LIMIT THEOREMS FOR PARTIALLY HYPERBOLIC SYSTEMS

DMITRY DOLGOPYAT

Abstract. We consider a large class of partially hyperbolic systems containing, among others, affine maps, frame flows on negatively curved manifolds and mostly contracting diffeomorphisms. If the rate of mixing is sufficiently high the system satisfies many classical limit theorems of probability theory.

1. Introduction.

The study of the statistical properties of deterministic systems constitutes an important branch of smooth ergodic theory. According to a modern view, a chaotic behavior of deterministic systems is caused by the exponential instability of nearby trajectories. The best illustration of this statement is provided by Axiom A diffeomorphisms where the expansion of some directions and the contraction of complementary ones are uniform. Both qualitative [2, 3, 8] and quantitative [64, 88, 91] properties of such systems are well understood.

Much less is known in other cases in spite of significant advances in the recent years. There are two main ways of weakening the uniform hyperbolicity conditions [68]. The first one is the theory of nonuniformly hyperbolic systems of Pesin [66, 67]. (Some refinements of this theory are given in [48, 74, 18, 63]). Now qualitative behavior of such systems is quite well understood. Interesting results concerning quantitative theory are obtained in [17, 58, 91, 92].

The second direction of research is the theory of partially hyperbolic systems. Here hyperbolicity should be uniform but only at some directions. The attraction of this theory is that the question about ergodic properties of a single diffeomorphism is reduced to the understanding of the ergodic behavior of usually large holonomy group [13], and the
larger the group the less invariant sets it has. Even though currently there are significant technical difficulties in justifying this reduction the conditions of the theorems obtained this way are relatively easy to check (see [75, 76, 90, 46, 14, 15]) without formidable analytic work common in nonuniformly hyperbolic theory.

In any case, the results of [35, 75, 76, 7] show that there is a non-trivial theory applicable to a large class of partially hyperbolic systems. Our paper concerns limit theorems for partially hyperbolic systems. More precisely, similarly to nonuniformly hyperbolic situation we study the relation between mixing properties of the system and the limit theorems it satisfies. The paper [58] shows that it is more convenient to work with a qualitative versions of K-property.

The central to this approach is a notion of an almost Markov family. This is a slight generalization of Markov family but its construction is much simpler. An example of an almost Markov family is given by the set of all domains with bounded geometry of the boundary.

Following [58] we assume that for some almost Markov family the images of all elements under the iterations of our system become uniformly distributed. The rate of the convergence is essentially independent of the choice of almost Markov family and so it is a natural measure of the speed of K-mixing.

Remark. We note that the almost sure convergence suffices for K-property; we require uniform convergence, so there are K-systems with zero convergence rate [45]. In principal, in many places it should be possible to replace uniform estimates by $L^1$-bounds but the proofs would become much more complicated. Also there are many simple systems enjoying K-property yet not satisfying the Central Limit Theorem and other limit theorems of probability theory. Thus in this paper we restrict ourselves to uniform convergence.

The result of our study is the generalization of many limit theorems which were previously known in the Anosov or Axiom A context ([78, 23, 70, 40, 55]) to a large class of partially hyperbolic systems. Some of our results were known before (see Section 6). However our results seem to be the most general ones currently available for partially hyperbolic systems implying all that was known before and presenting a unified proof for many seemingly different systems.

In the next section we define the class of the systems we consider. We also recall the notion of u-Gibbs state introduced in [69] and playing central role in our analysis. Section 3 describes some simple properties of systems with unique u-Gibbs state. The statements of our main
results are given in section 4 and 5. They are based on the assumption that the system under consideration has unique u-Gibbs state with good mixing properties (mixing is understood in the sense described above). Section 4 contains various versions of the Central Limit Theorem and Section 5 present various other results. In Section 6 we apply our results to classical partially hyperbolic systems. The proofs of the statements of Section 3 are given in Section 7–8. The statements of Section 4 are proved in Sections 9–15. The statements of Section 5 are proved in Sections 16–18.

The appendix collects various results related to the absolute continuity of the unstable foliations for which the author could not find convenient references.

At the end of this section let us briefly describe possible extensions of our results. First there are some natural classes of non-uniformly partially hyperbolic systems or partially hyperbolic systems with singularities (e.g. some weakly interacting particle systems) where our methods seem to be useful. However, specific features of each particular example seem to be very important in the proofs so we do not pursue this subject here. Secondly, a pleasant feature of our approach is that in most cases it is not required that the initial distribution is invariant with respect to dynamics, we only ask that it has smooth conditional measures on unstable leaves. Since we do not assume stationarity our methods seem to be useful in the study of time-dependent ([4, 5]) and, in particular, random case (cf. [29]). Thirdly, probably, most of our results are valid for flows with assumption of K-mixing for the flow being replaced by a weaker condition of K-mixing for a suitable Poincare map like in [78, 23, 50, 51] etc. Also some of our results admit generalizations to the case where instead of one diffeomorphism a family of partially hyperbolic systems is considered.

Acknowledgment. A part of this paper constitutes a part of my PhD thesis at Princeton University. I thank my thesis advisor Ya. G. Sinai for encouragement during my work and many helpful discussions. I am grateful to Yu. Kifer, D. Kleinbock, M. Pollicott and R. Sharp for useful conversations.

2. Partial Hyperbolicity.

Let $M$ be a compact Riemannian manifold and $f : M \to M$ be a $C^2$– diffeomorphism. $f$ is called partially hyperbolic if there is an $f$–invariant splitting

$$T_xM = E_u \oplus E_c \oplus E_s$$
and constants $\lambda_1 \leq \lambda_2 < \lambda_3 \leq \lambda_4 < \lambda_5 \leq \lambda_6$, $\lambda_2 < 1$, $\lambda_5 > 1$ such that
\[
\forall v \in E_s \quad \lambda_1 ||v|| \leq ||df(v)|| \leq \lambda_2 ||v||,
\]
\[
\forall v \in E_c \quad \lambda_3 ||v|| \leq ||df(v)|| \leq \lambda_4 ||v||,
\]
\[
\forall v \in E_u \quad \lambda_5 ||v|| \leq ||df(v)|| \leq \lambda_6 ||v||.
\]
We assume that $E_u \neq 0$. On the other hand the reader can assume in what follows that $E_s = 0$ replacing $E_c$ by $E_c \oplus E_s$. We denote by $W^u$ the foliation tangent to $E_u$. We say that $F$ is a $u$-set if $F$ belongs to a single leaf of $W^u$. By volume, diameter and so on of a $u$-set we mean the volume, diameter etc. induced by the Riemann structure on $W^u$.

The important property of $W^u$ is its absolute continuity. Call a set $A$ $u$-negligible if it intersects each $W^u$-leaf at a set of zero leaf volume. We say that some property holds $u$-almost surely if it fails on a $u$-negligible set. A measure $\nu$ is called $u$-absolutely continuous if it assigns zero measure to $u$-negligible sets. Absolute continuity of $W^u$ means that the Lebesgue measure is $u$-absolutely continuous. Absolute continuity is the most basic property for the study of statistical properties of Lebesgue—almost every point. Thus it is useful to consider all $u$-absolutely continuous measures. (Since in this paper we are dealing with $u$-absolutely continuous measures only, we consider two sets equal if they differ by a $u$-negligible set. In particular, we do not distinguish between two $u$-sets if their difference has zero leaf measure.) Among the absolutely continuous measures, the special role belongs to $f$-invariant ones. $u$-absolutely continuous $f$-invariant measures are called $u$-Gibbs states. $u$-Gibbs states were studied in [69]. Among the other things they show that if $F$ is a nice $u$-set and $\mu$ is the normalized Lebesgue measure on $F$ then any limit point of $\frac{1}{n} \sum_{j=0}^{n-1} f^j \mu$ is a $u$-Gibbs state.

In this paper we study partially hyperbolic systems satisfying two requirements. First, they have the unique $u$-Gibbs state:

Secondly, not only the Birkhoff averages of $\mu$ but $f^j \mu$ itself converges to $\nu$. To give the precise formulation we need to define a collection of nice $u$-sets.

A collection $\mathcal{P}$ of $u$-sets is called an almost Markov family if there are constants $r_1, r_2, v, C, \gamma$ such that $\forall P \in \mathcal{P}$

(a) $\text{diam}(P) \leq r_1$;
(b) $\text{Vol}(P) \geq v$;
(c) $P = \text{Int}(P)$, moreover $\text{Vol}\{p : d(p, \partial P) \leq \epsilon\} \leq C \epsilon^{\gamma}$;
(d) for any $u$-set $F$ there are disjoint sets $P_i \in \mathcal{P}$ such that $\bigcup_i P_i \subset F$ and $F \setminus \bigcup_i P_i \subset \{p : d(p, \partial F) \leq r_2\}$;
(e) $\bigcup_{P_i} P = M$.

An almost Markov family is called Markov if

(f) for any $P \in \mathcal{P}$ there are $P_i \in \mathcal{P}$ such that $fP_i = \bigcup_i P_i$. 

Proposition 1. Any $f$ has a Markov family.

(In [81] a family of sets satisfying (f) but not (a)–(e) was constructed. The family satisfying (a)–(e) as well is obtained in [82]. Formally, [82] proves the existence of Markov partitions for Anosov diffeomorphisms (i.e. when $E_c = 0$). However, this is done by constructing the Markov families for $f$ and $f^{-1}$ and showing that they can be fitted together nicely. It can be seen that the construction of the Markov family for $f$ never uses the assumption that $E_c = 0$ so it is valid for arbitrary partially hyperbolic $f$.)

Examples of almost Markov families.
(I) If $r_1$ and $C$ are large and $v$ is small then the collection of all sets satisfying (a)–(c) is an almost Markov family.
(II) If $\dim E_u = 1$ then the set of all curves of length between 1 and 2 is a Markov family.
(III) If $P$ is an almost Markov family and $F$ is a domain in some leaf of $W^u$ with piecewise smooth boundary then $P \cup \{F\}$ is an almost Markov family.

We can associate to each $u$-set $F$ a probability density as follows. For $x_1, x_2 \in F$ let

$$\rho(x_1, x_2) = \prod_{j=0}^{\infty} \frac{\det(df^{-1}|E_u)(f^{-j}x_1)}{\det(df^{-1}|E_u)(f^{-j}x_2)}.$$ 

Choose $x_0 \in F$ and let $\rho_F(x) = C \rho(x, x_0)$ where $C = \left(\int_F \rho(x, x_0)dx\right)^{-1}$.
(Here $\int_F dx$ means the integration over the leaf of $W^u$ containing $F$ with the induced volume form.) Since $\rho(x, x'_0) = \rho(x, x_0)\rho(x_0, x'_0)$ this definition does not depend on the choice of $x_0$. If $A \subset C(X)$ then $\int_F A(f)\rho_F(x)dx = \int A(y)\rho_F(y)dy$.

Let $\mathcal{P}$ be an almost Markov family, $P$ be a $u$-set satisfying (a)–(c), and $n$ be a natural number. By (d) $\exists P_j \in \mathcal{P}$ such that

$$f^n P = (\bigcup_j P_j) \bigcup Z.$$ 

where $Z \subset \{x : d(x, \partial f^n P) \leq r_2\}$. We call (1) an almost Markov decomposition of $f^n P$ (with respect to $\mathcal{P}$). Let $c_j = \int_{f^{-n}P_j} \rho_P(x)dx$, $c = \int_{f^{-n}Z} \rho_P(x)dx$. Then

$$c \leq C_1 \text{mes}(f^{-n}Z) \leq C_1 \text{mes}\{x : d(x, \partial P) \leq \frac{r_2}{\lambda^n_3}\} \leq C_2 \left(\frac{r_2}{\lambda_3^n}\right)^n \leq C_3 \zeta^n$$

for some $\zeta < 1$.

Now let us introduce the measures we consider. Choose an almost Markov family $\mathcal{P}$. Fix some constants $R, \alpha$. Let $E_1(\mathcal{P}, R, \alpha)$ be the set
of the measures given by the following expression: for $A \in C(M)$

$$\ell(A) = \int_P A(x)e^{G(x)}\rho_P(x)dx,$$

where $P \in \mathcal{P}$, $|G(x_1) - G(x_2)| \leq R\delta(x_1, x_2)^\alpha$ and $\ell(1) = 1$. We will refer to the above functional as $\ell(P, G)$ and write $\ell(P)$ for $\ell(P, 0)$. Let $E_2(\mathcal{P}, R, \alpha)$ be the convex hall of $E_1(\mathcal{P}, R, \alpha)$ and $E(\mathcal{P}, R, \alpha) = E_2(\mathcal{P}, R, \alpha)$. Usually we will drop some of the parameters $\mathcal{P}, R, \alpha$ if it does not cause a confusion.

Examples of admissible measures.

(a) Probably the most important example is the following.

**Proposition 2.** Let $\mathcal{P}$ be a maximal family from Example I of Section 2. If $R$ is large enough and $\alpha$ is small enough then the Lebesgue measure belongs to $E(R, \alpha)$.

This follows from the Holder continuity of $E_u$ and the Holder continuity of the unstable holonomy Jacobian. See Appendix A.

(b) It is not difficult to see by a standard Kukutani-Markov argument that there is always a u-Gibbs state in $E(0,0)$. Conversely [69] show that any u-Gibbs state belongs to $E(0,0)$. Below we prove that several sets have full $\ell$-measure for any $\ell \in E$. The following statement is useful.

**Proposition 3.** The set $Y \subset X$ has zero $\ell$-measure for any $\ell \in E$ if and only if it is u-negligible.

See Appendix A for more details.

3. Formulation of results. Uunique ergodicity and strong u-transitivity.

Our first assumption throughout this paper is that $f$ has unique u-Gibbs state. We will call such systems *uniquely ergodic* and denote this by $f \in \text{UuEe}$. By [69] any limit point of the measures of the form

$$\mu_n(A) = \frac{1}{n} \sum_{j=0}^{n-1} \ell^{(n)}(A \circ f^j)$$

where $\ell^{(n)} \in E$ is a u-Gibbs state. Conversely any u-Gibbs state $\nu$ is a limit point of measures $\mu_n$ as above with $\ell^n \equiv \nu$. Thus an equivalent way to define uunique ergodicity is the following.
Definition. \( f \) is uniquely ergodic if \( \forall A \in C(M) \) uniformly in \( \ell \in E \)

\[
\frac{1}{n} \sum_{j=0}^{n-1} \ell(A \circ f^j) \to \nu(A).
\]

If \( f \in UuEe \) we have a bound on the rate of convergence for Holder functions.

Given \( A \in C(M) \) let \( S_n(A)(x) = \sum_{j=0}^{n-1} A(f^j x) \). Sometimes we will write simply \( S \) if \( A \) is clear.

**Theorem 1.** If \( f \in UuEe \) then \( \forall A \in C^\gamma(M) : \nu(A) = 0 \ \forall \varepsilon \exists C_\varepsilon, c_\varepsilon \) such that \( \forall \ell \in E \)

\[
\ell(|S_n(A)| > \varepsilon n) \leq C_\varepsilon e^{-nc_\varepsilon}.
\]

The proof is given in Section 7. Since \( C^\gamma(M) \) is dense in \( C(M) \) we get

**Corollary 1.** (Law of Large Numbers) \( \forall A \in C(M) \) \( \frac{S_n}{n} \to \nu(A) \) \( u \)-almost surely.

In dynamical systems language this statement can be reformulated as follows. Let \( \mu \) be a \( f \)-invariant measure. Define basin of \( \mu \) \( B(\mu) \) be the set of forward \( \mu \)-regular points

\[
B(\mu) = \{ x : \forall A \in C(X) \frac{1}{n}S_n(A) \to \nu(A) \}.
\]

\( \mu \) is called an SRB measure if its basin has positive Lebesgue measure. Thus the previous corollary can be restated as follows.

**Corollary 2.** If \( f \) has a unique \( u \)-Gibbs state \( \nu \) then \( \nu \) is also a SRB measure and \( B(\nu) \) has whole Lebesgue measure.

In order to get quantitative results about the behavior of \( S_n \), we need to impose stronger restrictions on \( f \). We say that \( f \) is strongly \( u \)-transitive if for some almost Markov collection \( \mathcal{P} \forall A \in C(M) \forall \mathcal{P} \in \mathcal{P} \)

\[
\int_{\mathcal{P}} A(f^n x) \mu_P(x) dx \to \nu(A)
\]

where \( \nu \) is some probability measure on \( M \). (The argument below shows that this definition is independent on the choice of \( \mathcal{P} \).)

Starting from this point we will assume that \( f \) is strongly \( u \)-transitive. We need some qualitative bound for the rate of convergence in (3). To formulate this more precisely let us discuss the space of observables we consider. Let \( \mathcal{B} \) be a function Banach algebra such that there is a
continuous embedding $i : \mathcal{B} \to C^\gamma(M)$. We assume that there exists a measure $\nu : \forall \ell \in E \, \forall A \in \mathcal{B}$
\begin{equation}
|\ell(A \circ f^n) - \nu(A)| \leq a(n)||A||_B
\end{equation}
where $a(n) \to 0$ as $n \to \infty$.

$a(n)$ is essentially independent of the choice of a Markov family. More precisely we have

**Proposition 4.** If $\mathcal{P}'$ is another almost Markov family. Then $\forall \ell \in \mathcal{P}'$ 
\begin{equation}
|\ell(A \circ f^n) - \nu(A)| \leq a'(n)||A||_B
\end{equation}
where $a'(n) \leq C_1 a(\frac{n}{C_2}) + C_3 \theta^n$.

**Remark.** The reader can check that the conditions of all theorems we formulate are stable with respect to replacing $a(n)$ by $C_1 a(\frac{n}{C_2}) + C_3 \theta^n$.

**Proof.** Here and below $\theta$ denotes a constant less than 1 which can change from entry to entry.

Take any $Q \in \mathcal{P}'$. Let $f^\frac{n}{2} Q = (\bigcup_j P_j) \bigcup Z$ be its almost Markov decomposition with respect to $\mathcal{P}$. Take $A \in \mathcal{B}$ with $||A||_B \leq 1$. We have
\begin{equation}
I = \int_Q e^{G(x)} \rho_Q(x) A(f^n x) dx = \sum_j c_j \int_{P_j} e^{G(f^\frac{n}{2} y)} \rho_{P_j}(y) A(f^\frac{n}{2} y) dy + O(\theta^{\frac{n}{2}}).
\end{equation}
Choose $y_j \in f^\frac{n}{2} P_j$. Then
\begin{equation}
I = \sum_j c_j e^{G(f^\frac{n}{2} y_j)} \int_{P_j} \rho_{P_j}(y) A(f^\frac{n}{2} y) dy + O(\theta^{\frac{n}{2}}) =
\end{equation}
\begin{equation}
\sum_j c_j e^{G(f^\frac{n}{2} y_j)} \left[ \nu(A) + O(a(\frac{n}{C_2})) \right] + O(\theta^{\frac{n}{2}}).
\end{equation}
In particular letting $A \equiv 1$ we get
\begin{equation}
1 = \int_Q e^{G(x)} \rho_Q(x) dx = \sum_j c_j e^{G(f^\frac{n}{2} y_j)} + O(\theta^{\frac{n}{2}}).
\end{equation}
The last two identities prove the proposition. \qed

Plugging $\ell = A \nu$ into (3) we see that $(f, \nu)$ is mixing. In fact it is also mixing of all orders as the next statement shows.

**Theorem 2.** (Multiple mixing) Fix $k$. There are constants $C_1$ and $C_2 \, \forall A_1, A_2 \ldots A_k \in \mathcal{B} \, \forall \ell \in E$
\begin{equation}
\left| \ell \left( \prod_{j=1}^k A(f^{n_j} x) \right) - \prod_{j=1}^k \nu(A_j) \right| \leq C_1 \left[ a \left( \frac{m}{C_2} \right) + \theta^n \right] \prod_{j=1}^k ||A_j||_B
\end{equation}
where $m = \min(n_j - n_{j-1}), n_0 = 0$.

