote the ith excursion above K̄ along the trajectory of X and l(i) = t
(i)
2 −t

(i)
1

its duration. The following ‘tail bound’ is a dynamical analogue of (5.10):
for any proper standard pair `

(10.14) P`(l
(i) ≥ A) ≤ CA−1/3

for some constant C > 0 and all A > 0. Obviously, it is enough to prove
(10.14) for i = 1. Let M = max

[t
(1)
1 ,t

(1)
2 ]

K(t). Then

P`

(
l(1) ≥ A

)
≤ P`

(
M ≥ A2/3

)
+
∑
m≥0

P`

(A2/3

2m
≤ M ≤ A2/3

2m−1
, l(1) ≥ A

)
.

The first term here is O
(
1/
√

A2/3
)

by Step 4, while the mth term of the sum

is O
(
A−1/32m/2θ23m/2)

by Step 5. Summing up proves (10.14).

Step 7. According to Step 3, the probability that any given excursion
above K̄ reaches a high level K is ≥ cK−1/2 for some small constant c > 0.
A standard decorrelation argument [7, Lemma 6.11] shows that different
excursions are virtually independent. Hence there is a large C̄ > 0 such that
at least one of the first N = [C̄K1/2] excursions reaches the level K is > 0.99,

i.e. P`

(
τK ≤ t

(N)
2

)
≥ 0.99.

Next let lN =
∑N

i=1 l(i) denote the combined length of our N excursions

above K̄. In addition, denote by d(i) = t
(i)
1 − t

(i−1)
2 the length of the ith

interval between consecutive excursions and put dN =
∑N

i=1 d(i).
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To complete the proof of Lemma 8.1, it is obviously enough to show that
there are large constants Q > 0 and D > 0 such that

(10.15) P`

(
lN ≤ QK3/2

)
≥ 0.99

and

(10.16) P`

(
dN ≤ DK1/2 ln K

)
≥ 0.99.

To prove (10.15), we denote by Nm,Q the number of excursions of length
≥ 4−mQK3/2, i.e.

Nm,Q = Card
{
1 ≤ i ≤ N : l(i) > 4−mQK3/2

}
.

According to (10.14), we have

E`(Nm,Q) =
N∑

i=1

P`

(
l(i) > 4−mQK3/2

)
= O

(
22m/3Q−1/3

)
.

Given a proper standard pair ` = (γ, ρ) let γm,Q denote the set of points
X ∈ γ where Nm,Q ≥ 2m−1; now Chebyshev’s inequality gives

P`

(
γm,Q) ≤ 2−m+1E`(Nm,Q

)
= O

(
2−m/3Q−1/3

)
.

Observe that for each X ∈ γ \ ∪m≥1γm,Q we have

lN =
N∑

i=1

l(i) ≤
∞∑

m=1

2−mQK3/2 = QK3/2.

On the other hand,

P`

(
∪m≥1γm,Q

)
≤ Const

∑
m≥1

2−m/3Q−1/3 ≤ Const Q−1/3.

If Q is large enough, then P`

(
∪m≥1γm

)
< 0.01, which proves (10.15).

To prove (10.16), we first show that for some constants c̄ > 0 and θ̄ < 1
and all A > 0

(10.17) P`

(
d(i) > A

)
≤ c̄ θ̄A.
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Indeed, due to the conservation of energy (1.3) the condition K(t) ≤ K̄
corresponds to x(t) ≤ x̄ for some constant x̄ > 0, so (10.17) is equivalent to

(10.18) P`

(
max
0<t<A

x(t) < x̄
)
≤ c̄ θ̄A.

To prove this, consider a finite-size billiard table Dx̄ that is the union of the
rectangle D+

x̄ = {(x, y) : 0 < y < Ly, 0 < x < x̄} (minus the scatterers,
of course) and its mirror image, D−

x̄ , across the line x = 0. Imposing pe-
riodic boundary conditions on Dx̄ we get a dispersing billiard on a torus of
size (2x̄)× Ly with finitely many convex scatters; it has finite horizon. The
dynamics of the Galton particle, during time intervals when x(t) ≤ x̄, corre-
sponds to the motion of the billiard particle on Dx̄ subjected to an external
field that coincides with g on D+

x̄ and with −g on D−
x̄ (we note that adding

the mirror image of D+
x̄ across the line x = 0 is necessary to account for the

reflections of the Galton particle off the ‘lid’ x = 0). The Galton particle
crosses the line x = x̄ whenever our billiard particle on the table Dx̄ crosses
its left or right side.