The proof is given in Section 8.
4. Formulation of results. Central Limit Theorem

Here we formulate various versions of the Central Limit Theorems for the systems under considerations. Most of the proofs use methods of moments [44].

Throughout this section we assume that \( \sum_n a(n) < \infty \).

**Theorem 3. (Invariance Principle)** There is a constant \( s > 0 \) such that the following holds. Let \( A \in \mathbb{B} \) be a function such that \( \nu(A) = 0, \sigma(A) = \sum_{j=-\infty}^{\infty} \nu(A(A \circ f^j)) \neq 0 \). Let \( \mathcal{P} \) be a Markov family and let \( P \in \mathcal{P} \). Then there is a probability space \( (\Omega, \mu) \), a Brownian Motion \( w(t) \) and a sequence \( \xi_n \) both defined on \( \Omega \) such that

(a) the distribution of \( \xi_n \) is the same as the distribution of \( \mathcal{S}_n(x) \) with respect to \( \ell(P) \);

(b) \( \exists \sigma_n \) such that \( \frac{\xi_n}{\sigma_n} \to \sigma(A) \) and \( |\xi_n - w(\sigma_n)| \leq C(\omega)n^{\frac{1}{2} - s} \).

**Corollary 3. (Law of Iterated Logarithm)**

\[
\limsup \frac{\mathcal{S}_n(x)}{\sqrt{\sigma(A)n \ln \ln n}} = 1, \quad \liminf \frac{\mathcal{S}_n(x)}{\sqrt{\sigma(A)n \ln \ln n}} = -1
\]

\( u \)-almost surely.

**Corollary 4. (Central Limit Theorem)** \( \forall \mathcal{P}, R, \alpha \forall \ell \in E(\mathcal{P}, R, \alpha) \) the random process \( X_n(t) = \frac{\sum_{j=0}^{n-1} A(f^j x)}{\sqrt{n}} \) converges weakly to the Brownian Motion with the zero average and the variance \( \sigma(A) \).

Let \( \mathbb{B}^d \) denote the space of functions \( M \to \mathbb{R}^d \) such that each coordinate belongs to \( \mathbb{B} \). Consider the sequence \( z_n \in \mathbb{R}^d \) given by

\[
z_{n+1} - z_n = \varepsilon A(z_n, f^n x), \quad z_0 = a
\]

where function \( A(z, x) \) is three times differentiable with respect to \( z \) and the norms \( \|\frac{\partial^\alpha A(z, x)}{\partial^\alpha z}\|_{\mathbb{B}^d} \), are uniformly bounded for \( 0 \leq |\alpha| \leq 3 \). Let \( q_n \) be the solution of the averaged equation

\[
q_{n+1} - q_n = \varepsilon \bar{A}(q_n), \quad q_0 = a.
\]

where

\[
\bar{A}(q) = \int A(q, x) d\nu(x).
\]

Let \( D A(z, x) \) denote the partial derivative of \( A \) with respect to \( z \). Let \( \Delta_n = z_n - q_n \). Denote \( \Delta^{\varepsilon} = \frac{\Delta_n}{\sqrt{\varepsilon}} \).
Theorem 4. (Short time fluctuations in averaging) If \( a(n) \leq \frac{\text{Const}}{n^2} \) then \( \forall \mathcal{P}, R, \alpha \forall \ell \in E(\mathcal{P}, R, \alpha) \) as \( \varepsilon \to 0 \) \( \Delta_i^\varepsilon \) converges weakly to the solution of
\[
d\Delta(t) = D\bar{A}(q(t))\Delta dt + dB
\]
where \( B \) is a Gaussian process with independent increments, zero mean and covariance matrix
\[
\langle B, B \rangle(t) = \int_0^t \sigma(A(q(s), \cdot))ds.
\]

Theorem 5. (Long time fluctuations in averaging) Suppose that \( A \) in (5) has zero mean
\[
\bar{A}(z) = \int A(z, x)d\nu(x) \equiv 0
\]
and that \( a(n)n^2 \to 0 \) as \( n \to \infty \). Let \( Z_i^\varepsilon = Z_{i\frac{\varepsilon}{Z_i^\varepsilon}} \), then as \( \varepsilon \to 0 \) \( Z_i^\varepsilon \) converges weakly to the diffusion process \( Z(t) \) with drift
\[
a(z) = \sum_{n=1}^\infty \int DA(z, f^n x)A(z, x)\nu(x)
\]
and diffusion matrix \( \sigma(A(z, \cdot)) \).

Remark. As usual, after Theorem 5 is proved for smooth bounded functions, the stopping time argument can be used to extend it to more general framework where the limiting diffusion process has no explosions.

The proofs of the results of this section is given in Sections 9–15. Sections 9–10 contain some auxiliary estimates. Theorem 3 is proven in Section 11, Theorem 4 is proven in Sections 12–13 and Theorem 5 is proven in Section 15.

Note. Some surveys on Central Limit Theorems for dynamical systems could be found in [21, 30, 17].

5. Formulation of results. Other Limit Theorems.

Theorem 6. (Three Series Theorem) If \( \sum a(n) \leq \infty \), \( A_n \in \mathbb{B} \)
\( ||A_n||_\mathbb{B} \leq 1 \) and \( c_n \) is a sequence such that \( \sum c_n\nu(A_n) < \infty \), \( \sum c_n^2 < \infty \) then \( \sum c_nA_n(f^n x) \) converges \( u \)-almost surely.

The proof is given in Section 16.
To formulate our next results we suppose that $\nu$ has a smooth density. We assume also that for any ball $B$ of radius $r$ for any $\ell \in E$

$$|\ell(1_B(f^n x)) - \nu(B)| \leq \text{Const} r^{-\alpha} \left( \frac{1}{n} \right)^k,$$

where $1_B(x)$ stands for the indicator function of $B$. Denote $d = \dim(X)$, $d_u = \dim E_u$.

**Theorem 7.** (Borel-Cantelli Lemma) Assume that $\frac{k}{\alpha+1} > \frac{d}{d_u}$. If $\{B_n\}$ is a sequence of balls then $\sum_n 1_{B_n}(f^n x)$ converges $\nu$–almost surely $\iff \sum_n r(B_n)^d < \infty$ and $\sum_n 1_{B_n}(f^n x)$ diverges $\nu$–almost surely $\iff \sum_n r(B_n)^d = \infty$.

The proof is given in Section 17.

**Theorem 8.** (Poisson Law) Assume that $\frac{k}{\alpha+1} > \frac{1}{d_u}$. Let $x_0$ be a non-periodic point and $B_n = B(x_0, r)$. Denote $X_n(\Delta) = \sum_{j \in (B_n) \cap \Delta} 1_{B_n}(f^j(x))$.

Then $\forall \ell \in E$ as $n \to \infty X_n(\Delta)$ converges to a Poisson process with density 1.

The proof is given in Section 18.

### 6. Applications.

Here we give some examples to which our theorems apply. The main examples of strongly transitive systems belong to the class of Anosov actions. (See [73, 12, 31, 47] for the general discussion of the Anosov actions.) In this case $E_c$ is the tangent space to the orbits of some Lie group $G$ and $f(x) = gx, g \in G$. We hope however that more examples of systems satisfying our assumptions will appear with the further development of the theory of partially hyperbolic systems (cf [1, 7, 80, 27]).

Throughout this section we say that $f$ is strongly $u$-transitive with exponential rate if (4) is satisfied with $B = C^\gamma(M)$ and $a(n) = C\theta^n$ for some $\theta < 1$. We say that $f$ is strongly $u$-transitive with superpolinomial rate if for any $r$ there is $k = k(r)$ such that (4) is satisfied with $B = C^k(M)$ and $a(n) = C_r n^{-r}$.

**Anosov diffeomorphisms.** These are defined by the condition that $E_c = 0$. This is perhaps the most studied class of partially hyperbolic systems (see [2, 3, 8]) and most of our results are well known for Anosov diffeomorphisms.

**Proposition 5.** (see e.g [8]) Topologically transitive Anosov diffeomorphisms are strongly $u$-transitive with exponential rate.
Corollary 5. All theorems of Sections 4 and 5 hold true for topologically transitive Anosov diffeomorphisms.

(b) Time one maps of Anosov flows. These are Anosov actions with $G = R$.

Proposition 6. (a) ([24, 25]) Suppose that $f$ is a time one map of topologically transitive Anosov flow whose stable and unstable foliations are jointly non-integrable, then $f$ is strongly $u$-transitive with superpolynomial rate. If in addition $E_u$ and $E_s$ are $C^1$ then $f$ is strongly $u$-transitive with exponential rate.

(b) ([59]) Time one maps of contact Anosov flows are strongly $u$-transitive with exponential rate.

Corollary 6. Time one maps of topologically transitive Anosov flows with jointly non-integrable stable and unstable foliations satisfy the conclusions of Theorems 3–6 and their corollaries. If in addition $E_u$ and $E_s$ are $C^1$ or the flow preserves a contact structure then all the results of Sections 4 and 5 apply.

Remark. It is easy to see that the strong $u$-transitivity with exponential rate implies also the exponential convergence in (4) for piecewise Holder functions such as indicators of balls. On the other hand the strong $u$-transitivity with superpolynomial rate gives only power decay for indicators. For this reason it is unclear if Theorems 7 and 8 hold for time one maps of arbitrary Anosov flows.

(c) Compact skew extensions of Anosov diffeomorphisms. Let $h : N → N$ be topologically transitive Anosov diffeomorphism, $K$ be a compact connected Lie group, $M = N × G$ and $r : N → G$ be a smooth map. Let $f(x, y) = (hx, r(x)y)$. Thus here $G = \mathbb{Z} × K$. Compact skew extensions are studied in [11, 12, 15, 26].

Proposition 7. ([26]) Generic skew extension is strongly $u$-transitive with superpolynomial rate. In particular if $K$ is semisimple then all ergodic extensions are strongly $u$-transitive with superpolynomial rate. Also, if $N$ is an infranilmanifold then all stably ergodic extensions are strongly $u$-transitive with superpolynomial rate.

Corollary 7. Generic compact skew extensions of Anosov diffeomorphisms satisfy the conclusions of Theorems 3–6 and their corollaries.

(d) Quasihyperbolic toral automorphisms. Here $M = \mathbb{T}^d$ and $f(x) = Qx$ (mod 1) where $Q ∈ SL_d(\mathbb{Z})$, $sp(Q) ∉ S^1$.

Proposition 8. ([45]) Quasi-hyperbolic toral automorphisms are strongly $u$-transitive with exponential rate.
Corollary 8. All theorems of Sections 4 and 5 hold true quasihyperbolic toral automorphisms.

(e) Translations on homogeneous spaces. Let $M = G/\Gamma$ where $G$ is a connected semisimle group without compact factors and $\Gamma$ is an irreducible compact lattice in $G$. Let $f(x) = gx, g = \exp(X)$.

Proposition 9. ([53]). Suppose that there is a factor $G'$ of $G$ which is not locally isomorphic to $SO(n,1)$ or $SU(n,1)$ and such that the projection $g'$ of $g$ to $G$ is not quasiunipotent (i.e. $sp(ad(g')) \not\subset (S^1)$) then $f$ is strongly $u$-transitive with exponential rate.

Corollary 9. All theorems of Sections 4 and 5 hold true for translations of homogeneous spaces satisfying the conditions of the last proposition.

(f) Mostly contracting diffeomorphisms. Let $f : M \to M$ be partially hyperbolic. $f$ is called mostly contracting if $\exists \epsilon > 0$ such that for any u-Gibbs state $\nu$

$$\lim_{n \to \infty} \frac{\nu(||df^n|E_c||)}{n} \leq -\epsilon.$$ 

See [7, 16, 27] for examples of mostly contracting diffeomorphisms.

Proposition 10. ([27]) Suppose that $f : M \to M$ is mostly contracting topologically mixing diffeomorphism, dim$(M) = 3$, dim$(E_c) = 1$ then $f$ strongly $u$-transitive with exponential rate.

Remark. It is likely that restrictions on dimensions given here are unnecessary (cf. [16]).

Corollary 10. All theorems of Sections 4 and 5 hold true for mostly contracting topologically mixing diffeomorphism on three dimensional manifolds.

Remark. The set of mostly contracting diffeomorphisms is open. The simplest examples of mostly contracting diffeomorphisms can be constructed by perturbing Anosov actions. Thus this result is the first step in extending our results beyond Anosov actions.

Other examples of the diffeomorphisms satisfying our conditions could be constructed using following observations. Let $M = M_1 \times M_2$ $f = f_1 \times f_2$ where $f_j$ are partially hyperbolic. Then if both $f_1$ and $f_2$ are strongly $u$-transitive with either exponential or superpolynomial rate then the same is true for $f$.

Notes. As it was mentioned before not all of these results are new. Below we list the results which were known before:
Anosov diffeomorphisms: Theorem 3 and Corollary 3 ([23]), Theorem 4 ([50]), Corollary 4 ([78]), Theorem 6 ([55]), Theorem 8 ([40]). These articles also consider Anosov flows but instead of time one map they deal with
\[ S^{(t)}(A) = \int_0^t A(g_s x) ds, \]
where \( g_s \) is the flow in question. Our results are therefore slightly stronger. Let us remark by the way that our formulations might be more appropriate from the point of view of applications because in practise it is possible to measure \( S_n(A, g_1) \) rather than \( S^{(t)}(A) \). On the other hand the results for \( S^{(t)} \) are usually proven under a weaker assumption than that of Proposition 6 (and Corollary 6 is false under these weaker assumptions). However it seems possible to extend our results to treat the case when (4) holds not for time one map of a flow but for a suitably chosen Poincare map.

Quasihyperbolic toral automorphisms: Theorem 3, Corollaries 3 and 4 ([33, 34]), Theorem 4 ([65]).

Translations on homogeneous spaces: Theorem 3, Corollaries 3 and 4 ([56, 57]), Theorem 4 ([65]). Also, [54, 87] contain results quite similar in spirit to our Theorems 6 and 7 even though Theorems 6 and 7 are not explicitly stated there. ([56, 57, 54, 87] do not suppose that \( M \) is compact requiring only that \( \text{Vol}(M) < \infty \).

However the advantage of our method is that we give a unified proof for all these different classes of dynamical systems, which seem to be of interest even in the known cases.

7. LARGE DEVIATIONS.

Here we prove Theorem 1. First we verify our claim for \( \ell = \ell(P) \in E(\mathcal{P}, 0, 0) \) where \( \mathcal{P} \) is a Markov family. It is enough to estimate \( \ell(S_n(A) > \varepsilon n) \) the case \( \ell(S(A) < -\varepsilon n) \) is dealt with similarly. Denote \( B(x) = A(x) - \frac{\varepsilon}{2} \). By our assumption there exists \( n \) such that \( \forall P \in \mathcal{P} \)
\[ \int_P S_n(B)(x) \rho_P(x) dx \leq -\frac{n\varepsilon}{4}. \]
Also there exists some \( C \) such that \( \forall P \in \mathcal{P} \forall n \)
\[ \text{Osc}_P(S_n(B) \circ f^{-n}) \leq C. \]
where \( \text{Osc}_P(A) = \max_P(A) - \min_P(A) \).
Hence \( \exists n, \alpha < 0 \) such that \( \forall P \in \mathcal{P} \) for any decomposition \( f^n P = \bigcup_j P_j, P_j \in \mathcal{P} \)
\[
\sum_j c_j \max_{f^{-n} P_j} \mathcal{S}_n(B) \leq \alpha
\]
where \( c_j = \int_{f^{-n} P_j} \rho_P(x) dx \).

**Corollary 11.** \( \exists \gamma > 0, \theta < 1 \) such that
\[
\sum_j c_j \exp \left( \gamma \max_{f^{-n} P_j} \mathcal{S}_n(B) \right) < \theta.
\]

*Proof.* Let
\[
\phi(\gamma) = \sum_j c_j \exp \left( \gamma \max_{f^{-n} P_j} \mathcal{S}_n(B) \right).
\]
Then \( \phi(0) = 1, \phi'(0) \leq \alpha \). \( \square \)

**Corollary 12.** \( \forall m > 0 \) there is a decomposition \( f^{nm} P = \bigcup_j P_j \) such that
\[
\sum_j c_j \exp \left( \gamma \max_{f^{-nm} P_j} \mathcal{S}_{nm}(B) \right) \leq \theta^m.
\]

*Proof.* By induction. Decompose \( f^n P = \bigcup_j Q_j \) and let \( f^{n(m-1)} Q_j = \bigcup_k P_{jk} \) be a decomposition such that
\[
\sum_k c_{jk} \exp \left( \gamma \max_{f^{-n(m-1)} P_{jk}} \mathcal{S}_{n(m-1)}(B) \right) \leq \theta^{m-1}.
\]
We have
\[
\max_{f^{-nm} P_{jk}} \mathcal{S}_{nm}(B) \leq \max_{f^{-n} Q_j} \mathcal{S}_n(B) + \max_{f^{-n(m-1)} P_{jk}} \mathcal{S}_{n(m-1)}(B).
\]
Therefore
\[
\sum_{jk} c_j c_{jk} \exp \left( \gamma \max_{f^{nm} P_{jk}} \mathcal{S}_{nm}(B) \right) \leq \\
\sum_j c_j \exp \left( \gamma \max_{f^{-n} Q_j} \mathcal{S}_n(B) \right) \sum_k c_{jk} \exp \left( \gamma \max_{f^{-n(m-1)} P_{jk}} \mathcal{S}_{n(m-1)}(B) \right) \leq \\
\theta^{m-1} \sum_j c_j \exp \left( \gamma \max_{f^{-n} Q_j} \mathcal{S}_n(B) \right) \leq \theta^m.
\]
\( \square \)
Combining this with (7) and using \( |\mathcal{S}_N(B) - \mathcal{S}_{N+k}(B)| \leq Kk \) we get
Corollary 13. \( \exists C, \gamma, \rho < 1 \) such that \( \forall \ell \in E \)

\[
\ell(\exp(\gamma(\mathcal{S}_N(A) - \frac{N\varepsilon}{2}))) \leq C_1\rho_1^N.
\]

Proof of Theorem 1. By the above corollary \( \forall \ell \in E(\mathcal{P}, 0, 0) \)

\[
\ell(\mathcal{S}_N(A) \geq \frac{\varepsilon N}{2}) \leq C_1\rho_1^N.
\]

Using the same argument for bounding \( \mathcal{S}_N(A) \) from below we get \( \forall \ell \in E(\mathcal{P}, 0, 0) \)

\[
\ell(|\mathcal{S}_N(A)| \geq \frac{\varepsilon N}{2}) \leq C_2\rho_2^N.
\]

Now given \( \mathcal{P}', R, \alpha \) consider \( \ell \in E_1(\mathcal{P}, R, \alpha) \), say \( \ell = \ell(Q, G) \). Decompose \( N = N_1 + N_2 \), where \( N_1 = \delta N, N_2 = (1 - \delta)N \). Then

\[
\ell(|\mathcal{S}_N(A)| \geq \varepsilon N) \leq \ell\left(|\mathcal{S}_{N_2}(A) \circ f^{N_1}| \geq \frac{\varepsilon N}{2}\right) + \ell\left(|\mathcal{S}_{N_1}(A)| \geq \frac{\varepsilon N}{2}\right).
\]

The second term is void if \( \delta \) is small enough. Consider an almost Markov decomposition \( f^{N_1}Q = (\bigcup_j P_j) \bigcup Z \) with respect to \( \mathcal{P} \). Then

\[
\ell\left(|\mathcal{S}_{N_2}(A) \circ f^{N_1}| \geq \frac{\varepsilon N}{2}\right) \leq \text{Const} \left(c + \sum_j c_j \ell_j \left(|\mathcal{S}_{N_2}(A)| \geq \frac{\varepsilon N}{2}\right)\right) \leq \text{Const}C_2\rho_2^N.
\]

(Here \( \ell_j = \ell(P_j). \))

Notes. (1) Many results in smooth ergodic theory have partially hyperbolic versions. For example, Corollary 2 corresponds to the statement that a homeomorphism \( h : F \to F \) of a compact \( F \) is uniquely ergodic if and only if \( \frac{1}{n} \sum_{j=0}^{n} A(h^j x) \to \nu(A) \) for all \( x \). However, for partially hyperbolic systems convergence does not hold for all \( x \). [20, 53] produce many non-negative \( C^\infty \) functions for which \( A_n \equiv 0 \) on a set of large Hausdorff dimension.