The billiard system in Dx̄ has strong statistical properties, in particular
diffusive behavior [6]; the latter means that on the universal cover the average
displacement of the billiard particle in the x direction at time t is ∼

√
t.

Hence for some constants t̄ > 0 and p̄ > 0 and any proper standard pair `

P`

(
max
0<t<t̄

|x(t)| < x̄
)
≤ 1− p̄.

Now (10.18) can be obtained via Growth Lemma 2.1 and induction on A/t̄.
Lastly, due to (10.17), we have

P`

(
max

1≤i≤N
d(i) > D ln K

)
≤ Nc̄ θ̄D ln K

which is < 0.01 provided D > 0 large enough.
This completes the proof of (10.16) and that of Lemma 8.1.

A Proof of Theorem 4

The derivation of part (a) of Theorem 4 from Lemma 7.1 is very similar to
the arguments of [7, 15, 19]. Here we present the main steps following the
last reference since it gives a better bound on the error term (which is part
(b) of Theorem 4).
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Consider the stochastic process K†
ε(ξ) which coincides with K̃[ξε−2] as

long as ξε−2 ≤ nI , i.e. as long as K̃[ξε−2] stays within the interval I, and once
it exists that interval (i.e. for ξε−2 ≥ nI) we require that K†

ε(ξ) continues
as an abstract diffusion process satisfying (7.1) (in particular, its further
increments will be independent of our dynamical system).

The proof of part (a) consists of two standard steps:

(I) showing that the family {K†
ε(ξ)} is tight, hence it has at least one weak

limit point (i.e. any sequence {K†
εk

(ξ)}, εk → 0, contains a subsequence
weakly converging to a limit process);

(II) showing that finite-dimensional distributions of {K†
ε(ξ)} converge, as

ε → 0, to those of the (unique) diffusion process K∗(ξ) satisfying (7.1)
(but, unlike K∗ in Theorem 4, it is not stopped when it exists I).

Tightness means that typical trajectories of the family K†
ε(ξ) do not oscil-

late too much; its verification is a fairly routine procedure: one uses equidis-
tribution properties of the underlying dynamical system (in our case – the
averaging lemma 7.1) to estimate higher moments of the given family and
then deduces the tightness by a standard argument. Such proofs may be
found in [15, Section 7, steps 1 and 2] and [7, Section 6.5], and we refer the
reader to these works for more details.

The argument in Step (II) is specific to our system, so we sketch the
proof here. To verify the convergence of finite-dimensional distributions it is
enough to show that if K(ξ) is any weak limit point for the family {K†

ε(ξ)},
then for every finite ordered sequence of time moments 0 < s1 < s2 < · · · <
sr < T1 < T2 we have

E
([

Φ(K(T2))− Φ(K(T1))−
∫ T2

T1

(
ā(K)Φ′(K) +

σ̄2

2
Φ′′(K)

)
(ξ̄) dξ̄

]
×

r∏
j=1

Ψj(K(sj))

)
= 0

for a sufficiently large class of functions Φ and Ψj. We will assume that Φ is
C3 smooth and Ψj are Hölder continuous.

In terms of the kinetic energy process K̃n, the above relation means that
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given any fixed T > 0 we have

E`ε

([
Φ(K̃n∗1

)− Φ(K̃n∗2
)− ε2

n∗2∑
n=n∗1

(
ā(K̃n)Φ′(K̃n) +

σ̄2

2
Φ′′(K̃n)

)]

×
r∏

j=1

Ψj(K̃mj
)

)
= o(1)

as ε → 0, uniformly over m1 < m2 < · · · < mr < n1 < n2 < Tε−2, where we
denote n∗1 = min{n1, nI} and n∗2 = min{n2, nI}.