(2) For Anosov diffeomorphisms one can get quite precise asymptotic for \( \ln \ell(|\mathcal{S}_n| > \varepsilon n) \). See [50, 51]. It is unlikely that the similar results could be obtained under our assumptions because this asymptotic involves integrals of \( A \) with respect to Gibbs states other than SRB measure and here we only assume good behavior with respect to SRB measures. On the other
hand asymptotics for moderate deviation (see [52]) involve only integrals with respect to SRB measure itself and so it is likely to be generalizable to the settings of u-transitive systems. We do not pursue this topic here however.

(3) In case \( f \not\in \mathcal{U} \cup \mathcal{E} \) we can obtain the following generalization of Corollary 1.

**Proposition 11.** \( \forall A \in C(M) \) \( u \)-almost surely

\[
\liminf \frac{S_n(A)}{n}, \limsup \frac{S_n(A)}{n} \in [\inf(\mu(A)), \sup(\mu(A))]
\]

where the infimum and the supremum are taken over the set of \( u \)-Gibbs measures.

The proof is verbatim repetition of the proof of Corollary 1.

8. Multiple mixing.

**Proof of Theorem 2.** We make induction on \( k \). We can assume that \( ||A_j|| \leq 1 \).

(I) \( k = 1 \). It is enough to consider the case \( \ell = \ell(P,G) \in E_1 \). We have

\[
I = \int_P e^{G(x)} \rho_P(x) A(f^n x) dx =
\]

\[
\int_{f^n P} e^{G(f^n y)} \rho_{f^n P}(y) A(f^n y) dy.
\]

Let \( f^n P = (\bigcup P_j) \cup Z \) be an almost Markov decomposition. Choose \( y_j \in P_j \), then

\[
I = \sum_j c_j \int_{P_j} \rho_{P_j}(y) e^{G(f^{-n} y)} A(f^{-n} y) dy + O(\theta^n) =
\]

\[
\sum_j c_j e^{G(f^{-n} y_j)} \int_{P_j} \rho_{P_j}(y) A(f^{-n} y) dy + O(\theta^n) =
\]

\[
\sum_j c_j e^{G(f^{-n} y_j)} \nu(A) + O \left( \theta^n + a \left( \frac{n}{2} \right) \right).
\]

Finally

\[
\sum_j c_j e^{G(f^{-n} y_j)} = \ell(1) + O(\theta^n) = 1 + O(\theta^n);
\]
(II) From $k$ to $k + 1$. Denote $N = \frac{n + m}{2}$. Again consider an almost Markov decomposition $f^N P = (\bigcup P_j) \bigcup Z$. Similarly to (I)

\[ \int_P e^{G(x)} \rho_P(x) \prod_{j=1}^{k+1} A(f^{n_j} x) dx = \]

\[ \sum_j c_j e^{G(f^{-N} y_j)} A_1(f^{-(N-m)} y_j) \int_{P_j} \rho_{P_j}(y) \prod_{j=2}^{k+1} A(f^{n_j-N} y) dy + O(\theta^m). \]

The first term is

\[ \sum_j c_j e^{G(f^{-N} y_j)} A_1(f^{-(N-m)} y_j) = \]

\[ \int_P e^{G(x)} \rho_P(x) A_1(f^{n_1} x) dx + O(\theta^m) = \nu(A_1) + O(\theta^m) \]

and the second one equals

\[ \prod_{j=2}^{k+2} \nu(A_j) + O \left( a \left( \frac{m}{C_2(k)} \right) + \theta^m \right) \]

by induction. \hfill \Box


Starting from this section we suppose that $a(m)$ satisfy

\[ \sum m a(m) < +\infty. \]

Let $A_j \in B$ be a sequence of functions such that $\|A_j\|_B \leq K$, $\nu(A_j) = 0$. Let $S_n = \sum_{j=0}^{n-1} A_j(f^j x)$.

Lemma 1.

(a) $|\ell(S_n)| \leq \text{Const}$;

(b) $\ell(S_n^2) \leq \text{Const} n$;

(c) $|\ell(S_n^3)| \leq \text{Const} n^3$;

(d) $\ell(S_n^4) \leq \text{Const} n^2$,

where the constants in (a)–(d) depend only on $K$ but not on sequence $A_j$. 
(e) Let $A(t, x)$ be a function defined on $[0, T] \times M$ such that for all $t \in [0, T]$ $A(t, \cdot) \in \mathcal{B}$, $|A(t, \cdot)|_\mathcal{B} \leq K$ and $\int A(t, x)d\mu(x) = 0$. Let

$$S_\varepsilon(t) = \sum_{j=0}^{[\frac{t}{\varepsilon}]} A(\varepsilon j, f^j x)$$

then as $\varepsilon \to 0$

$$\varepsilon \ell(S_\varepsilon(t)) \to \int_0^t \sigma(A(s, \cdot))ds,$$

where

$$\sigma(A) = \sum_{j=-\infty}^{\infty} v(A(A \circ f^j));$$

Proof.

(a) $|\ell(S_n)| = |\sum_{j=0}^{n-1} \ell(A_j(f^j x))| \leq \text{Const} \sum_j a(j) \leq \text{Const}.$

(b) $\ell(S_n^2) = \sum_{j,k} \ell(A_j(f^j x)A_k(f^k x)) \leq \text{Const} \sum_{j,k} a\left(\frac{|j-k|}{C}\right).$

Now for fixed $m$ there are less than $2n$ pairs $(j, k)$ with $|j-k| = m$. So

$$\ell(S_n^2) \leq \text{Const} n \sum_m a\left(\frac{m}{C}\right) \leq \text{Const}.$$

(e) Fix some large $M$. We have

$$\ell(S_\varepsilon(t)^2) = \sum_{j,k=0}^{n-1} \ell(A(\varepsilon j, f^j x)A(\varepsilon k, f^k x) =$$

$$\sum_{|j-k|<M} \ell(A(\varepsilon j, f^j x)A(\varepsilon k, f^k x) =$$

$$\sum_{|j-k|\geq M} \ell(A(\varepsilon j, f^j x)A(\varepsilon k, f^k x) = I + \mathcal{I}.$$

By the argument of (b) $|\varepsilon I_\varepsilon| \leq \text{Const} \sum_{m>M} a(m) \to 0$ as $M \to \infty$.

On the other hand for fixed $M$ the following holds. Let $\varepsilon j \to s$, then

$$\sum_{|k-j|<M} \ell(A(\varepsilon j, f^j x)A(\varepsilon k, f^k x)) \to \sum_{|q|<M} \nu(A(s, x)A(s, f^q x)) = \sigma(A(s, \cdot)) + o_{M \to \infty}(1).$$

Thus

$$\varepsilon \ell(S_\varepsilon(t)) \to \int_0^t \sigma(A(s, \cdot))ds + o(1).$$

Letting $M \to \infty$ we obtain (e).
(c) follows from (b) and (d) so it suffices to establish (d).

\[
(d) \quad \ell(S_n^4) = \sum_{j_1,j_2,j_3,j_4} \ell((A_{j_1}(f^{j_1}x)A_{j_2}(f^{j_2}x)A_{j_3}(f^{j_3}x)A_{j_4}(f^{j_4}x)).
\]

First, let us estimate the terms where not all indices \(j_p\) are different. The sum over terms with at most two different indices is bounded by \(\text{Const} \times (\text{the number of terms})\), hence by \(\text{Const} n^2\). Also

\[
J = \sum \ell(A_{j_1}(f^{j_1}x)A_{j_2}(f^{j_2}x)A_{j_3}(f^{j_3}x)A_{j_4}(f^{j_4}x)) \leq \text{Const} \sum x \left(\frac{\min j_p - j_p-1}{C}\right).
\]

For fixed \(m\) the number of terms with \(\min(n_j - n_{j-1}) = m\) equals \(\text{Const} n^2\). Thus

\[
J \leq \text{Const} n^2 \sum a(m).
\]

Now up to the terms of order \(n^2\)

\[
\ell(S_n^4) = 12 \sum_{j_3} \sum_{j_1,j_2=1}^{j_1} \sum_{j_4=j_3}^{n} \ell(A_{j_1}(f^{j_1}x)A_{j_2}(f^{j_2}x)A_{j_3}(f^{j_3}x)A_{j_4}(f^{j_4}x)) + O(n^2)
\]

\[
12 \sum_{j_3} \sum_{j_4=j_3}^{n} \ell(S_{j_3}^2 A_{j_3}(f^{j_3}x)A_{j_4}(f^{j_4}x)) + O(n^2).
\]

**Proposition 12.** \(\forall l \forall j_3\)

\[
\ell \left( \sum_{j_4=j_3}^{n} S_{j_3}^2 A_{j_3}(f^{j_3}x)A_{j_4}(f^{j_4}x) \right) \leq \text{Const} j_3.
\]

**Proof.** Again it suffices to verify this for \(l \in E_1\), say \(\ell = \ell(P, G)\). Consider an almost Markov decomposition \(f^{j_3}P = (\bigcup_q P_q) \cup Z\). Choose \(y_q \in P_q\) then

\[
\int_P e^{G(x)} \rho_P(x) S_{n_3}^2 (x) A_{j_3}(f_{j_3}x) A_{j_4}(f_{n_4}x) dx =
\]

\[O(\theta j_3) + \sum_q c_q S_{n_3}^2 (y_q) \sum_{j_4=j_3}^{n} \int_P e^{G(f^{j_3}y)} \rho_P(y) A_{j_3}(y) A_{j_4}(f^{j_4-j_3}y) dy + \]

\[\sum_q c_q \sum_{j_4=j_3}^{n} \int_P e^{G(f^{j_3}y)} \rho_P(y) [S_{n_3}^2 (f^{j_3}y) - S_{n_3}^2 (y_q)] A_{j_3}(y) A_{j_4}(f^{j_4-j_3}y) dy =
\]

\[I + II.
\]
By Theorem 2 \( I \leq \text{Const} \sum_q c_q S_{j_3}^2(y_q) \). Now \( \text{Osc} S_{j_3}^2 \leq \text{Const} j_3 \), so

\[
\sum_{q} c_q S_{j_3}^2(y_q) \leq \text{Const} j_3 + \ell(S_{j_3}^2) \leq \text{Const} j_3.
\]

\[
\mathbb{I} = \sum_{q} c_q \sum_{j_4=j_3}^{n} \int_P e^{G(f^{-j_3}y)} \rho_{P_q}(y) [S_{j_3}(f^{-j_3}y) - S_{j_3}(y_q)] [S_{j_3}(f^{-j_3}y) + S_{j_3}(y_q)] \times A_{j_3}(y) A_{j_4}(f^{j_4-j_3}y) \, dy =
\]

\[
\sum_{q} c_q \sum_{k=0}^{j_4-1} \sum_{j_4=j_3}^{n} \int_P \left\{ e^{G(f^{-j_3}y)} \rho_{P_q}(y) [S_{j_3}(f^{-j_3}y) - S_{j_3}(y_q)] [A_k(f^{k-j_3}y) + A_k(f^k y_q)] \right\} \times A_{j_3}(y) A_{j_4}(f^{j_4-j_3}y) \, dy
\]

The part in brackets is uniformly bounded and uniformly H"{o}lder continuous. Thus by Theorem 2 the sum over \( j_4 \) is uniformly bounded for any \( q, k \). Hence

\[
\mathbb{I} \leq \text{Const} \sum_{q} c_q \sum_{k} 1 = \text{Const} j_3 \sum_{q} c_q \leq \text{Const} j_3.
\]

Now

\[
\ell(S_n^4) \leq \text{Const} \sum_{j<n} j + O(n^2) = O(n^2).
\]

This concludes the proof of Lemma 1. \( \square \)

10. Tightness.

In all theorems of Section 4 it suffices by the definition of weak convergence in \( C[0,\infty[ \) to show that for each \( T > 0 \) the corresponding processes converge in \( C[0, T] \). So let \( T \) be fixed from now on till the end of Section 15.

**Lemma 2.** Let \( S_\varepsilon(t) \) be defined by (8). Then the family \( \{\sqrt{\varepsilon}S_\varepsilon(t)\} \) is tight.

**Proof.** Let \( Y(N) = \{X(t) : \forall m > N \ \forall k : |X(k+1/2m) - X(k/2m)| < \frac{1}{2^n}\} \).

Then \( Y(N) \) is compact in \( C[0, T] \) for all \( N \). Let us estimate \( \ell(\sqrt{\varepsilon}S_\varepsilon(t) \notin Y(N)) \). We have

\[
\ell \left( \left[ \sqrt{\varepsilon} \left| S_\varepsilon \left( \frac{k+1}{2m} \right) - S_\varepsilon \left( \frac{k}{2m} \right) \right| \right]^4 \right) \leq C\varepsilon^2 \left( \frac{1}{2^m} \right)^2 = C2^{-2m}
\]
So, for given $k$
\[
\ell \left( \left\lfloor \frac{\sqrt{\varepsilon}}{2^m} \right\rfloor - \frac{k}{2^m} \right) < C2^{-2m} (2^m)^4 = C2^{-\frac{3m}{2}}.
\]

Hence
\[
\ell \left( \exists k \left\lfloor \sqrt{\varepsilon} \right\rfloor - \frac{k}{2^m} \right) < C2^{-\frac{3m}{2}} = ConstT2^{-m/2}.
\]

Thus $\ell(\sqrt{\varepsilon}S_{{\varepsilon}}(t) \notin Y(N)) \leq Const2^{-\frac{m}{2}}$. \hfill \Box

The next statement is used in the Section 11. Take some $\alpha$ between 1 and 2. Denote $n_k = \sum_{j=1}^n j^\alpha$, $\eta_k = S_{n_k}(A)$. Choose $\theta$ such that $\frac{1}{6} + \frac{1}{6\alpha} < \theta < \frac{1}{2\alpha}$.

**Lemma 3.** Almost surely
\[
\max_{j \leq k} \max_{n_{j-1} \leq l \leq n_j} |S_l(A) - \eta_{n_{j-1}}| \leq Ck^{\alpha(\frac{1}{2} + \theta)}.
\]

**Proof.** Let $[l_1, l_2]$ be an interval of the form
\[
l_1 = n_{j-1} + \frac{pj^\alpha}{2^m}, \quad l_2 = n_{j-1} + \frac{(p+1)j^\alpha}{2^m}.
\]

We claim that almost surely
(9) \[|S_{l_2} - S_{l_1}| \geq \sqrt{l_2 - l_1} j^{\alpha \theta} \]
only finitely many times. Indeed the probability of such an event is
less than \[\frac{E(|S_{l_2} - S_{l_1}|^4)}{j^{4\alpha \theta} (l_2 - l_1)^2} \leq \frac{C}{j^{4\alpha \theta}}.
\]

(9) can happen only if $l_2 - l_1 \geq \sqrt{l_2 - l_1} j^{\alpha \theta}$ that is $l_2 - l_1 \geq j^{2\alpha \theta}$. Thus for fixed $j$ we have $O(j^{\alpha(1-2\theta)})$ events and so
\[\text{Prob}(\exists l_1, l_2 \text{ satisfying (9) with given } j) = O(j^{\alpha(1-6\theta)}).
\]

By assumption $\alpha(1 - 6\theta) < -1$. This completes the proof. \hfill \Box

11. INVARiance Principle.

**Proof of Theorem 3.** We keep the notation of the previous section. Let us begin with recalling the facts about martingales we will use in this and following sections. Proofs can be found for example in [38]. Let $(Z_n, G_n)$ be martingale pair. Then $Y_n = Z_n - Z_{n-1}$ is called martingale difference sequence. We consider only martingales satisfying $Z_0 = 0$ and $\mathbb{E}(Z_n^2) < \infty$. 
Proposition 13. (a) (Doob convergence theorem) If $\mathbb{E}(Z_n^2)$ is bounded then $Z_n$ converges almost surely; there are constants $C_1$ and $C_2$ such that for any martingale $(Z_n, G_n)$ as above the following holds:

(b) Let $Z^* = \max_{n} Z_n$, $\Delta Z = \sum_{n} Y_n^2$. Then

$$\frac{1}{C_1} \mathbb{E}((\Delta Z)^2) \leq \mathbb{E}(Z^4) \leq C_1 \mathbb{E}((\Delta Z)^2);$$

(c) (Skorohod representation theorem) After possibly enlarging the probability space we can find a Brownian Motion $w(t)$ and stopping times $T_j$ such that if $k = P_{k-1} T_j$, then $Z_k = w(T_k), \mathbb{E}(T_k|F_k) = \mathbb{E}(Y_k^2)$ and $\mathbb{E}(T_k^2) \leq C_2 \mathbb{E}(Y_k^4);$.

(d) Let $\eta_n$ be a $G_n$-measurable sequence such that

$$\beta_n = \sum_{j=1}^{\infty} \mathbb{E}(\eta_{n+1-j}|F_{n-1}) \leq \text{Const}$$

then

$$\eta_n = Y_n + \beta_{n+1} - \beta_n$$

where $Y_n$ is a martingale difference sequence.

Let $\ell = \ell(P)$. First we define an increasing sequence of sigma-algebras $F_n$ on $P$. Let $F_0 = \{\emptyset, \mathbb{P}\}$. Suppose that $F_n$ is generated by $\{P_{j,n}\}$ such that $f^n P_{j,n} \in \mathbb{P}$. Decompose $f^{n+1} P_{j,n} = \bigcup_{k} P_{j,k,n}$ and let $F_{n+1}$ be generated by $f^{-n-1} P_{j,k,n}$. Write $G_k = F_{n_k}, \tilde{\eta}_k = \mathbb{E}(\eta_k|G_k)$. Note that $|\eta_k - \tilde{\eta}_k| \leq \text{Const}.$

Lemma 4. $\exists C$ such that $\forall j \sum_k |\mathbb{E}((\tilde{\eta}_{j+k}|G_j)| \leq C.$

Proof. Let $Q$ be an element of $G_j$. Then

$$\mathbb{E}(\tilde{\eta}_{j+k}|G_j) = \mathbb{E}(\eta_{j+k}|G_j) = \int_{Q} \rho_Q(y) \sum_{l=n_{j+k-1}+1}^{n_{j+k}+1} A(f^{l-n_j}y)dy.$$

Thus $\sum_k |\mathbb{E}((\tilde{\eta}_{j+k}|G_j)| \leq \sum_{l=1}^{\infty} a(l).$ \hfill $\Box$

Write $\tilde{\eta}_k = \zeta_k + \beta_k - \beta_{k+1}$ where $\beta_k = \sum_{l=0}^{\infty} \mathbb{E}(\tilde{\eta}_{k+l}|G_{k-1}).$ Let $S_k = \sum_{l=1}^{k} \zeta_l$. Then $(S_k, G_k)$ is a martingale by and $|S_k - S_{n_k}| \leq \text{Const}k$. Given $N$ define $M_N$ by the condition that $n_{M_N} \leq N < n_{M_N+1}$.

Proposition 14. $\exists s_1$ such that almost surely

$$S_N - S_{M_N} = O(N^{\frac{1}{2} - s_1}).$$
Proof. $S_N - S_{MN} = (S_N - S_{MN}) + (S_{MN} - S_{MN}) = I + II.$

$$I = O(M^{\frac{1}{2} + \theta}) = O(N^{\frac{1}{2} \alpha + \frac{1}{2} - \frac{1}{\alpha + 1}})$$

by Lemma 3 and $(\frac{1}{2} + \theta) \frac{\alpha}{\alpha + 1} \leq \frac{1}{2}$ since $\theta < \frac{1}{2 \alpha}$. $II = O(M) = O(N^{-\frac{1}{\alpha}})$ and $\frac{1}{\alpha + 1} < \frac{1}{2}$ as $\alpha > 1$.

Let $w, T_j$ and $\tau_k$ be as in Proposition 13(c).

**Proposition 15.** $\exists \sigma_N$ such that $\frac{\sigma_N}{N} \to \sigma(A)$ and $\sum_{j=1}^{M_N} T_j - \sigma_N = O(N^{1-s_2}).$

Proof. We have

$$\sum_{j=1}^{M_N} T_j =$$

$$\sum_{j=1}^{M_N} [T_j - \mathbb{E}(T_j|G_{j-1})] + \sum_{j=1}^{M_N} [\mathbb{E}(\zeta_j^2|G_{j-1}) - \zeta_j^2] +$$

$$\sum_{j=1}^{M_N} [\zeta_j^2 - \mathbb{E}(\zeta_j^2)] + \sum_{j=1}^{M_N} \mathbb{E}(\zeta_j^2) =$$

$$I + II + III + IV.$$

To estimate I write $R_j = T_j - \mathbb{E}(T_j|G_{j-1})$, $\mathbb{E}(T_j|G_{j-1}) = D_j^\alpha + r_j$ where $r_j$ is uniformly bounded. Thus

$$\mathbb{E}(R_j^2) = \mathbb{E}(T_j^2) - 2\mathbb{E}(T_j r_j) + D_j^2 r_j^2 \leq C j^{2\alpha}.$$

Since $R_j$ is a martingale difference sequence $\sum_j \frac{R_j}{j^{\frac{1}{\alpha} + \frac{1}{2}\varepsilon}}$ converges almost surely by Proposition 13(b). Writing

$$R_j = \left(\frac{R_j}{j^{\frac{1}{\alpha} + \frac{1}{2}\varepsilon}}\right)^{j^{\frac{1}{2} + \frac{1}{2}\varepsilon}}$$

and summing by parts we obtain

$$\sum_{j=1}^{M} R_j \leq \text{Const}(\omega) M^{\frac{1}{2} + \frac{1}{2}\varepsilon} = O(n_{M}^{1-s_3}).$$

$II$ can be bounded the same way as I. Namely let $L_j = \zeta_j^2 - \mathbb{E}(\zeta_j^2|G_{j-1})$ then

$$\mathbb{E}(L_j^2) = \mathbb{E}((\zeta_j^2 - \mathbb{E}(\zeta_j^2|G_{j-1}))^2) \leq \mathbb{E}([A_j^\alpha \circ f_{n_j}]^2) + O(j^{2\alpha}) = O(j^{2\alpha}).$$
so as before \( II = \sum_{j=1}^{M} L_j = O(n^{1-s_3}) \). Also, similarly to Lemma 1
\[
\mathbb{E} \left( \left[ \sum_{j=1}^{M} \zeta^2 - \mathbb{E}(\zeta^2) \right]^2 \right) = \mathbb{E} \left( \left[ \sum_{j=1}^{M} \zeta^2 - \mathbb{E}(\zeta^2) \right]^2 \right) \leq \text{Const} n_M^2,
\]
so by Borel-Cantelli \( III = O(n_M^{\frac{2}{3}}) \) almost surely. Therefore, \( \sum_{j=1}^{M_N} T_j = \sum_{j=1}^{M_N} \mathbb{E}(\zeta_j^2) + O(n^{1-s_3}) \). By Section 9 \( \sum_{j=1}^{M} \zeta_j^2 \sim \sum_{j=1}^{M} \sigma(A) \alpha = \sigma(A)n_M \).

Thus we have
\[
S_k = w(\tau_k) = w(\sigma_{n_k}) + [w(\tau_k) - w(\sigma_{n_k})] = w(\sigma_{n_k}) + O(n_k^{1-s_3})
\]
almost surely.

This identity together with Proposition 14 proves Theorem 3. \(\square\)

**Note.** Our exposition mostly follows [71].

### 12. Convergence to the Gaussian process.

**Theorem 9.** Let \( S_\varepsilon(t) \) be defined as in (8), then as \( \varepsilon \to 0 \) the process \( \sqrt{\varepsilon} S_\varepsilon(t) \) converges weakly to a Gaussian random process \( S(t) \) with zero mean and covariance matrix
\[
< S(t), S(t) > = \int_0^t \sigma(A(s, \cdot)) ds.
\]

**Remark.** Clearly this Theorem implies Corollary 4.

**Proof.** By Lemma 2 \( \{ S_\varepsilon(t) \} \) is a tight family so we need only to verify convergence of finite dimensional distributions. Let us start with one dimensional distributions. Denote \( n = \frac{1}{\varepsilon} \). Define
\[
\hat{S}_k = \sum_{j=(k-1)n^{\frac{3}{5}}}^{kn^{\frac{3}{5}}-1} A(\varepsilon j, f^j x),
\]
\[
\tilde{S}_k = \sum_{j=kn^{\frac{1}{5}}-1}^{kn^{\frac{1}{5}}} A(\varepsilon j, f^j x),
\]
\[
S^*(t) = \sum_{k=0}^{\left[ \frac{t}{n^{\frac{1}{5}}} \right]^{-1}} \hat{S}_k,
\]
$$S^{**}(t) = \sum_{k=0}^{\left[\frac{1}{n^2}\right]} \bar{S}_k.$$ 

Then by Lemma 1 $S^{**}(t) \to 0$ in $L^2(l)$ and, in particular $S^{**}(t) \to 0$ in probability. Let $\psi_k(\xi) = \ell(e^{i\sqrt{\pi}S_k}\xi)$.

**Proposition 16.**

$$\psi_k(\xi) = 1 - \varepsilon^2 \sigma(A(k\varepsilon^2, \cdot))(1 + o(1)).$$

**Proof.** We have

$$\psi_k(\xi) = \mathbb{E}_t \left( 1 + i\sqrt{\varepsilon} \bar{S}_k \xi - \frac{\varepsilon \hat{\sigma}_k^2}{2} \xi^2 - i\varepsilon^2 \frac{\hat{S}_k^2}{6} \xi^3 + O(\varepsilon^2 h^2 \xi^4) \right).$$

Using Lemma 1 we get

$$\psi_k(\xi) = 1 - \varepsilon^2 \sigma(A(s, \cdot))(1 + o(1)) + O(\varepsilon^2 + \varepsilon^4 + \varepsilon^4),$$

where the main term comes from $\varepsilon^2 \frac{\hat{S}_k^2}{6} \xi^2$. This proves the proposition. \hfill \Box

Let $\phi_k(\xi) = \ell(e^{i\sqrt{\pi}S_k^1}\xi)$.

**Proposition 17.**

$$\ln \phi_{k+1}(\xi) = \ln \phi_k(\xi) - \varepsilon^2 \sigma \left( A(k\varepsilon^2, \cdot) \right) \frac{\xi^2}{2} + o \left( \varepsilon^2 \right).$$

**Proof.** It suffices to verify this for $\ell \in E_1$.

(I) Case $k = 0$ constitutes Proposition 16.

(II) $k > 0$. Decompose $f^{k\frac{n}{2}} P = (\bigcup_j P_j) \bigcup Z$. Let $q = kn^2$. Choose $y_j \in P_j$. Then

$$\ell \left( \exp(i\sqrt{\varepsilon} S^1_{k+1}) \right) = \sum_j c_j \exp(i\sqrt{\varepsilon} S^1_k(f^{-q}y_j)\xi) \exp(G(f^{-q}y_j)) \int_{P_j} e^{i\sqrt{\varepsilon} S^1_1(y)\xi} \rho_{P_j}(y)dy + O(\theta^{n^2}).$$

By Proposition 16

$$\int_{P_j} e^{i\sqrt{\varepsilon} S^1_1(y)\xi} \rho_{P_j}(y)dy = (1 - \varepsilon^2 \sigma(A(k\varepsilon^2, \cdot))(1 + o(1)).$$

Hence

$$\phi_{k+1}(\xi) = \sum_j c_j \exp(i\sqrt{\varepsilon} S^1_k(f^{-q}y_j)) \exp(G(f^{-q}y_j))(1 - \varepsilon^2 \sigma(A(k\varepsilon^2, \cdot))(1 + o(1))) = \phi_k(\xi)(1 - \varepsilon^2 \sigma(A(k\varepsilon^2, \cdot))(1 + o(1))) + O(\theta^{-n^{1/2}}).$$

Taking logarithms of both sides we obtain the statement required. \hfill \Box
Now summing (11) for $k = 0 \ldots \lfloor tn^2 \rfloor$ we get

$$\ln \ell(e^{i\sqrt{\xi}S_s(t)\xi}) \sim -\frac{\xi^2}{2} \int_0^t \sigma(A(s, \cdot))ds.$$

Since $\sqrt{\xi}[S_\xi(t) - S_\xi^*(t)] \rightarrow 0$ in probability we see that one dimensional distributions of $\sqrt{\xi}S_\xi(t)$ converge to those of $S(t)$. To consider the general case let $t_1 \ldots t_r, \xi_1 \ldots \xi_r$ be some numbers. Denote $\eta_j = \sum_{m=1}^j \xi_m$. We have

$$\sum_j \xi_j S_\xi(t_j) = \sum_j \eta_j [S_\xi(t_j) - S_\xi(t_{j-1})].$$

By the same argument as in the proof of Proposition 11 we obtain

$$\ln \ell \left( \exp[i\sqrt{\xi} \sum_j \xi_j S_\xi(t_j)] \right) \sim -\frac{1}{2} \sum_j \eta_j^2 \int_{t_{j-1}}^{t_j} \sigma(A(s, \cdot))ds.$$

This implies convergence of multidimensional distributions and so proves Theorem 9.

**Note.** By the same argument one can obtain versions of Central Limit Theorem for families of diffeomorphisms. One only has to check the uniformity of the estimates of the previous sections. The following statement is used in [28].

**Proposition 18.** Let $f_\xi$ be a family of partially hyperbolic systems such that $\exists C, r, v$, a function space $\mathbb{B}$, a sequence $\{a(n)\}$ such that

$$\sum_{n=1}^{\infty} a(n) < \infty$$

and a linear functional $\omega : \mathbb{B} \rightarrow \mathbb{R}$ such that for any $P_\xi$ belonging to the $(C, r_1, v)$-universal family from example I of Section 2 and $\forall \rho$ such that $||\rho||_{C^v(P_\xi)} \leq 1$ the following estimate holds

$$\left| \int_{P_\xi} A(f_\xi^n x) \rho(x)dx - \nu(A) - \varepsilon \omega(A) \right| \leq ||A||(a(n) + o(\varepsilon)).$$

Let $n_\varepsilon$ be a sequence such that $n_\varepsilon \rightarrow \infty, n_\varepsilon \varepsilon^2 \rightarrow c$ where $c \geq 0$ then if $x$ is chosen according to Lebesgue measure then

$$\frac{\sum_{j=0}^{n-1} [A(f_\xi^j x) - \nu(A)]}{\sqrt{n_\varepsilon}} \rightarrow \mathcal{N}(c\omega(A), D(A)).$$
13. Short time fluctuations in averaging. Moments of slowly changing quantities.

To simplify the notation we present the proofs of Theorems 4 and 5 only for the case $d = 1$. The reader will have no difficulties to establish multidimensional analogies of our results but the notation in higher dimensional setting becomes much more complicated.

Here we prove Theorem 4. We have

$$\Delta_{n+1} - \Delta_n = \varepsilon \left[ A(z_n, f^n x) - \bar{A}(q_n) \right] =$$

$$\varepsilon \left[ A(q_n, f^n x) - \bar{A}(q_n) \right] + \varepsilon \left[ A(z_n, f^n x) - \bar{A}(q_n, f^n x) \right].$$

Using Hadamard Lemma we rewrite the second term as

$$A(z_n, f^n x) - \bar{A}(q_n, f^n x) = [DA(q_n, f^n x) + \zeta(q_n, f^n x, \Delta_n)] \Delta_n$$

where $\zeta$ is a smooth function of its arguments, $\zeta(q, x, 0) = 0$. Denote

$$\zeta_n = D\bar{A}(q_n) + \bar{\zeta}(q_n, \Delta_n),$$

$$\beta_n = [DA(q_n, f^n x) + \zeta(q_n, f^n x, \Delta_n) - \zeta_n] \Delta_n,$$

$$\gamma_n = A(q_n, f^n x) - \bar{A}(q_n).$$

Then our equation can be rewritten as

$$\Delta_{n+1} - \Delta_n = \varepsilon \left[ \zeta_n \Delta_n + \beta_n + \gamma_n \right].$$

Let $L_n$ be the solution of

$$L_{n+1} - L_n = \varepsilon \zeta_n L_n. \tag{12}$$

Substitute $\Delta_n = L_n \rho_n$, then we have

$$L_{n+1}(\rho_{n+1} - \rho_n) = \varepsilon (\beta_n + \gamma_n), \tag{13}$$

so

$$\rho_{n+1} = \varepsilon \sum_{j=0}^{n} L_{j+1}^{-1} (\beta_j + \gamma_j). \tag{14}$$

The next is a special case of Theorem 9.

**Proposition 19.** Let $\gamma^\varepsilon = \frac{\gamma}{\sqrt{\varepsilon}}$, then as $\varepsilon \to 0$ $\gamma^\varepsilon$ converges to $B$–the Gaussian process defined by (6).

In order to estimate the moments of $\sum_n L_{n+1}^{-1} \beta_n$ and $\sum_n L_{n+1}^{-1} \gamma_n$ we need the following statement the proof of which occupies the most of this section.
Proposition 20. Let $A(\delta, x)$ satisfy $\int A(\delta, x) d\nu(x) = 0$ for all $\delta$. Let $\theta_p(\delta) = ||A^p(\delta, \cdot)||_B$. Suppose that $\theta_p$ are smooth functions of $\delta$. Let $\kappa_p(\delta) = \frac{d}{d\delta}A^p(\delta, \cdot)$, $\bar{\kappa}_p(\delta) = ||\frac{d}{d\delta}A^p(\delta, \cdot)||_B$. Suppose that $|\kappa_p(\delta)| < \text{Const}$, $|\bar{\kappa}_p(\delta)| < \text{Const}$ for $p \leq 4$. Let $\{\delta_n(x)\}$ satisfy

$$\delta_{n+1} - \delta_n = \varepsilon B(\delta_n, f^n x, \varepsilon)$$

where for all $m$ $||\frac{d^m}{d\delta^m}B(\delta, \cdot)||_B$ is uniformly bounded and

$$B(\delta, x, \varepsilon) = B(\delta, x) + O(\varepsilon).$$

Let $T = \sum_{j=m}^{m+1} A(\delta_j, f^j)$, then

(a) $|\ell(T)| \leq \text{Const} \left[ \ell(\theta_1(\delta_m)) + \sqrt{\varepsilon} \right]$;

(b) $|\ell(T^2)| \leq \text{Const} \left[ \ell(\theta_2(\delta_m)) + \varepsilon \right] \frac{1}{\sqrt{\varepsilon}}$;

(c) $|\ell(T^4)| \leq \text{Const} \left[ \frac{\ell(\theta_4(\delta_m))}{\varepsilon} + \ell(|\kappa_4(\delta_m)|) + \ell(|\bar{\kappa}_1(\delta_m)\theta_3(\delta_m)|) + \ell(|\theta_3(\delta_m)|) + \varepsilon \ell(|\theta_2(\delta_m)|) + \varepsilon^3 \ell(|\bar{\kappa}_1(\delta_m)|) + \varepsilon^2 \right]$.

Proof. Let

$$T' = \sum_j A(\delta_j, f^j),$$

$$T'' = \varepsilon \sum_{j>k} \frac{dA}{d\delta}(\delta_m, f^j x) B(\delta_m, f^k x).$$

Lemma 5.

$$T = T' + T'' + O(\sqrt{\varepsilon}).$$

Proof. We have

$$T = \sum_j A(\delta_j, f^j x) = \sum_j A(\delta_m, f^j x) + \sum_j [A(\delta_j, f^j x) - A(\delta_m, f^j x)] =$$

The first term equals to $T'$. The second term can be estimated as follows

$$\sum_j [A(\delta_j, f^j x) - A(\delta_m, f^j x)] = \sum_j \frac{dA}{d\delta}(\delta_m, f^j x)(\delta_j - \delta_m) + \sum_j O((\delta_j - \delta_m)^2).$$

Now

$$\delta_m - \delta_j \leq \text{Const} |m - j| \varepsilon \leq \text{Const} \sqrt{\varepsilon}.$$

Hence

$$\sum_j (\delta_j - \delta_m)^2 \leq \text{Const} \frac{1}{\sqrt{\varepsilon}} \varepsilon \leq \text{Const} \sqrt{\varepsilon}.$$
Now
\[ \delta_j - \delta_m = \sum_{k=m}^{j} \varepsilon B(\delta_k, f^k x) + \sum_{k=m}^{j} O(\varepsilon^2) = \sum_{k=m}^{j} \varepsilon B(\delta_k, f^k x) + O(\varepsilon^2) \]
and
\[ B(\delta_k, f^k x) = B(\delta_m, f^k x) + O(|\delta_k - \delta_m|) = B(\delta_m, f^k x) + O(\sqrt{\varepsilon}). \]
Hence
\[ \sum_j [A(\delta_j, f^j x) - A(\delta_m, f^j x)] = \varepsilon \sum_{k>j} dA(d\delta)(\delta_j, f^j x) B(\delta_m, f^k x) + O(\sqrt{\varepsilon}) \]
as claimed.

To estimate \( T'' \) rewrite
\[ \ell \left( \sum_{j<k} \sum dA(\delta_m, f^j x) B(\delta_m, f^k x) \right) = \ell \left( \sum_k B(\delta_m, f^k x) \sum_{j<k} dA(\delta_m, f^j x) \right) \]
Now \( \int dA(\delta, x) d\mu(x) = 0 \), so similarly to Lemma 1 we obtain that for any fixed \( k \)
\[ \left| \ell \left( B(\delta_m, f^k x) \sum_{j<k} dA(\delta_m, f^j x) \right) \right| \leq \text{Const.} \]
Hence
\[ \varepsilon \left| \ell \left( \sum_{j<k} \sum dA(\delta_m, f^j x) B(\delta_m, f^k x) \right) \right| \leq \varepsilon \times \text{Const} \frac{1}{\sqrt{\varepsilon}} = \text{Const} \sqrt{\varepsilon}. \]

To estimate \( \ell(\sum_j A(\delta_m, f^j x)) \) it is enough to treat the case \( \ell = \ell(P, G) \). In this case we consider an almost Markov decomposition \( f^m P = (\bigcup_q P_q) \cup Z \). Choose \( y_q \in P_q \). We have
\[ \int_P e^{G(x)} \sum_j A(\delta_m, f^j x) \rho_P(x) dx = \]
\[ \sum_q c_q \int_{P_q} e^{G(f^{-m} y)} \sum_j A(\delta_m(f^{-m} y), f^j f^{-m} y) \rho_{P_q}(y) dy + O(\theta^m). \]
For fixed \( q \)
\[ (16) \]
\[ \int_{P_q} e^{G(f^{-m} y)} \sum_j A(\delta_m(y_q), f^j f^{-m} y) \rho_{P_q}(y) dy = \]
\[ \int_{P_q} e^{G(f^{-m} y)} \sum_j A(\delta_m(y_q), f^j f^{-m} y) \rho_{P_q}(y) dy + \]
\[
\int_{P_y} e^{G(f^{-m}y)} \sum_j [A(\delta_m(y), f^{j-m}y) - A(\delta_m(y_q), f^{j-m}y)] \rho_{P_y(y)} dy.
\]

**Lemma 6.** \( \exists C \) such that for small \( \varepsilon \)

\begin{equation}
(17) \quad |\delta_j(x_1) - \delta_j(x_2)| \leq C\varepsilon d^\gamma(f^j x_1, f^j x_2).
\end{equation}

where \( \gamma \) is such that \( \mathbb{B} \subset C^\gamma(M) \).