A standard decorrelation estimate [7, Lemma 6.11] allows us to eliminate
the Ψj(K̃mj

) factors and reduce the above expression to

(A.1) E`

[
Φ(K̃n̄∗)− Φ(K̃0)− ε2

n̄∗∑
n=0

(
ā(K̃n)Φ′(K̃n) +

σ̄2

2
Φ′′(K̃n)

)]
= o(1)

as ε → 0, uniformly over n̄ < Tε−2 and standard pairs ` = (γ, ρ) of
length(γ) > ε100; here we denote n̄∗ = min{n̄, nI}.

In addition, to prove part (b) of Theorem 4 we need the right hand side of
(A.1) be O(εδ), so we will prove (A.1) with an explicit error estimate. Using
(3.11) and Taylor expansion gives

Φ(K̃n+1)− Φ(K̃n) = εΦ′(K̃n)gLen(Xn) + Φ′(K̃n)R(n)
1

+ 1
2
ε2Φ′′(K̃n)g2L2

en
(Xn) + εΦ′′(K̃n)gLen(Xn)R(n)

1

+ 1
2
Φ′′(K̃n)(R(n)

1 )2 +O(ε3).(A.2)

First we observe that by (3.12), the transversality of unstable curves to the

singularity manifolds, and Growth Lemma 2.1 (b), we have E`(R(n)
1 ) = O(ε3)

uniformly in n ≥ 0. Thus the total contribution from every term in (A.2)

which contains R(n)
1 will be O(ε3n̄) = O(ε), so these terms can be neglected

altogether. Thus (A.2) reduces to

(A.3) Φ(K̃n+1)− Φ(K̃n) = εgΦ′(K̃n)Len(Xn) + 1
2
ε2g2Φ′′(K̃n)L2

en
(Xn)

where negligible terms are dropped for brevity.
We start by estimating the sum of the second terms in (A.3). Our idea is

that Φ′′(K̃n) changes with n very slowly, so we can accurately approximate
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it by a constant within N ∼ | ln ε| consecutive iterations of F , in the course
of which the sum of L2

en
(Xn) approaches its phase-space average, which, in

turn, is close to the corresponding billiard phase-space average µ0(L
2
0) =∫

Ω0
L2

0(X) dµ0(X).
Recall that the map Xn 7→ Xn+1 is an O(ε)-perturbation of the bil-

liard map Xn → F0(Xn), cf. Section 3. We use again, as in Section 7, the
shadowing-type argument (presented in detail in [7, Proposition 3.3]), which
gives

(A.4) E`

(
L2

eN
(XN)

)
= µ0(L

2
0) +O(εN)

for any N > 0, uniformly over standard pairs of length > ε100.
Next, we have K̃n = K̃n−2N +O(εN), and since Φ′′ is a Lipschitz contin-

uous function we can write

(A.5) E`

[
L2

en
(Xn)Φ′′(K̃n)1n<nI

]
= E`

[
L2

en
(Xn)Φ′′(K̃n−2N)1n<nI

]
+O(εN),

where 1Z stands for the indicator of the set Z. Consider the decomposition

E`

(
(A ◦ Fn−N)1nI>n−N

)
=
∑

α

cαE`α(A),

where `α = (γα, ρα) are the components of Fn−N(γ) on which K̃ has not ex-
ited the interval I yet, cf. (2.2). The crucial observation is that the function
K̃n−2N is approximately constant on the F−N -preimage of every γα; more
precisely, its oscillations do not exceed O(ϑN), where ϑ < 1 is the hyperbol-
icity constant. Replacing K̃n−2N with its average on the preimage of every
γα allows us to apply (A.4) to every component γα of length > ε100; the
contribution of shorter components is O(ε100) due to the Growth Lemma 2.1
(b). Thus

E`

[
L2

en
(Xn)Φ′′(K̃n−2N

)
1nI>n−N

]
= µ0(L

2
0) E`

[
Φ′′(K̃n−2N1nI>n−N

)]
+O(εN) +O(ϑN).(A.6)

Choosing N = C| ln ε| with a large C > 0 ensures that the combined error
term in (A.6) is O(ε| ln ε|).