**Proof.** Let \( C_k \) be a constant such that for \( j < k \)

\[ |\delta_j(x_1) - \delta_j(x_2)| \leq C_k \varepsilon d^\gamma(f^j x_1, f^j x_2). \]

Then

\[
|\delta_{k+1}(x_1) - \delta_{k+1}(x_2)| \leq |\delta_k(x_1) - \delta_k(x_2)| + \varepsilon |B(\delta_k(x_1), f^k x_1) - B(\delta_k(x_2), f^k x_2)| \leq C_k \varepsilon d^\gamma(f^j x_1, f^j x_2) + \\
\varepsilon |B(\delta_k(x_1), f^k x_1) - B(\delta_k(x_1), f^k x_2)| + \varepsilon |B(\delta_k(x_2), f^k x_2)| \leq C_k \varepsilon d^\gamma(f^j x_1, f^j x_2) + \\
\varepsilon |\delta_k(x_1) - \delta_k(x_2)| + \varepsilon |B| d^\gamma(f^k x_1, f^k x_2) \leq [C_k \varepsilon + C(B) \varepsilon^2 + \varepsilon |B|] d^\gamma(f^k x_1, f^k x_2).
\]

Since \( f \) is partially hyperbolic \( \exists \theta < 1 \) such that

\[ d(f^k x_1, f^k x_2) \leq \theta d(f^{k+1} x_1, f^{k+1} x_2). \]

Thus

\[ |\delta_{k+1}(x_1) - \delta_{k+1}(x_2)| \leq \varepsilon [C_k + C(B) \varepsilon + ||B||] \theta^\gamma d^\gamma(f^{k+1} x_1, f^{k+1} x_2). \]

If \( \varepsilon \) is small enough then \( \varepsilon C(B) \leq 1 \), so

\[ C_{k+1} \leq (C_k + 1 + ||B||) \theta^\gamma. \]

Thus if

\[ C_{k+1} \leq \frac{1 + ||B|| \theta^\gamma}{1 - \theta^\gamma} \]

then (17) holds. \( \square \)

Thus the second term in the RHS of (16) is less than

\[ \sum_{j=m}^{m+\gamma} \text{Const}\varepsilon = \text{Const}\sqrt{\varepsilon}. \]

Now

\[
\int_{P_y} e^{G(f^{-m}y)} \sum_j A(\delta_m(y_q), f^{j-m}y) \rho_{P_y(y)} dy = \]

\[ ||A(\delta_m(y_q), \cdot)|| \int_{P_y} e^{G(f^{-q}y)} \sum_j \frac{A(\delta_m(y_q), f^{j-m}y)}{||\delta_m(y_q), \cdot||} \rho_{P_y(y)} dy \leq \]

\[ ||A(\delta_m(y_q), \cdot)|| \sum_j a\left(\frac{j-m}{C}\right) \leq \text{Const}||A(\delta_m(y_q), \cdot)||. \]
So,
\[
\ell \left( \sum_j A(\delta_m, f^j x) \right) \leq \sum_q c_q \theta_1(\delta_m(y_q)) + \text{Const} \sqrt{\varepsilon}.
\]

Using again Lemma 6 and the assumption that \( \theta_1 \) depends smoothly on \( \delta \) we get
\[
\sum_q c_q \theta_1(\delta(y_q)) = \sum_q \int \theta_1(\delta_m(f^{-m}y)) \rho_{P_q}(y) dy + O(\varepsilon) = \ell(\theta_1(\delta_m)) + O(\varepsilon).
\]

This completes the proof of (a).

(b) By Lemma 5 \( T = T' + T'' + O(\sqrt{\varepsilon}) \). Hence
\[
\ell(T^2) \leq \text{Const}[\ell(T')^2 + \ell(T'')^2 + \varepsilon].
\]

**Lemma 7.**
\[
\ell((T')^2) \leq \text{Const} \left( \frac{\ell(\theta_2(\delta_m))}{\sqrt{\varepsilon}} + \sqrt{\varepsilon} \right).
\]

**Proof.** It suffices to give a proof in case \( \ell = \ell(P,G) \). Let \( f^mP = (\bigcup_q P_q) \bigcup Z \) be an almost Markov decomposition. Choose \( y_q \in P \). Then
\[
\int_P e^{G(x)}(T')^2 \rho_P(x) dx = \sum_q c_q \int_{P_q} e^{G(f^{-m}y)}(T'(f^{-m}t))^2 \rho_{P_q}(y) dy + O(\theta^m).
\]

Now
\[
\int_{P_q} e^{G(f^{-m}y)}(T'(f^{-m}t))^2 \rho_{P_q}(y) dy = \int_{P_q} e^{G(f^{-m}y)} \left[ \sum_j A(f^j x, \delta_m(y_q)) \right]^2 \rho_{P_q}(y) dy +
\]
\[
\int_{P_q} e^{G(f^{-m}y)} \left( \left[ \sum_j A(\delta_m(y_q), f^j x) \right]^2 - \left[ \sum_j A(\delta_m(y_q), f^j x) \right]^2 \right) \rho_{P_q}(y) dy = I_q + II_q.
\]

Now
\[
I_q = ||A(\delta_m(y_q), \cdot)||^2 \int_{P_q} e^{G(f^{-m}y)} \left[ \sum_j A(\delta_m(y_q), f^j x) \right]^2 \rho_{P_q}(y) dy
\]
and by the argument of Lemma 1 the last integral is \( O\left( \frac{1}{\sqrt{\varepsilon}} \right) \). Hence
\[
I_q \leq \text{Const} \frac{\theta_2(y_q)}{\sqrt{\varepsilon}}.
\]

By Lemma 6
\[
\theta_2(y_q) = \int_{P_q} \theta_2(y) \rho_{P_q}(y) dy + O(\varepsilon).
\]
Summation over $q$ gives

$$\sum_q c_q I_q \leq \text{Const} \left[ \frac{\ell(\theta_2(\delta_m))}{\sqrt{\varepsilon}} + \sqrt{\varepsilon} \right].$$

Now

$$\mathbb{II}_q = \int_{P_q} e^{G(f^{-m}y)} \left[ \sum_j (A(\delta_m(y), f^j x) - A(\delta_m(y_q), f^j x)) \right] \times
\left[ \sum_j (A(\delta_m(y), f^j x) + A(\delta_m(y_q), f^j x)) \right] \rho_{P_q}(y) dy.$$

By Lemma 6

$$\sum_j (\delta_m(y), f^j x) - A(\delta_m(y_q), f^j x) \leq \sum_j O(\varepsilon) = O(\sqrt{\varepsilon}).$$

On the other hand

$$\sum_j (A(\delta_m(y), f^j x) + A(\delta_m(y_q), f^j x)) \leq
2 \sum_j ||A(\delta_m(y), \cdot)|| + O(\varepsilon) \leq
\text{Const} \left( \frac{||A(\delta_m, \cdot)||}{\sqrt{\varepsilon}} + \sqrt{\varepsilon} \right).$$

Thus

$$\sum_q c_q I_q \leq \text{Const} \ell(||\theta(\delta_m)||)$$

But

$$\ell(||\theta(\delta_m)||) = \ell\left( \left| \frac{\theta(\delta_m)}{4 \sqrt{\varepsilon}} \right| \left| \frac{\theta(\delta_m)}{4 \sqrt{\varepsilon}} \right| \right) \leq \frac{1}{2} \left( \frac{\ell(\theta_2(\delta_m))}{\sqrt{\varepsilon}} + \sqrt{\varepsilon} \right).$$

Combining (18), (19) and (20) we obtain the lemma. \qed

Now

$$\ell((T^m)^2) = \varepsilon^2 \sum_{k_1 < j_1, k_2 < j_2, j_1 < j_2} \ell\left( \frac{dA}{d\delta}(\delta_m, f^{j_1} x) \frac{dA}{d\delta}(\delta_m, f^{j_2} x) B(\delta_{k_1}, f^{k_1} x) B(\delta_{k_2}, f^{k_2} x) \right).$$

By the argument of Lemma 1 we see that for fixed $k_1, j_1, k_2$

$$\left| \sum_{j_2} \ell\left( \frac{dA}{d\delta}(\delta_m, f^{j_1} x) \frac{dA}{d\delta}(\delta_m, f^{j_2} x) B(\delta_m, f^{k_1} x) B(\delta_m, f^{k_2} x) \right) \right| \leq \text{Const},$$
so the whole sum is bounded by

\[ (21) \quad \ell((T^n)^2) \leq \text{Const}\varepsilon^2 \left( \frac{1}{\sqrt{\varepsilon}} \right)^3 = \text{Const}\sqrt{\varepsilon}. \]

Lemma 7 and (21) prove (b).

To prove (c) we again use

\[ \ell(T^4) \leq \text{Const}(\ell((T^4)^4) + \ell((T^m)^4) + \varepsilon^2). \]

Lemma 8.

\[ \ell((T^4)^4) \leq \text{Const} [\varepsilon + \ell(|\kappa_1\theta_3|) + \ell(|\theta_3|) + \ell(|\kappa_1\theta_2|) + \varepsilon\ell(|\theta_2|) + \ell(\theta_m)] + \varepsilon\ell(\kappa_4(\delta_m))]. \]

**Proof.** It suffices to consider the case \( \ell = \ell(P, G). \) We argue as in the proof of (a). Let \( f^m P = \bigcup_q P_q \bigcup Z \) be an almost Markov decomposition. Choose \( y_q \in P_q. \) Then

\[
\int e^G(x)(T')^4 \rho_P(x)dx = \\
\sum_q c_q \int_{P_q} e^G(f^{-m}y)(T'(f^{-m}y))^4 \rho_{P_q}(y)dy + O(\theta^m).
\]

Now

\[
\int_{P_q} e^G(f^{-m}y)(T'(f^{-m}y))^4 \rho_{P_q}(y)dy = \\
\int_{P_q} e^G(f^{-m}y) \left[ \sum_j A(\delta_m(y_q), f^j x) \right]^4 \rho_{P_q}(y)dy + \\
\int_{P_q} e^G(f^{-m}y) \left[ \left( \sum_j A(\delta_m(y), f^j x) \right)^4 - \left( \sum_j A(\delta_m(y_q), f^j x) \right)^4 \right] \rho_{P_q}(y)dy = I_q + \Pi_q
\]

Reasoning as in Lemma 1(d) we obtain

\[ |I_q| \leq \text{Const} \left( \frac{1}{\varepsilon} \right)^2 \theta(\delta_m(y_q)) = \text{Const} \frac{\theta_4(\delta_m(y_q))}{\varepsilon}. \]

On the other hand

\[
\Pi_q = \int_{P_q} e^G(f^{-m}y) \left[ \left( \sum_j A(\delta_m(y), f^j x) \right)^4 - \left( \sum_j A(\delta_m(y_q), f^j x) \right)^4 \right] \rho_{P_q}(y)dy = \\
\int_{P_q} e^G(f^{-m}y) \left[ \left( \sum_j A(\delta_m(y), f^j x) - A(\delta_m(y_q), f^j x) \right) \right] \times \\
\left[ \left( \sum_j A(\delta_m(y), f^j x) \right)^3 + \left( \sum_j A(\delta_m(y), f^j x) \right)^2 \left( \sum_j A(\delta_m(y_q), f^j x) \right) + \right.
\]
\[
(\sum_j A(\delta_m(y), f^j x))(\sum_j A(\delta_m(y_q), f^j x))^2 + (\sum_j A(\delta_m(y_q), f^j x)^3) \rho_{P_q}(y)dy =
\]

Now
\[
(22) \sum_j [A(\delta_m(y), f^j x) - A(\delta_m(y_q), f^j x)] =
\]
\[
\left[ \sum_j DA(\delta_q(y), f^j x)(\delta_m(y) - \delta_m(y_q)) \right] + O(\sum_j [\delta_m - \delta - m(y_q)]^2) =
\]
\[
\left[ \sum_j DA(\delta_q(y), f^j x)(\delta_m(y) - \delta_m(y_q)) \right] + O(\sqrt{\varepsilon})
\]
since by Lemma 6 each term in the second sum is \(O(\varepsilon^2)\).

**Lemma 9.**

\[
(23) (\sum_j A(\delta_m(y), f^j x))^3 + (\sum_j A(\delta_m(y), f^j x))^2(\sum_j A(\delta_m(y_q), f^j x)) +
\]
\[
(\sum_j A(\delta_m(y), f^j x))(\sum_j A(\delta_m(y_q), f^j x))^2 + (\sum_j A(\delta_m(y_q), f^j x))^3 =
\]
\[
4 \left( \sum_j A(\delta_m(y_q), f^j x) \right)^3 + O \left[ \left( \frac{\theta_2(\delta_m(y))}{\sqrt{\varepsilon}} \right) + \sqrt{\varepsilon} \right].
\]

**Proof.** Consider, for example, the first term. Other terms can be handled similarly.
\[
\left( \sum_j A(\delta_m(y), f^j x) \right)^3 =
\]
\[
\left[ \left( \sum_j A(\delta_m(y), f^j x) \right)^3 - \left( \sum_j A(\delta_m(y_q), f^j x) \right)^3 \right] + \left( \sum_j A(\delta_m(y_q), f^j x) \right)^3.
\]
The first term here equals
\[
\sum_j [A(\delta_m(y), f^j x) - A(\delta_m(y_q), f^j x)] \times
\]
\[
\left[ \left( \sum_k A(\delta_m(y), f^k x) \right)^2 + \left( \sum_k A(\delta_m(y), f^k x) \right) \left( \sum_r A(\delta_m(y_q), f^r x) \right) + \left( \sum_k A(\delta_m(y_q), f^k x) \right)^2 \right].
\]
By Lemma 6 the first factor is \( \frac{1}{\sqrt{\varepsilon}} O(\varepsilon) = O(\sqrt{\varepsilon}) \). On the other hand, using the formula for difference of squares the same way we have done it for cubes we obtain that the first factor is \( O(\frac{1}{\varepsilon^2} \theta_2(\delta_m) + 1) \).

Multiplying ((22) and (23) we get

\[
\mathbb{I}_q =
\]

\[
4 \int_{P_q} e^{G(f^{-m}y)} \left[ \sum_j DA(\delta_q(y), f^j x)(\delta_m(y) - \delta_m(y_q)) \right] \left( \sum_j A(\delta_m(y_q), f^j x) \right)^3 \rho_{P_q}(y) dy +
\]

\[
O \left( \sqrt{\varepsilon^3} \int_{P_q} e^{G(f^{-m}y)} \left| \sum_j A(\delta_m(y_q), f^j x) \right|^{3} \rho_{P_q}(y) dy \right) +
\]

\[
\frac{1}{\sqrt{\varepsilon}} O \left( \varepsilon \int_{P_q} e^{G(f^{-m}y)} \left| \sum_j DA(\delta_q(y), f^j x)(\delta_m(y) - \delta_m(y_q)) \right| \theta_2(\delta_m(y)) |\rho_{P_q}(y) dy \right) +
\]

\[
O \left( \varepsilon \int_{P_q} e^{G(f^{-m}y)} |\theta_2(\delta_m(y))| \rho(y) dy \right) +
\]

\[
O \left( \sqrt{\varepsilon} \int_{P_q} e^{G(f^{-m}y)} \sum_j DA(\delta_m(y_q), f^j x)(\delta_m(y) - \delta_m(y_q)) \rho_{P_q}(y) dy \right) + O(\varepsilon^2) =
\]

\[
\mathbb{I}_q^{(1)} + \mathbb{I}_q^{(2)} + \mathbb{I}_q^{(3)} + \mathbb{I}_q^{(4)} + \mathbb{I}_q^{(5)} + \mathbb{I}_q^{(6)}.
\]

By the argument of Lemma 1(d) we obtain

\[
\mathbb{I}_q^{(1)} \leq \text{Const sup}_{P_q} \varepsilon \kappa_1(\delta_m(y)) |\theta_3(\delta_m(y))| \left( \frac{1}{\sqrt{\varepsilon}} \right)^2 =
\]

\[
\text{Const sup}_{P_q} \kappa_1(\delta_m(y)) |\theta_3(\delta_m(y))| =
\]

\[
\text{Const} \left[ \int_{P_q} e^{G(f^{-m}y)} \kappa_1(\delta_m(y)) |\theta_3(\delta_m(y))| \rho_{P_q}(y) dy + \varepsilon \right].
\]

Also

\[
\mathbb{I}_q^{(2)} \leq \text{Const} \int_{P_q} e^{G(f^{-m}y)} |\theta_3(\delta_m(y))| \rho_{P_q}(y) dy,
\]

\[
\mathbb{I}_q^{(3)} \leq \text{Const} \int_{P_q} e^{G(f^{-m}y)} |\kappa_1(\delta_m(y))| |\theta_2(\delta_m(y))| |\rho_{P_q}(y) dy.
\]

and, since \(|\delta_m(y) - \delta_m(y_q)| = O(\varepsilon)\)

\[
\mathbb{I}_q^{(5)} \leq \text{Const} \varepsilon^\frac{3}{2} \int_{P_q} e^{G(f^{-m}y)} |\kappa_1| |\rho_{P_q}(y) dy.
\]
Thus
\[ \sum_q c_q |I_q| \leq \text{Const} \left[ \varepsilon + \ell(|\kappa_1\theta_3|) + \ell(|\theta_3|) + \ell(|\kappa_1\theta_2|) + \varepsilon \ell(|\theta_2|) + \varepsilon^2 \ell(|\kappa_1|) + \varepsilon^2 \right]. \]

Also
\[ \theta_4(\delta_m(y_q)) = \int_{P_q} e^{G(f^{-m}y)} \theta_4(\delta_m(y)) \rho_{P_q}(y) dy + O(\varepsilon \int_{P_q} e^{G(f^{-m}y)} |\kappa_4(\delta_m(y))| \rho_{P_q}(y) dy + \varepsilon^2). \]

Hence
\[ \sum_q c_q |I_q| \leq \text{Const} (\ell(\theta_4(\delta_m)) + \varepsilon \ell(\kappa_4(\delta_m)) + \varepsilon^2). \]

This completes the proof of Lemma 8.

On the other hand the inequality
\[ \ell((T^n)^4) \leq \text{Const} \varepsilon \]

can be proven similarly to Lemma 1(d). This together with Lemma 8 completes the proof of (c). The proof of Proposition 20 is complete.

**Proposition 21.**
\[ \left| \ell \left( \sum_{j=1}^\frac{n}{C} L_{j+1}^{-1} \gamma_j \right) \right| \leq \text{Const}. \]

**Proof.** We have
\[ L_{j+1}^{-1} \gamma_j = L_{j-\sqrt{n}}^{-1} \gamma_j + \left[ L_{j+1}^{-1} - L_{j-\sqrt{n}}^{-1} \right] \gamma_j. \]

Now
\[ \left| \ell \left( \sum_{j=1}^{\frac{n}{C}} L_{j-\sqrt{n}}^{-1} \gamma_j \right) \right| \leq n \text{Const} \left( \frac{\sqrt{n}}{C} \right) \leq n \text{Const} \left( \frac{\sqrt{n}}{C} \right) = \text{Const}. \]

Also
\[ \left[ L_{j+1}^{-1} - L_{j-\sqrt{n}}^{-1} \right] \gamma_j = \varepsilon L_{j-\sqrt{n}}^{-1} \sum_k Q_k L_{j-\sqrt{n}}^{-1} \gamma_j + O \left( \left\| \sum_{k=j-\sqrt{n}}^j \varepsilon Q_k \right\|^2 \right) = I_j + I_j^2 \]

\[ I_j = O((\sqrt{n})^2) = O(\varepsilon). \] Thus
\[ \sum_j \ell(I_j) = \sum_j O \left( \left\| \sum_{k=j-\sqrt{n}}^j \varepsilon Q_k \right\|^2 \right) = O(1). \]
Also, similarly to the proof of Lemma 1,
\[ \sum_j \ell(I_j) = \ell \left( \varepsilon \sum_{j>k} L_{j-\sqrt{n}}^{-1} \sum_k Q_k L_{j-\sqrt{n}}^{-1} \gamma_j \right) \leq \text{Const} \varepsilon \sum_{j,k} a \left( \frac{j-k}{C} \right) . \]

Now for fixed \( k \)
\[ \sum_{j>k} a \left( \frac{j-k}{C} \right) \leq \text{Const} . \]

So
\[ \sum_j \ell(I_j) \leq \text{Const} \varepsilon \sum_{j=1}^1 O(1) = O(1) . \]

\[ \square \]

14. SHORT TIME FLUCTUATIONS IN AVERAGING. RECURSIVE BOUNDS.

Here we complete the proof of Theorem 13. Let
\[ a_{m,p} = \sup_{\ell} \left| \frac{1}{\ell} \left( \sum_{j=0}^m L_j^{-1} \gamma_j \right)^p \right| . \]

Lemma 10. (a) \( a_{m,2} \leq \text{Const} m \sqrt{n} ; \)
(b) \( a_{m,4} \leq \text{Const} m^2 n ; \)

Proof. We want to relate \( a_{m+1,p} \) to \( a_{m,p} \). Let \( \bar{S} = \sum_{j=0}^m L_j^{-1} \gamma_j , \) \( \hat{S} = \sum_{j=0}^{m+1} L_j^{-1} \gamma_j . \) We have
\[ \ell((\bar{S} + \hat{S})^2) = \ell(\bar{S}^2) + 2 \ell(\bar{S} \hat{S}) + \ell(\hat{S}^2) . \]

Applying Proposition 20 to the last term we get
\[ \ell(\hat{S}^2) \leq \text{Const} \sqrt{n} . \]

To estimate the second term we write
\[ \bar{S} \hat{S} = \sqrt{a_{m,2}} \left( \frac{\bar{S}}{\sqrt{a_{m,2}}} \hat{S} \right) \]
and apply Proposition 20 with
\[ A(x, \bar{S}, L) = \frac{1}{\sqrt{a_{m,2}}} \bar{S} L^{-1} A(x) . \]

Then \( |\theta_1(\bar{S}, L)| \leq \text{Const} , \) so
\[ |\ell(\bar{S} \hat{S})| \leq \text{Const} \sqrt{a_{m,2}} . \]
and hence
\[ \ell((\tilde{S} + \hat{S})^2) \leq \ell(\tilde{S}^2) + \text{Const} \left[ \sqrt{n} + \sqrt{a_{m,2}} \right]. \]
Taking supremum over \( l \) we obtain
\[ a_{m+1,2} \leq a_{m,2} + \text{Const} (\sqrt{n} + \sqrt{a_{m,2}}). \]
Let \( a_{m,2} = K_m m \sqrt{n} \), then we get
\[ K_{m+1}(m + 1) \sqrt{n} \leq K_m m \sqrt{n} + \text{Const} (\sqrt{n} + \sqrt{K_m m \sqrt{n}}) \leq K_m m \sqrt{n} + \text{Const} (1 + \sqrt{K_m}) \sqrt{n}. \]
(The last inequality follows from the fact that \( m \leq T \sqrt{n} \).) Dividing by \( m + 1 \) we get
\[ K_{m+1} \leq K_m - \frac{K_m - (\sqrt{K_m} + 1) \text{Const}}{m + 1}. \]
If \( K \) is such that \( K \geq (\sqrt{K} + 1) \text{Const} \), then \( K_m \leq K \) implies that \( K_{m+1} \leq K \) and so (a) is proved by induction.

To prove (b) write
\[ \ell((\tilde{S} + \hat{S})^4) \leq \ell(\tilde{S}^4) + \text{Const} \left[ \ell(\tilde{S}^3 \hat{S}) + \ell(\tilde{S}^2 \hat{S}^2) + \ell(\tilde{S} \hat{S}^3) + \ell(\hat{S}^4) \right]. \]

To estimate \( \ell(\tilde{S}^3 \hat{S}) \) we write
\[ \tilde{S}^3 \hat{S} = (a_{m,4})^{\frac{3}{4}} \left( \frac{\tilde{S}^3}{a_{m,4}} \right), \]
and apply Proposition 20 with
\[ A(x, \bar{S}, L) = \frac{1}{a_{m,4}^{\frac{3}{4}}} \bar{S}^3 L^{-1} A(x). \]
Then \( |\theta_1(\bar{S}, L)| \leq \text{Const} \), so
\[ |\ell(\tilde{S}^3 \hat{S})| \leq \text{Const} a_{m,4}^{\frac{3}{4}}. \]
Also by Proposition 20
\[ \ell(\hat{S}^4) \leq \text{Const} n. \]

To estimate the other terms we apply the Holder inequality to get
\[ \ell((\tilde{S} + \hat{S})^4) \leq \ell(\tilde{S}^4) + \text{Const} \left[ \frac{3}{4} a_{m,4}^{\frac{3}{4}} + n + \ell(\tilde{S}^4)^{\frac{1}{4}} \ell(\hat{S}^4)^{\frac{3}{4}} + \sqrt{\ell(\tilde{S}^4) \ell(\hat{S}^4)} \right]. \]
Taking supremum we get
\[ a_{m+1,4} - a_{m,4} \leq \text{Const} \left[ a_{m,4}^{\frac{3}{4}} + \sqrt{a_{m,4} n} + a_{m,4}^{\frac{1}{4}} n^{\frac{3}{4}} + n \right]. \]
Let \( a_{m,2} = K_m m^2 n \), then we get
\[
K_{m+1} (m+1)^2 n - K_m m^2 n
\leq \text{Const} \left[ K_m^3 m^2 n^3 + \sqrt{K_m m \sqrt{n} \sqrt{n}} + K_m \sqrt{m n} + n^3 \right] \leq \\
\text{Const} \left[ K_m^3 m^2 n + \sqrt{K_m m n} + \frac{1}{3} \sqrt{m n} \right].
\]
(In the last inequality we are using the fact that \( m \leq T \sqrt{n} \).) So if \( K \) is large enough then \( K_m \leq K \) implies that \( K_{m+1} \leq K \). This proves (b).

Let now
\[
b_{m,p} = \sup_{\ell} \left| \left( \left( \sum_{j=0}^{m} \beta_j \right)^p \right) \right|,
\]
\[
d_{m,p} = \sup_{\ell} \left| \left( \Delta_{m,p}^p \right) \right|.
\]
Using equation (14) and Lemma 10 we get
\[
d_{m,p} \leq \text{Const}(a_{m,p} + b_{m,p}) \leq \text{Const}(b_{m,p} + (m \sqrt{n} \frac{3}{2}) \leq p).
\]
Next step gives recursive relations for \( b_{m,p} \).

**Proposition 22.**

(a) \( b_{m+1,2} - b_{m,2} \leq \text{Const}(\sqrt{b_{m,2} d_{m,2}} + \sqrt{n} d_{m,2}) \);

(b) Let \( D_m = \frac{d_{m,4}}{\varepsilon} + d_{m,4}^3 + d_{m,2} + \frac{3}{2} \), then
\[
b_{m+1,4} - b_{m,4} \leq \text{Const} \left[ b_{m,4}^3 d_{m,2} + \sqrt{b_{m,4} D_m} + b_{m,4}^3 D_{m,2} + D_m \right].
\]

**Proof.** (a) Let \( R' = \sum_{j=1}^{m} \beta_j \), \( R'' = \sum_{j=m+1}^{m+1} \frac{1}{\sqrt{\delta}} \beta_j \). We have
\[
\ell((R' + R'')^2) = \ell((R')^2) + 2\ell(R'R'') + \ell((R'')^2).
\]
Thus
\[
b_{m+1,2} - b_{m,2} \leq \left[ \sup_{\ell} \ell(R'R'') + \ell((R'')^2) \right].
\]

Applying Proposition 20 with \( \delta = (q, \Delta) \) and
\[
A(q, \Delta, x) = \frac{[DA(q, x) + \zeta(q, x, \Delta) - O] \Delta}{d_{m,2}},
\]
we get
\[
\ell((R'')^2) \leq \text{Const} d_{m,2} \sqrt{n}.
\]
Applying Proposition 20 with 
\[ A(q, \Delta, x) = \frac{[DA(q, x)(q, x, \Delta) - Q] \Delta R'}{\sqrt{d_{m,2}b_{m,2}}} \]
we obtain
\[ |\ell(R' R'')| \leq \ell(\Delta_{m,\sqrt{n}} R') \leq \text{Const} \sqrt{d_{m,2}b_{m,2}}. \]

(b) First we estimate \( \ell((R'')^4) \). To this end we apply Proposition 20 and note that
\[
|\theta_4(\delta_m)| \leq \text{Const} \Delta_{m,\sqrt{n}}^4,
|\kappa_4(\delta_m)| \leq \text{Const} |\Delta_{m,\sqrt{n}}|^3,
|\theta_3(\delta_m)| \leq \text{Const} |\Delta_{m,\sqrt{n}}|^3,
|\theta_2(\delta_m)| \leq \text{Const} |\Delta_{m,\sqrt{n}}|^2,
|\tilde{\kappa}_1(\delta_m)\theta_3(\delta_m)| \leq \text{Const} |\Delta_{m,\sqrt{n}}|^3,
|\tilde{\kappa}_1(\delta_m)\theta_2(\delta_m)| \leq \text{Const} |\Delta_{m,\sqrt{n}}|^2,
|\tilde{\kappa}_1(\delta_m)| \leq \text{Const},
\]
and, that, by Holder inequality
\[ \ell \left( |\Delta_{m,\sqrt{n}}|^3 \right) \leq d_{m,4}^4. \]
Thus
\[ \ell((R'')^4) \leq \text{Const} D_m. \]
To estimate \( \ell((R')^3 R'') \) we apply Proposition 20 with
\[ A = \frac{(R')^3 [DA(q, x)(q, x, \Delta) - Q] \Delta}{\sqrt{d_{m,2}b_{m,4}^4}}. \]
This gives
\[ \ell((R')^3 R'') \leq \text{Const} \sqrt{d_{m,2}b_{m,4}^4}. \]
To estimate the remaining terms we use the Holder inequality. This completes the proof of (b).

Now using an \textit{a priori} bound \( |\Delta_m| \leq \text{Const} \) we see that the contribution of \( b_{m,p} \) to (24) is not larger that the contribution of \( a_{m,p} \). Thus
\[ d_{m,p} \leq \text{Const}(m \sqrt{n})^{\frac{5}{2}} \epsilon^{p}. \]
Plugging this bound to Proposition 22(a) we get
\[ b_{m+1,2} - b_{m,2} \leq \text{Const}(\sqrt{b_{m,2}} + 1) \sqrt{\epsilon} \]
From this we obtain by induction that for \( m \leq \frac{1}{\sqrt{\epsilon}} \)
\[ b_{m,2} \leq \text{Const} m \sqrt{\epsilon}. \]
Also (25) implies that
\[ d_{m,p} \leq \text{Const} \varepsilon^\frac{m}{2}. \]
Hence \( D_m \leq \text{Const} \varepsilon \) The inequality of Proposition 22(b) becomes
\[ b_{m+1,4} - b_{m,4} \leq \text{Const} \left[ b_{m,4}^\frac{3}{2} \sqrt{\varepsilon} + \sqrt{b_{m,4} \varepsilon} + b_{m,4}^{\frac{3}{2}} \varepsilon + \varepsilon \right]. \]
Now repeating the argument of Lemma 10(b) we get
(27)
\[ b_{m,4} \leq \text{Const} m^2 n \varepsilon^2. \]

**Proposition 23.** (a) \( \{ \Delta_t^\varepsilon \} \) is a tight family;
(b) Let \( \beta_t^\varepsilon = \frac{\Delta_t^\varepsilon}{\sqrt{\varepsilon}}, \) then as \( \varepsilon \to 0 \beta_t^\varepsilon \to 0 \) in probability.

*Proof.* In view of the inequalities (26)–(27), the proof of (a) is similar to the proof of Lemma 2. The similar argument implies that \( \{ \frac{\Delta_t^\varepsilon}{\sqrt{\varepsilon}} \} \) is tight and so \( \beta_t^\varepsilon \to 0. \)

**Proposition 24.** Let \( L_t^\varepsilon = L_{[\frac{t}{\varepsilon}]} \), then as \( \varepsilon \to 0 \) \( L_t^\varepsilon \) converges to the solution of the ODE
\[ \frac{dL}{dt} = DA(q(t))L. \]

*Proof.* This follows immediately from the equation (12), the bound
\[ ||\tilde{\zeta}(q_n, \Delta_n)|| \leq \text{Const} ||\Delta_n|| \]
and the fact that \( \Delta_{[\frac{t}{\varepsilon}]} \to 0 \) weakly. \( \square \)

*Proof of Theorem 4.* Let \( \Delta_t \) be some limit of \( \Delta_t^\varepsilon \) then it follows from (13) and Propositions 19, 23 and 24 that \( \Delta_t \) satisfies the equation
(28)
\[ \Delta(t) = L(t) \int_0^t L^{-1}(s)dB(s) \]
where \( \frac{dL}{dt} = DA(q(t))L. \) Differentiating (28) we get
\[ d\Delta = DA(q(t))\Delta dt + dB(t). \]
This completes the proof of Theorem 4. \( \square \)

15. **Long time fluctuations in Averaging.**

Here we prove Theorem 5. Recall from Section 13 that for the sake of notational simplicity we give the proof only for the case \( z \in \mathbb{R}^1 \), the general case being completely similar.

**Lemma 11.** \[ \left| \ell \left( \sum_{j=0}^n A(z_j, f^j x) \right) \right| \leq \text{Const}(1 + \varepsilon n). \]
Proof. Let \( r = \beta \frac{\sqrt{1}}{\varepsilon} \) where \( \beta \) is chosen so that \( \beta \varepsilon \rightarrow 0 \) but \( \frac{\alpha}{\varepsilon} \rightarrow 0 \) as \( \varepsilon \rightarrow 0 \). For \( j > r \) we write

\[
z_j = z_{j-r} + \varepsilon A(z_m, f^m x).
\]

From this and Lemma 5 we obtain

\[
A(z_j, f^j x) = A(z_{j-r}, f^j x) + \varepsilon \sum_{m=j-r}^{j-1} DA(z_{j-r}, f^{j-r} x) A(z_m, f^m x) + O(\varepsilon^2 r^2).
\]

Similarly to the proof of Theorem 2 we get

\[
|\ell(A(z_{j-r}, f^j x))| \leq \text{Const}_r.
\]

Thus

\[
(29) \quad \ell \left( \sum_{j=r}^{n} A(z_j, f^j x) \right) = O(\varepsilon^2 nr^2) + O(n a_r) + \varepsilon \ell \left( \sum_{m=0}^{n} A(z_m, f^m x) \sum_{k=m+1}^{m+r} DA(z_{k-r}, f^k x) \right).
\]

By the argument of Lemma 1 the contribution to the last term of each fixed \( m \) can be bounded by

\[
\text{Const}_r \varepsilon \sum_{k=m+1}^{m+r} a \left( \frac{k-m}{C} \right) \leq \text{Const}_r \varepsilon \sum_{k} a \left( \frac{k}{C} \right).
\]

Thus \( \ell(\sum_{j=r}^{n} A(z_j, f^j x)) = O(\varepsilon n) \). Similarly

\[
\sum_{j=0}^{r} \ell(\sum_{j=0}^{r} A(z_j, f^j x)) = \sum_{j=0}^{r} \ell(\sum_{j=0}^{r} A(z_0, f^j x)) + \varepsilon \sum_{j=0}^{r} \sum_{j<k} \ell(A(z_k, f^k x) DA(z_0, f^j x)) + O(\varepsilon^2 r^3).
\]

Similarly to Lemma 1(a) and (b) we can estimate the first term here by \( \text{Const} \) and the second one by \( \text{Const} \varepsilon r \).

\[\square\]

Corollary 14.

\[
(a) \quad \ell \left( \left[ \sum_{j=0}^{r} A(z_j, f^j x) \right]^2 \right) \leq \text{Const} \frac{\Delta}{\varepsilon};
\]
(b) As $\Delta \to 0$

$$\varepsilon \ell \left( \left[ \sum_{j=0}^{\Delta} A(z_j, f^j x) \right]^2 \right) \sim \Delta \sigma(z_0);$$

**Proof.** (a) follows from Lemma 10(a).

(b) We have

$$\ell \left( \left[ \sum_{j=0}^{\Delta} A(z_j, f^j x) \right]^2 \right) = \sum_{j,k} \ell \left( A(z_j, f^j x) A(z_k, f^k x) \right).$$

Brake this sum into two parts:

$$\sum_{|j-k| \leq K} \ell(A(z_j, f^j x) A(z_k, f^k x)) \sim \frac{\Delta}{\varepsilon} \nu \left( \sum_{k=-K}^{K} A(z_0, x) A(z_0, f^k x) \right).$$

On the other hand

$$\left| \sum_{|j-k| > K} \ell(A(z_j, f^j x) A(z_k, f^k x)) \right| = o_{K \to \infty}(1) + O \left( \frac{\Delta^2}{\varepsilon} \right).$$

Letting $K \to \infty$ we obtain the statement required. \hfill \Box

**Lemma 12.**

(a) $$\ell \left( \left[ \sum_{j=0}^{\Delta} A(z_j, f^j x) \right]^2 \right) \leq \text{Const} \frac{\Delta}{\varepsilon^2};$$

(b) As $\Delta \to 0$

$$\ell \left( \left[ \sum_{j=0}^{\Delta} A(z_j, f^j x) \right]^2 \right) \sim \sigma(z_0) \frac{\Delta}{\varepsilon^2};$$

**Proof.** (a) We proceed by induction. Namely we will show that for each $k$ there is a constant $R_k$ such that

$$\ell \left( \left[ \sum_{j=0}^{2^k \Delta} A(z_j, f^j x) \right]^2 \right) \leq R_k \frac{2^k}{\varepsilon^2}. \quad (30)$$
Corollary 14 show that this is true for $k = 1$. Let us see how to pass from $k$ to $k + 1$. We have

$$
\ell \left( \left[ \sum_{j=0}^{2^k} A(z_j, f^j x) \right]^2 \right) = \ell \left( \left\{ \left[ \sum_{j=0}^{2^k} A(z_j, f^j x) \right] + \left[ \sum_{z^{k+1}_{\varepsilon}} A(z_j, f^j x) \right] \right\}^2 \right) =
$$

$$
\ell \left( \left[ \sum_{j=0}^{2^k} A(z_j, f^j x) \right]^2 + \left[ \sum_{z^{k+1}_{\varepsilon}} A(z_j, f^j x) \right]^2 \right) +
$$

$$
2\ell \left( \sum_{0 \leq j \leq 2^k \leq m \leq 2^{k+1}_{\varepsilon}} A(z_j, f^j x) A(z_m, f^m x) \right).
$$

The sum of the first two terms is bounded by $R_k^{2k+1}$ by induction hypothesis and by the argument of Lemma 11 the last term is less than

$$
\ell \left( \left[ \sum_{j=0}^{2^k} A(z_j, f^j x) \right] \right) \text{ Const2}^k.
$$

By induction hypothesis the first factor here is at most $\sqrt{R_k^{2k}}$. Thus

$$
\frac{R_{k+1}^{2k+1}}{\varepsilon} \leq 2 \frac{R_k^{2k}}{\varepsilon} + O \left( \sqrt{\frac{R_k^{2k}}{\varepsilon}} 2^k \right).
$$

In other words,

$$
R_{k+1} \leq R_k + O(\sqrt{R_k^{2k}\varepsilon}).
$$

Let $R_k^* = \max(R_k, 1)$ then

$$
R_{k+1}^* \leq R_k^* \left( 1 + O \left( \sqrt{2^k \varepsilon} \right) \right).
$$

Hence

$$
R_k^* \leq R_0^* \prod_{j=0}^{k} \left( 1 + \text{Const} \sqrt{2^j \varepsilon} \right).
$$

Now

$$
2^j \varepsilon = 2^k \varepsilon 2^{j-k} \leq \frac{\Delta}{2^{k-j}}.
$$

The second term is less than $\prod_{m=0}^{\infty} (1 + \text{Const} \sqrt{2^{-j}})$. Hence $R_k^*$ and so $N_k$ are uniformly bounded. This proves (a);
(b): (a) implies that as $\Delta \to 0$, $z_n \to z_0$ in probability uniformly for $n < \frac{\Delta}{\varepsilon}$. Hence we can repeat the computation of (a) replacing (30) by the assumption that $\forall N = \frac{2^k}{\varepsilon}$,

$$\ell \left( \left[ \sum_{j=0}^{N} A(z_j, f^j x) \right]^2 \right) = (\sigma(z_0) + \rho_{l,k}) N$$

where $|\rho_{l,k}| < \delta_k$. We then get

$$\delta_{k+1} \leq \delta_k \left( 1 + O \left( \sqrt{\frac{2^k \varepsilon}{\delta_k}} \right) \right).$$

We want to show that given $\delta > 0$ there exists $\Delta$ such that $|\delta_k| < \delta$ for $\Delta < \Delta$. Let $k'(k)$ be the largest number less than $k$ such that $|\delta_{k'}| < \delta^2$. Reasoning as in (a) we get

$$\delta_k < \delta^2 \prod_{j=k'}^k \left( 1 + \text{Const} \frac{\sqrt{2j \varepsilon}}{\delta} \right) \leq \delta^2 \prod_{l=1}^{\infty} \left( 1 + \text{Const} \frac{\sqrt{2^{-l} \Delta}}{\delta} \right)$$

The second term converges to 1 as $\Delta \to 0$. This proves (b).