However, (A.6) falls a little short of our goal because it contains 1nI>n−N

rather than 1nI>n−2N . The difference between those terms is

O
(
E`(1nI>n−N 6= 1nI>n−2N)

)
= O

(
P`(nI ∈ [n− 2N, n−N ])

)
,
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and we observe that
∑n̄∗

n=0 P`(nI ∈ [n−2N, n−N ]) ≤ N , hence this difference
will contribute to the final estimate a quantity of order ε2N , which is � εδ.
We record our final estimate for the sum of the second terms in (A.3)

(A.7) ε2 E
[ n̄∗∑

n=0

Φ′′(K̃n

)
L2

en

(
Xn

)]
= ε2 µ0(L

2
0) E`

[ n̄∗∑
n=0

Φ′′(K̃n

)]
+O(εδ).

We proceed to estimating the sum of the first terms in (A.3). Again ‘stepping
back’ 2N iterations (with N = C| ln ε|), using Taylor expansion and (3.11)
yield

Φ′(K̃n) = Φ′(K̃n−2N) + εg
n−1∑

j=n−2N

Φ′′(K̃n−2N)Lej
(Xj)

+
n−1∑

j=n−2N

Φ′′(K̃n−2N)R(j)
1 +O(ε2N2).(A.8)

As before, it is easy to see that the contribution of the last two terms can be
neglected, so we only have to analyze the first two.

An argument similar to the one used to derive (A.7) now gives

εgE`

[ n̄∗∑
n=0

Φ′(K̃n−2N

)
Len

(
Xn

)]
= ε2E`

[ n̄∗∑
n=0

Φ′(K̃n

)
ā
(
K̃n

)]
+O(εδ),

except here we use Lemma 7.1 instead of (A.4).
It remains to estimate the sum of the second terms in (A.8), i.e.

(A.9) ε2g2 E`

[ n̄∗∑
n=0

n−1∑
j=n−2N

Φ′′(K̃n−2N

)
Lej

(
Xj

)
Len

(
Xn

)]
Let N1 = N/100. It is also convenient to change the time variable k = n− j.
We have two cases:

Case 1: k ≥ 2N1. This is a relatively simple case, in which we can ‘decor-
relate’ the factors Len−k

(Xn−k) and Len(Xn). Consider the decomposition

E`

[
Φ′′(K̃n−2N

)
Len−k

(
Xn−k

)
Len

(
Xn

)
1n<nI

]
=
∑

α

cαE`α

[
Φ′′(K̃N1−2N

)
LeN1−k

(
XN1−k

)
LeN1

(
XN1

)]
+O

(
P`(nI ∈ [n−N1, n])

)
,
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where `α = (γα, ρα) are the components of Fn−N1(γ) on which K̃ has not ex-
ited the interval I yet. The first two factors, Φ′′(K̃N1−2N) and LeN1−k

(XN1−k),
vary little on every component γα; more precisely, their oscillations do not
exceed O(ϑN1). So we can approximate them by constants (say, their aver-
ages) on every γα; now Lemma 7.1 gives E`α(LeN1

(XN1)) = O(ε) for every
component γα of length > ε100, and the contribution of shorter components
is O(ε100) due to the Growth Lemma 2.1 (b). Thus

E`

[
Φ′′(K̃n−2N

)
Len−k

(
Xn−k

)
Len

(
Xn

)
1n<nI

]
= O(ϑN1) +O(ε3)

+O
(
P`(nI ∈ [n−N1, n])

)
.

We assume that N = C| ln ε| with such a large C > 0 that ϑN1 = O(ε3),
then the total contribution of the first two error terms to the final estimate
will be negligible.

Case 2: k < 2N1. In this case we no longer can ‘decorrelate’ the factors
Len−k

(Xn−k) and Len(Xn), so their correlation will appear in the final esti-
mate.

The transversality of unstable curves to singularities and the Growth
Lemma 2.1 imply that P`(F−nU2

ε ) = O(ε) uniformly in n ≥ Const | ln ε|,
thus (3.13) allows us to replace Len−k

(Xn−k)Len(Xn) by L0(Xn−k)L0(Xn) at
the cost of an extra error term O(ε3n̄∗N) = O(εN) in the final estimate. So
(A.9) can be replaced with

(A.10) ε2E`

[ n̄∗∑
n=0

2N∑
k=1

Φ′′(K̃n−2N

)
L0

(
Xn−k

)
L0(Xn)

]
,

and in Case 2 we restrict the internal sum to 1 ≤ k < 2N1.
We claim that

E`

[
Φ′′(K̃n−2N)L0(Xn−k

)
L0(Xn)1n<nI

]
= µ0

(
(L0 ◦ Fk

0 ) L0

)
× E`

[
Φ′′(K̃n−2N

)
1n−2N<nI

]
+O(εδ) +O

(
P`(nI ∈ [n− 2N, n])

)
.(A.11)

Indeed, as before, we can replace 1n<nI by 1n−2N<nI at the cost of an extra
error term O(P`(nI ∈ [n − 2N, n])) in the final estimate. Now the same
shadowing argument as before allows us to replace F with F0 and obtain

E`

[
Φ′′(K̃(Xn−2N)

)
L0

(
F2N−kXn−2N

)
L0

(
F2NXn−2N1n−2N<nI

)]
= E`

[
Φ′′(K̃(Xn−2N)

)
L0

(
F2N−k

0 Xn−2N

)
L0

(
F2N

0 Xn−2N

)
1n−2N<nI

]
+O(Nε).
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Next we consider a decomposition

E`

[
Φ′′(K̃(Xn−2N)

)
L0

(
F2N−k

0 Xn−2N

)
L0

(
F2N

0 Xn−2N

)
1n−2N<nI

]
=
∑

α

cαE`α

[
Φ′′(F−N1

0 K̃(Y )
)
L0

(
F2N−k−N1

0 Y
)
L0

(
F2N−N1

0 Y
)]

+O(Nε),

where `α = (γα, ρα) denote the components of FN1
0 ◦Fn−2N(γ); more precisely,

γα are obtained from the components of Fn−2N(γ) on which K̃ has not exited
the interval I yet, by pushing them forward under the billiard map FN1

0 . On
each component γα the first factor Φ′′(F−N1

0 K̃(Y )) varies little, namely, it
equals φα + O(ϑN1), where φα denotes its average on γα. So we need to
estimate ∑

α

cαφα E`α

[
L0

(
F2N−k−N1

0 Y
)
L0

(
F2N−N1

0 Y
)]

where the sum can be restricted to indices with length(γα) ≥ ε100, as the
contribution of shorter components is O(ε100). The equidistribution property
of the billiard map for ‘multiple observables’ [11, Theorem 7.33] implies∣∣∣E`α

[
(L0 ◦ F2N−k−N1

0 )(L0 ◦ F2N−N1
0 )

]
− µ0

(
(L0 ◦ Fk

0 ) L0

)∣∣∣ = O
(
θ2N−N1−k

)
for some constant θ < 1. So if N = C| ln ε| with a large enough C > 0, then
the above estimate becomes O(ε3).

Lastly we have∑
α

cαφα = E`

[
Φ′′(Kn−2N

)
1n−2N<nI

]
+O(θN1) +O(ε100),

which completes our proof of (A.11).
Now we perform summation over k in (A.11) and observe that

2N1−1∑
k=1

µ0

(
(L0 ◦ Fk

0 ) L0

)
=

∞∑
k=1

µ0

(
(L0 ◦ Fk

0 ) L0

)
+O(θN1)

=
1

2g2

[
σ̄2 − g2µ0(L

2
0)
]

+O(θN1)

for some constant θ < 1, due to exponential decay of correlations in dispersing
billiards.

Combining all our estimates we obtain (A.1) with error bound O
(
ε| ln ε|

)
,

which is even better than O(εδ) we need. This completes the proof of part
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(a). It almost gives the part (b) as well, except it can happen that nI > n̄.
However by part (a) there exists θ < 1 such that for any standard pair ` of
length> ε100 we have P`(nI > ε−2) < θ; hence by induction on k we get

(A.12) P`(nI > kε−2) < θk +O(kε100).

Next we decompose

E`ε

(
[K̃∗

nI
]1/2
)

= E`ε

(
[K̃∗

nI
]1/21nI≥ε−2−δ/2

)
+ E`ε

(
[K̃∗

nI
]1/21nI<ε−2−δ/2

)
.

The first term is O(ε99) due to (A.12), whereas the second term is K̄1/2 +
O(εδ/2) by our main estimate. This completes the proof of Theorem 4. �
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