**Corollary 15.** As $\Delta \to 0$

$$\ell \left( \sum_{j=0}^{\Delta \varepsilon} A(z_j, f^j x) \right) \sim \frac{\Delta}{\varepsilon} a(z_0).$$

**Proof.** By (29) we have

$$\ell \left( \sum_{j=0}^{\Delta \varepsilon} A(z_j, f^j x) \right) = \varepsilon \sum_{j=0}^{\Delta \varepsilon} \sum_k \ell \left( A(z_j, f^j x)DA(z_{k-r}, f^k x) \right) + o \left( \frac{\Delta}{\varepsilon} \right) =$$

$$\varepsilon \sum_{j=0}^{\Delta \varepsilon} \sum_{k=1}^{K} \ell \left( A(z_j, f^j x)DA(z_{j+k-r}, f^k x) \right) + o_{K \to \infty} \left( \frac{\Delta}{\varepsilon} \right).$$

But for fixed $j$

$$\ell \left( A(z_j, f^j x) \sum_{k=1}^{K} DA(z_{j+k-r}, f^{j+k} x) \right) \sim \nu \left( A(z_j, f^j x) \sum_{k=1}^{K} DA(z_j, f^{j+k} x) \right).$$

Also $z_j \to z_0$ in probability by Lemma 12, thus

$$\sum_{j=0}^{\Delta \varepsilon} \ell \left( A(z_j, f^j x) \sum_{k=1}^{K} DA(z_{j+k-r}, f^{j+k} x) \right) \sim \frac{\Delta}{\varepsilon} \sum_{k=1}^{K} \nu \left( A(z_0, f^j x)DA(z_0, f^k x) \right).$$
Letting $K \to \infty$ we obtain the statement required. □

**Lemma 13.**

\[
\ell \left( \left[ \frac{\Delta}{\beta} \sum_{j=0}^{\Delta \beta} A(z_j, f^j x) \right]^4 \right) \leq \text{Const} \frac{\Delta^2}{\varepsilon^4}.
\]

**Proof.** We proceed as in Lemma 12. The inequality

\[
\ell \left( \left[ \frac{\Delta}{\beta} \sum_{j=0}^{\Delta \beta} A(z_j, f^j x) \right]^4 \right) \leq \text{Const} \frac{\Delta^2}{\varepsilon^2}
\]

follows from Lemma 10. Let $M_k$ be the number such that

\[
\ell \left( \left[ \frac{\Delta}{\beta} \sum_{j=0}^{\Delta \beta} A(z_j, f^j x) \right]^4 \right) \leq M_k \left( \frac{2k}{\varepsilon} \right)^2.
\]

Let

\[
\hat{T} = \sum_{j=0}^{\frac{\Delta}{\beta}} A(z_j, f^j x).
\]

\[
\hat{T} = \sum_{j=\frac{\Delta}{\beta}+1}^{\frac{2\Delta}{\beta}+1} A(z_j, f^j x).
\]

We have

\[
\ell \left( \left[ \sum_{j=0}^{\frac{2\Delta}{\beta}+1} A(z_j, f^j x) \right]^4 \right) = \ell((\hat{T} + \hat{T})^4) = \ell(\hat{T}^4) + 4\ell(\hat{T}^3\hat{T}) + 6\ell(\hat{T}^2\hat{T}^2).
\]

Using the argument of Proposition 20, Corollary 14 and Lemma 12 we obtain

(31) \[ \ell(\hat{T}^4) \leq M_k \frac{2^{2k}}{\varepsilon^4}, \]

(32) \[ \ell(\hat{T}^4) \leq M_k \frac{2^{2k}}{\varepsilon^2}, \]

(33) \[ |\ell(\hat{T}^3\hat{T})| \leq \text{Const} |\ell| |\hat{T}|^2 \leq \text{Const} M_k^3 \frac{2^{2k}}{\varepsilon^4} \leq \text{Const} M_k^3 \frac{2^{2k}}{\varepsilon^2}. \]
(the last inequality is true because $2^k \leq \frac{1}{\varepsilon}$) and

$$\ell(T^2 \tilde{T}^2) \leq \text{Const} \frac{2^{2k}}{\varepsilon^2}.$$  

**Lemma 14.**

$$\left| \ell(T\tilde{T}^3) \right| \leq \text{Const} M_k^3 \frac{2^{2k}}{\varepsilon^2}.$$  

**Proof.** It is enough to prove this for $\ell = \ell(P, G)$. Denote $k^\ast = \frac{2k}{\varepsilon}$. Consider an almost Markov decomposition $f^{k^\ast} P = \bigcup P_j \bigcup Z$. Denote $\xi_j = \sup_{f^{-k^\ast} P_j} |\hat{T}| + 1$. Then

$$\left| \ell(T\tilde{T}^3) \right| \leq \sum_j c_j \xi_j \int_{P_j} e^{G(f^{-k^\ast} y)} \frac{(\hat{T}(f^{-k^\ast} y)}{\xi_j} \left[ \sum_{j=0}^{k^\ast-1} A(z_{k^\ast+j}, f^j y) \right]^3 \rho_{P_j} (y) dy + O(\theta^{k^\ast}).$$  

Now the Holder norm of $\hat{T} \circ f^{-k^\ast}$ is $O(1)$. Now, any bounded function can be decomposed as a difference of two positive functions as follows

$$A = 2||A||_{L^\infty} - (2||A||_{L^\infty} - A).$$  

This implies that

$$\ell_j^3(A) = \int_{P_j} e^{G(f^{-k^\ast} y)} \frac{(\hat{T}(f^{-k^\ast} y)}{\xi_j} A(y) \rho_{P_j} (y) dy$$

can be written as $\ell_j^3 = a_1 \ell'_j - a_2 \ell''_j$, where $\ell'_j, \ell''_j \in E(P, R, \alpha)$ and $|a_1| < \text{Const}$, $|a_2| < \text{Const}$. Thus

$$\left| \ell_j \left( \sum_{j=0}^{k^\ast-1} A(z_{k^\ast+j}, f^j y) \right)^3 \right| \leq \text{(Holder)}$$

$$\left( \ell_j \left( \sum_{j=0}^{k^\ast-1} A(z_{k^\ast+j}, f^j y) \right)^4 \right)^{\frac{3}{4}} \leq \text{(Inductive Hypothesis)}$$

$$\frac{M_k^3 2^{4k}}{\varepsilon^{\frac{3}{2}}}.$$  

Thus

$$\left| \ell(T\tilde{T}^3) \right| = O \left( \frac{M_k^3 2^{4k}}{\varepsilon^{\frac{3}{2}}} \sum_j c_j \xi_j \right) + O(\theta^{k^\ast}) = O \left( \frac{M_k^3 2^{4k}}{\varepsilon^{\frac{3}{2}}} \sum_j c_j \xi_j \right).$$
Using the argument of Proposition 20 we get
\[ \sum_j c_j \xi_j \leq \text{Const}(\ell(|T|) + 1) \leq \text{Const}(\sqrt{\ell(T^2) + 1}) \leq \text{Const} \frac{2^k}{\varepsilon}, \]
where the last inequality follows by (30). Thus
\[ |\ell(T^3)| \leq \text{Const} M_k \frac{2^k}{\varepsilon^2} \]
as claimed. \(\square\)

Combining (31)–(34) and Lemma 14 we get
\[ \frac{M_{k+1} 2^{2k+2}}{\varepsilon^2} = 2 \frac{M_k 2^{2k}}{\varepsilon^2} + \text{Const} \left( M_k \frac{2^k}{\varepsilon^2} + 1 \right). \]
Thus
\[ M_{k+1} \leq \frac{M_k}{2} + K \left( M_k^{\frac{3}{2}} + 1 \right). \]
Hence if \( M \) is so large that
\[ \frac{M}{2} \geq K \left( M_k^{\frac{3}{2}} + 1 \right) \]
then \( M_k \leq M \) implies \( M_{k+1} \leq M \). This completes the proof of Lemma 13. \(\square\)

**Corollary 16.** \( \{Z_t^x\} \) is tight.

**Proof.** In view of Lemma 13 the proof is the same as the proof of Lemma 2. \(\square\)

To prove Theorem 5 we need the following characterization of diffusion processes. (See e.g [86], exercise 4.6.6.)

**Proposition 25.** Let \((\xi_t, \mathcal{F}_t)\) be a random process with continuous paths such that
\[ \xi_t - \int_0^t a(\xi_s)ds \quad \text{and} \quad \left( \xi_t - \int_0^t a(\xi_s)ds \right)^2 - \int_0^t \sigma(\xi_s)ds \]
are martingales then \( \xi_t \) is diffusion with the drift \( a(x) \) and the diffusion coefficient \( \sigma(x) \).

**Proof of Theorem 5.** By Corollary 16 \( \{Z_t^x\} \) is a tight family. Let \( Z \) be some limit of \( Z_t^x \). We need to show that if \( Q(z_1 \ldots z_m) \) is any smooth bounded function and \( t_1 \ldots t_m \) are any numbers, \( t_j \leq t \) the
\[ \mathbb{E}(Q(Z_{t_1} \ldots Z_{t_m}) [Z_{t+\Delta} - Z_t - \Delta a(Z_t)]) = o(\Delta) \]
(35)
and

\[ \mathbb{E} \left( Q(Z_{t_1}, \ldots, Z_{t_s}) \left[ \left( Z_{t+\Delta} - Z_t \right)^2 - \Delta \sigma(Z_t) \right] \right) = o(\Delta). \]

Let us consider (35), (36) is similar. In terms of the original family \( Z^\varepsilon \), we have to show that \( \forall \ell \in E(\mathcal{P}, R, \alpha) \)

\[ \ell \left( Q\left( Z_{t_1/\varepsilon^2}, \ldots, Z_{t_m/\varepsilon^2} \right) \left( Z_{(t+\Delta)/\varepsilon^2} - Z_{t/\varepsilon^2} - \Delta a(Z_{t/\varepsilon^2}) \right) \right) \to 0 \]

uniformly as \( \varepsilon \to 0 \). It suffices to verify this for \( \ell = \ell(P, G) \). However, in this case the proof proceeds as before by considering an almost Markov decomposition \( f^{t/\varepsilon^2} P = \left( \bigcup_j P_j \right) \bigcup Z \) and applying Corollary 15 to each \( P_j \). The details are left to the reader. \( \square \)


Here we prove Theorem 6. Consider a series

\[ (S) = \sum_n c_n A(f^n x). \]

It is enough to assume that \( \nu(A) = 0, \sum_n c_n^2 < \infty, \sum a(m) < \infty \). Take a Markov family \( \mathcal{P} \). Let \( P \in \mathcal{P} \).

**Proposition 26.** \((S)\) converges in \( L^2(\ell(P)) \).

**Proof.**

\[ \ell \left( \left[ \sum_{n=N}^{\infty} c_n A \circ f^n \right]^2 \right) \]

\[ \text{Const} \sum_{m,n=N}^{\infty} c_n c_m a \left( \frac{n-m}{C} \right) \leq \]

\[ \text{Const} \sum_{m,n=N}^{\infty} (c_n^2 + c_m^2) a \left( \frac{n-m}{C} \right) \leq \]

\[ \text{Const} \sum_{m,n=N}^{\infty} c_n^2 a \left( \frac{n-m}{C} \right) \leq \]

\[ \text{Const} \left( \sum_{m=1}^{\infty} a(m) \right) \left( \sum_{n=N}^{\infty} c_n^2 \right). \]

\( \square \)

Let \( \mathcal{F}_N \) be as in Section 11.
Proposition 27. \( \forall Q \in \mathcal{F}_N, \forall A \in \mathbb{B} \) such that \( \nu(A) = 0, \|A\| \leq 1 \)
\[
\left| \int_Q A(f^n x) \rho_P(x) dx \right| \leq \text{Const}(n - N) \text{Vol}(Q).
\]

Proof.
\[
\left| \int_Q A(f^n x) \rho_Q(x) dx \right| = \int_{f^N Q} A(f^{n-N} y) \rho_{f^n Q}(y) dy \leq a(n - N)
\]
but \( \rho_P = c_{P,Q} \rho_Q \) where \( c_{P,Q} \sim \text{Vol}(Q) \).

Proof of the theorem: Denote by \( B \) \( L^2 \)-sum: \( B = \sum c_n A_n \circ f^n \). We have \( \forall Q \in \mathcal{F}_r \)
\[
\int_Q B(x) \rho_P(x) dx = \left( \sum_{n=1}^{r} + \sum_{n=r+1}^{\infty} \right) c_n A_n (f^n x) \rho_P(x) dx = I + \mathcal{I}.
\]
\[
|\mathcal{I}| \leq \text{Const} \sum_{n=r+1}^{\infty} c_n a(n - r) \text{Vol}(Q) \leq \text{Const} (\max c_n) \text{Vol}(Q).
\]
Let \( y \) be any point in \( Q \) Then
\[
I = \sum_{n=1}^{r} c_n A_n (f^n y) \text{Vol}(Q) + O(\sum_{n=1}^{r} c_n \theta^{r-n}) \text{Vol}(Q).
\]
The second term can be bounded as follows
\[
\sum_{n=1}^{r} c_n \theta^{r-n} \leq (\max c_n) \sum_{n=1}^{\frac{r}{2}} \theta^{r-n} + \max c_n (\sum_{n=\frac{r}{2}}^{\infty} \theta^{r-n}) \leq \text{Const} (\theta^{\frac{r}{2}} + \max c_n).
\]
Hence
\[
\frac{\int_Q B(x) \rho_P(x) dx}{\text{Vol}(Q)} = \sum_{n=1}^{r} c_n A_n (f^n y) + o(1)
\]
so the theorem follows by Doob’s martingale convergence theorem. \( \square \)

Note. In this section we follow quite closely \([55]\).
Proof. To estimate $V_N$ we brake sum (37) into five parts. Below $\varepsilon$ is such that for $k < \varepsilon \ln(\frac{1}{p_{2m}})$ $f^k B_m \cap B_n$ has at most one component, $c_1$ is an arbitrary constant and $c_2$ is a constant whose value will be chosen at the end of this section.

(1) $m = n$. $I = \sum_{n=1}^{N} \mu_{nn} = \sum_{n=1}^{N} p_n = E_N$.

(II) $m < n < m + \varepsilon \ln(\frac{1}{p_{2m}})$. Consider the set $\tilde{B}_m$ obtained as follows. For any leaf $W^u(x)$ such that $W^u_{\text{loc}}(x) \cap B_m \neq \emptyset$ choose a ball $W_{m,x}$ of radius $r_m$ containing $W^u_{\text{loc}}(x) \cap B_m$. Let $\tilde{B}_m = \bigcup_x W_{m,x}$.

**Proposition 28.** $\nu(\tilde{B}_m) \leq \text{Const} p_m$.

Proof. Let $\text{dist}_u$ denote the distance in induced $W^u$ metric. Then locally $\text{dist}_u(\cdot, \cdot) \leq \text{Const} \text{dist}(\cdot, \cdot)$. Hence $\tilde{B}_m$ is contained in a ball with the same center as $B_m$ and of radius $\text{Const} r_m$.

**Proposition 29.** If $m < n < m + \varepsilon \ln(\frac{1}{p_{2m}})$ then

$$\mu_{mn} \leq C\theta^{n-m} (p_n + p_m).$$

Proof. Choose $\delta$ such that $f^k W_{m,x}$ contains a ball of radius $(1 + \delta)^k r_m$.

Consider two cases:

(a) $r_n \geq r_m (1 + \frac{\delta}{2})^{n-m}$ then $\mu_{mn} \leq p_m \leq \text{Const} (1 + \delta)^{d(n-m)} p_n$;

(b) $r_n < r_m (1 + \frac{\delta}{2})^{n-m}$. Let $\ell_x$ denote $\ell(W_{m,x})$. Then $\ell_x (f^{n-m} W_{m,x} \cap B_n) \leq \text{Const} (1 + \delta)^{n-m} \text{Vol}(W_{m,x})$, hence $\mu_{mn} \leq \text{Const} (1 + \frac{\delta}{2})^{n-m} p_m$. \qed

(III) $m + \varepsilon \ln(\frac{1}{p_{2m}}) \leq n < m + c_1 \ln(\frac{1}{p_{2m}})$. Then $f^{n-m} W_{m,x}$ contains a ball of radius $r_m^{1-\gamma}$, $\gamma = \gamma(\varepsilon)$. Again there are two cases.

(a) $r_n \leq r_m^{1-\frac{\gamma}{2}}$, then any component of $f^{n-m} W_{m,x} \cap B_n$ can be surrounded by an annulus of width $r_m^{1-\gamma} - r_m^{1-\frac{\gamma}{2}}$ disjoint from $B_n$. Thus $\exists \delta_1$ such that $\ell_x (f^{n-m} W_{m,x} \cap B_n) \leq \text{Const} p_m^{\delta_1}$. Thus $\mu_{mn} \leq p_m^{1+\delta_1}$;

(b) $r_n > r_m^{1-\frac{\gamma}{2}}$, then $\mu_{mn} \leq p_m$.

(IV) $m + c_1 \ln(\frac{1}{p_{2m}}) < n < m + (\frac{1}{p_{2m}})^{c_2}$.

**Proposition 30.** $\mu_{mn} \leq \text{Const} p_m^{\frac{d-n}{d-n}}$.

Proof. Now any component of $f^{n-m} W_{m,x} \cap B_n$ can be surrounded by an annulus of constant width disjoint from $B_n$. Hence

$$\ell_x (f^{n-m} W_{m,x} \cap B_n) \leq \text{Const} r_n^{d_u}$$

On the other hand $\mu_{mn} \leq p_n$. So

$$\mu_{m,n} \leq C \sup_r (\min(r^d, r^{d_u} p_m)) = C p_m^{\frac{d}{d-d_u}}.$$
(V) \( n > m + \left( \frac{1}{p_m} \right)^{c_2} \). The following is analogous to Theorem 2.

**Proposition 31.** Let \( B^1 \) and \( B^2 \) be two balls of radii \( r^1 \) and \( r^2 \) respectively. Then given \( n_0 \) \( \exists \mathcal{C}(n_0) \) such that

\[
|\nu(1_{B^1}(x)1_{B^2}(f^m x)) - \nu(B^1)\nu(B^2)| \leq \mathcal{C}(n_0) \left[ \left( \frac{1}{m - C \ln n_1} \right)^k \left( \frac{1}{r^2} \right)^\alpha + n_0 \right].
\]

So, \( \mu_{mn} \leq p_m p_n + \delta_{mn} \), where for \( \delta_{mn} \) we have two bounds: \( \delta_{mn} \leq \mathcal{C} \left[ \left( \frac{1}{p_m} \right)^\alpha \left( \frac{1}{n-m} \right)^k + p_m^{n_0} \right] \) and \( \delta_{mn} \leq p_n \). Hence

\[
\delta_{mn} \leq \sup_p (\min (\mathcal{C} \left( \frac{1}{p} \right)^\alpha \left( \frac{1}{n-m} \right)^k + p_m^{n_0}, p)) = \mathcal{C} \left( \frac{1}{n-m} \right)^{\frac{\alpha+k}{\alpha+1}}.
\]

(Here we have used that \( \frac{1}{n-m} \gg p_m^{n_0} \).)

Let us sum up these terms. Direct calculation shows that

\[
(I) = E_N;
\]

\[
(II) \leq \text{Const} E_N;
\]

\[
(III)(a) \leq \text{Const} \sum_m p_m^{1+\delta} \ln \left( \frac{1}{p_m} \right) \leq \text{Const} \sum_m p_m \leq \text{Const} E_N;
\]

\[
(IV) \leq \sum_m \left( \frac{1}{p_m} \right)^{c_2} p_m^{d \alpha} \leq E_N
\]

if \( c_2 < \frac{d_u}{d - d_u} \). To estimate (IIIb) let us remark that we have for \( p_m \) two lower bounds. First \( p_m \leq p_n^{1+\delta} \) and second \( p_m \leq e^{-\frac{n-m}{c_1}} \). Thus

\[
(IIIb) \leq \sum_n \left( \sum_{n-m < \left( \frac{1}{p_m} \right)^{\frac{1}{2}}} p_n^{1+\delta} + \sum_{n-m \geq \left( \frac{1}{p_m} \right)^{\frac{1}{2}}} e^{-\frac{n-m}{c_1}} \right) \leq \sum_n \text{Const} p_n \leq \text{Const} E_N;
\]

At last,

\[
(V) \leq E_N^2 + \sum_m \sum_{j > \left( \frac{1}{p_m} \right)^{c_2}} \left( \frac{1}{j} \right)^{\frac{k}{\alpha+1}} \leq E_N^2 + \mathcal{C} \sum_m p_m^{c_2 \left( \frac{k}{\alpha+1} \right)^{k-1}} \leq E_N^2 + CE_N
\]

if \( c_2 \left( \frac{k}{\alpha+1} \right) - 1 \geq 1 \), i.e. \( c_2 \geq \frac{\alpha+1}{k-\alpha} \). So for \( c_2 \) we have two inequalities

\[
\frac{\alpha+1}{k-\alpha} \leq c_2 < \frac{d_u}{d - d_u}.
\]
They are compatible since \( \frac{k}{\alpha+1} > \frac{d}{\alpha} \). Combining these bounds we get
\[ V_N \leq E_N^2 + \text{Const} E_N \] as claimed. This completes the proof of Lemma 15.

\[ \square \]

**Proof of Theorem 7.** By Lemma 15 \( \mathbb{E}([\frac{S_N}{E_N} - 1]^2) \leq \frac{\text{Const}}{E_N} \). Choose \( N_j \) so that \( E_{N_j} \geq 2^j \). Then by Borel-Cantelli Lemma \( \frac{E_{N_j}}{S_N} \to 1 \) \( \nu \)-almost surely. Thus \( S_{N_j} \to \infty \) \( \nu \)-almost surely. Since \( S_N \) is non-decreasing \( S_N \to \infty \). \[ \square \]

**Notes.** The first Borel-Cantelli Lemma for a dynamical system was proved in [70]. [87] and [54] prove Borel-Cantelli for some partially hyperbolic dynamical systems on non-compact manifolds and present several applications to geometry and number theory. [19] deals with Anosov diffeomorphisms and establishes Borel-Cantelli under various assumptions on shapes of \( B_n \).

18. **Poisson Law.**

Here we prove Theorem 8. Let \( B_n = B(x_0, \frac{1}{n}) \), \( X_{n,\theta} = \sum_{j=1}^{n^\theta} 1_{B_n(f^j x)} \).

**Lemma 16.** If \( \theta > \frac{1+\alpha}{k} \), then \( \ell(X) = n^\theta \nu(B_n)(1 + o(1)) \).

**Proof.**

\[ \ell(X) = n^\theta \nu(B_n) + O \left( \sum_{j=1}^{n^\theta} \min \left( \left( \frac{1}{n} \right)^{d_u} n^{\alpha} \left( \frac{1}{j} \right)^k \right) \right). \]

The second term is \( O((\frac{1}{n})^{d_u(1-\frac{1}{k})} \frac{1}{n^k}) \). If \( \theta > \frac{1+\alpha}{k} \), then the main term here is the first one. \[ \square \]

Let us estimate \( \ell(X \geq 2) \). Denote by \( W_{n,x} = B_n \cap W^u_{\text{loc}}(x) \), \( \ell_x = \ell(W_{n,x}) \). Fix \( K \). Put \( \hat{B}_n(K) = \bigcup_{W_{n,x} \supset B_n(\theta, \frac{1}{nK})} W_{n,x} \).

**Proposition 32.**

\[ \frac{\nu(\hat{B}_n(K))}{\nu(B_n)} \to 1 \]

as \( K \to \infty \) uniformly over \( n \).

**Proof.** Similarly to Proposition 28 \( B_n \backslash B_n(K) \subset B(x_0, \frac{1}{n}(1 - \frac{\text{Const}}{K})) \). \[ \square \]

We have

\[ \ell(X \geq 2) \leq \ell(\exists j \leq n^\theta : f^j x \in B_n \backslash \hat{B}_n(K)) + \]

\[ \sum_{m} \ell(\exists j \leq n^\theta : 1_{B_n(f^{j+m} x)} + 1_{f^n x} \in \hat{B}_n(K)) \ell(1_{\hat{B}_n(K)}(f^m x)). \]
By Proposition 32 the first term is less than $\varepsilon n^\theta \nu(B_n)$ if $K$ is large enough. To bound the second term brake it into four parts.

(I) $j \leq M_0$. This term vanishes since $x_0$ is not periodic.
(II) $M_0 < j \leq \epsilon \ln n$.

**Proposition 33.** $\forall \epsilon \exists M_0$ such that $\| \leq \varepsilon \ell(X)$.

**Proof.** The intersection $f^j(W_{n,x}) \cap B_n$ has at most one component. Hence

$$\ell_x(f^j(W_{n,x}) \cap B_n) \leq C \frac{d_u}{\text{Vol}(f^j W_{n,x})} \leq C \xi^j,$$

$x < 1$. So

$$\| \leq \sum_m 1_{B_n(K)}(f^{mx}) \sum_{j=M_0}^\infty C \xi^j \leq \sum_{j=M_0}^\infty C \xi^j \ell(X) \leq C \frac{\xi M_0}{1 - \xi} \ell(X),$$

the last expression goes to 0 as $M_0$ tends to infinity. \qed

(III) $\epsilon \ln n < j \leq C_1 \ln n$.

**Proposition 34.** For fixed $C_1$ $\exists \varepsilon$ such that $\| \leq \text{Const}(\ln n)n^\xi \ell(X)$.

**Proof.** Here for any component of $f^{j}W_{n,x} \cap B_n$ there is an annulus of width at least $(\frac{1}{n})^{1-\varepsilon}$ disjoint from $B_n$. Hence

$$\sum_j \ell_x(f^j W_{n,x} \cap B_n) \leq \text{Const}(\ln n) \left(\frac{1}{n}\right)^{\varepsilon}.$$ \qed

(IV) $C_1 \ln n < j \leq n^\theta$.

**Proposition 35.** If $C_1$ is large enough $\| \leq \text{Const}(\frac{1}{n})^{d_u} n^\theta \ell(X)$.

**Proof.** Here for any component of $f^{j}W_{n,x} \cap B_n$ there is an annulus of width of order of 1 disjoint from $B_n$. So $\ell_x(f^j W_{n,x} \cap B_n) \leq \text{Const}(\frac{1}{n})^{d_u}$. Hence

$$\sum_j \ell_x(f^j W_{n,x} \cap B_n) \leq n^\theta \left(\frac{1}{n}\right)^{d_u}.$$ \qed

Thus $\| \leq \varepsilon \ell(X)$ if $\theta < d_u$. So we have for $\theta$ the inequalities $\frac{1+\alpha}{k} < \theta < d_u$. They are compatible if $\frac{k}{\alpha+1} > \frac{1}{d_u}$. So we have

**Proposition 36.** Let $\frac{1+\alpha}{k} < \theta < d_u$. Then

$$\ell(e^{it}X) = 1 - n^\theta \nu(B_n)(1 - e^{it}) + o(n^\theta \nu(B_n)).$$
Now introduce
\[ X_{n,k} = \sum_{j=1}^{k} \sum_{l=jn}^{(j+1)n-1} 1_{B_n(f^lX)} . \]
Then \( X_{n,(\nu(B_n)n)-1} - \sum_{l=1}^{\nu(B_n)-1} 1_{B_n(f^lX)} \) converges to 0 in probability.

Let \( \phi_{n,k}(\ell,t) = \mathbb{E}_\ell(e^{itX_{n,k}}) \).

**Proposition 37.**
\[ \phi_{n,k}(\ell,t) = \left[ 1 - n^\theta \nu(B_n)(1 - e^{it}) \right]^k + o(kn^\theta \nu(B_n)) \]

**Proof.** Induction on \( k \). For \( k = 1 \) this is subject of Proposition 36
Assume that we have established our claim for \( k \). Take \( \ell \in E_1, \ell = \ell(P) \).
Consider an almost Markov decomposition \( f^{(k+1)n^\theta}P = (\bigcup_j P_j) \bigcup Z \).
Choose \( y_j \in f^{-(k+1)n^\theta}P_j \). Then
\[ \phi_{n,k+1}(\ell,t) = \sum_j c_j e^{itX_{n,k}(y_j)} \phi_{n,1}(\ell(P_j),t) + O(\zeta^n) = \]
\[ \sum_j c_j e^{itX_{n,k}(y_j)}[(1 - n^\theta \nu(B_n)(1 - e^{it})) + O(\varepsilon n^\theta \nu(B_n))] = \]
\[ [\phi_{n,k}(\ell,t) + O(\zeta^n)][(1 - n^\theta \nu(B_n)(1 - e^{it})) + O(\varepsilon n^\theta \nu(B_n))] = \]
\[ [(1 - n^\theta \nu(B_n)(1 - e^{it}))^k + O(\delta_k + \zeta^n)][(1 - n^\theta \nu(B_n)(1 - e^{it})) + O(\varepsilon n^\theta \nu(B_n))] = \]
\[ (1 - n^\theta \nu(B_n)(1 - e^{it}))^{k+1} + \delta_{k+1}, \]
where \( \delta_k \leq \delta_k + \varepsilon n^\theta \nu(B_n) + \text{Const} \zeta^n \).

**Proof of Theorem 8.** Since \( X_n(\Delta) \) is a point process we only need to establish the convergence of finite-dimensional distributions. Let \( \Delta_1 \ldots \Delta_m \) be disjoint intervals. By Proposition 37
\[ \ell(X_n(\Delta_1) = n_1) \sim \frac{\Delta_1^{n_1}}{n_1!} e^{-\Delta_1} . \]
Repeating the argument of Proposition 37 we obtain
\[ \ell(\bigcap_j \{X_n(\Delta_j) = n_j\}) \sim \prod_j \left( \frac{\Delta_j^{n_j}}{n_j!} \right) e^{-\Delta_j} . \]
Notes. (1) There are two useful extensions of Theorem 8. The first, if \( x_0 \) is periodic of least period \( T \) then \( X_n(\Delta) \) is asymptotically distributed as \( \sum_{j \in N_\Delta} \xi_j \) where \( N_\Delta \) is the Poisson process with the unit density and \( \xi_j \) are mutually independent, independent of \( N_\Delta \) and identically distributed. Their distribution can be obtained as follows. Let \( M \) be a linear transformation of a \( d \)-dimensional Euclidean space such that at least one eigenvalue of \( M \) has absolute value greater then 1. Let \( \xi_j \) be uniformly distributed in the unit ball \( B \). Define

\[
\mathcal{F}(M) = \mathcal{F}(df^T(x_0)).
\]

Then \( \xi_j \) have the same distribution as \( \xi_j \). (The proof is the same as before but now (I) is not zero.) Secondly, one can consider the pair \( (j, n \text{dist}(f^j x, x_0)) \) where \( j \) is such that \( f^j x \in B_n \) and prove Poisson limit for this pair. (Again proofs are very similar but now balls need to be replaced by annuli.) One application of this generalization of Poisson Law is the following.

Corollary 17. Let \( m_n = \min_{j \leq n} \text{dist}(f^j x, x_0) \). If \( x_0 \) is aperiodic then

\[
\nu(n^{\frac{1}{d}} m_n < t) \sim \exp(-K(x_0)t^d).
\]

Thus, for a typical point \( (\frac{1}{n})^d \) is a correct normalization for \( m_n(x) \). [39] studies the set of points with different asymptotic behavior of \( m_n \).

(2) Other classes of dynamical systems satisfying Poisson Law are described in [40, 41, 42, 22]. The method of proof we use is similar to one of [79], (cf. also [72, 22]).

Appendix A. Absolute continuity.

Proof of Proposition 2. We will use the following fact (see [13]). Let \( D_1 \) and \( D_2 \) be smooth \( d - d_u \) dimensional discs transversal to \( E_u \). Let \( x_j \in D_j \) be points such that \( x_2 \in W^u(x_1) \) and \( \text{dist}_u(x_1, x_2) \leq 1 \). Then locally near \( x_1 \) we can define a continuous map \( p : D_1 \to D_2 \) such that \( px_1 = x_2 \) and \( px = W^u_{\text{loc}}(x) \). Then \( p \) is absolutely continuous and its Jacobian \( J_p(x) \) is Holder continuous where the Holder constant depends only on the angle between \( TD_j \) and \( E_u \) and the norms of embeddings \( D_j = i_j D, D \) being the standard disc in \( \mathbb{R}^{d-d_u} \). In fact

\[
J_p(x) = \lim_{n \to -\infty} \frac{\det(df^{-n}|TD_2)(x)}{\det(df^{-n}|TD_1)(x)}
\]

Now let \( U \) be a parallelogram obtained as follows. Take \( x_0 \in X \). Locally near \( x_0 \) chose a foliation \( \mathcal{V} \) transversal to \( E_u \). Then near \( x_0 \) we have a local product structure, that is for \( x, y \in X \) there is a unique point
\( z = W^u_{\text{loc}}(x) \cap V(y) \) where \( V(y) \) is the leaf of \( V \) containing \( y \). Write \( z = [x, y] \). Consider the set \( U \) of the form \( U = [V_0, W^u_{\text{loc}}(x_0)] \) where \( V_0 \) is a small disc in \( V(x_0) \). We first show that the restriction of the Lebesgue measure to \( U \) belong to \( E(R, \alpha) \) where the constants \( R \) and \( \alpha \) do not depend on the choice of \( V_0 \). Decompose \( V_0 = \bigcup V_j \) where \( V_j \) are small discs in \( V_0 \). Take \( x_j \in V_j \) and let \( W_j = [x_j, W^u_{\text{loc}}(x_0)] \), \( U_j = [V_j, W^u_{\text{loc}}(x_0)] \). Then

\[
\int_{U_j} A(x)dx = \left[ \int_{W_j} dy \left( \int_{V_j(y)} A(v)dv \right) \left( \frac{dx}{dydv} \right)(y) \right] (1 + o(1))
\]

where \( V_j(y) = [V_j, y] \) is the slice of \( V \) inside \( U_j \). By Holder continuity of \( E_u \frac{dx}{dydv} \) is Holder continuous. Also \( \int_{V_j(y)} \sim A(y)\text{Vol}(V_j(y)) \), \( \text{Vol}(V_j(y)) \sim \text{Vol}(V_j)\text{Vol}_p(y) \) where \( p_y \) is the projection \( p_y : V_j \to V_j(y) \). This verifies our claim. Now the same remains true if instead of requiring \( U \) to be a parallelogram we only ask that unstable slices of \( u \)-negligible sets. But choose a small \( r \). Let \( D \) be a \( d - d_u \) dimensional disc. Denote by \( U \) the union of unstable balls of radii \( r \) centered at \( D \). For \( x \in D \) let \( \ell_x \) denote \( \ell(W^u_r(x)) \). Then \( x \to \ell_x \) is continuous (see, e.g. [75]). Thus the map \( A \to A(x) = \ell_x(A) \) is continuous from \( C(U) \to C(D) \). Therefore the set \( M(U) \) of measures of the form \( \int_D \mu(x)\ell_x \) is weakly closed in \( C(X)^* \). Now take \( \ell \in E(\mathcal{P}, R, \alpha) \). By the definition it is a limit of some \( \ell_j \in E_2(\mathcal{P}, R, \alpha) \). Let \( \ell_j = \sum c_jk\ell(P_{jk}, G_{jk}) \). If \( \partial P_{jk} \cap U \neq \emptyset \) enlarge \( P_{jk} \) slightly so that the boundary of the resulting sets \( P'_{jk} \) is disjoint from \( U \). By property (b) of almost Markov family this can be done in such a way that \( \text{mes}(P'_{jk}) \leq \text{Constmes}(P_{jk}) \). Let \( \ell'_j = \frac{1}{c_jk}\sum c_jk\ell(P'_{jk}) \) where \( c_j \) is the normalization constant. Then \( \ell'_j|U \leq \text{Const}\ell'_j|U \). Thus it is enough to show that any limit point of \( \ell'_j \) assigns zero measure to \( u \)-negligible sets. But \( \ell'_j \in M(U) \). Thus if \( \ell'_j \to \ell' \) then \( \ell' \in M(U) \). So the statement follows by Fubini theorem. \( \Box \)
REFERENCES


[59] Liverani C. On Contact Anosov flows, preprint.


D. Dolgopyat, Department of Mathematics and Institute for Physical Science and Technology, University of Maryland, College Park, MD, 20742, USA

E-mail address: dmitry@math.umd.edu